Lagrange-Dichte

Die Lagrange-Dichte (nach dem Mathematiker Joseph-Louis Lagrange) spielt in der theoretischen Physik eine Rolle bei der Betrachtung von Feldern. Sie beschreibt die Dichte der Lagrange-Funktion in einem Volumenelement. Daher ist die Lagrange-Funktion definiert als das Integral der Lagrange-Dichte über dem betrachteten Volumen:

mit dem betrachteten Feld .

Der eigentliche Zweck der Lagrange-Dichte ist die Beschreibung von Feldern durch Bewegungsgleichungen. So, wie man die Lagrange-Gleichungen zweiter Art aus dem Hamiltonschen Prinzip erhält, kann man die Lagrange-Gleichungen für Felder aus dem Hamiltonschen Prinzip für Felder erhalten (Herleitung). Entsprechend lautet die Bewegungsgleichung:

.

Beispiel

Beispielhafte Lösung der Bewegungsgleichung einer schwingenden Saite (String) in 3 Dimensionen. Parameter: , Animation läuft mit 10 % der tatsächlichen Geschwindigkeit.

Für eine in einer Dimension schwingende Saite ergibt sich für die Lagrange-Dichte

In diesem Beispiel bedeuten:

die Auslenkung eines Punktes der Saite aus der Ruhelage (Feldvariable)
die lineare Massendichte
den Elastizitätsmodul

Mit dieser Lagrange-Dichte ergibt sich

Damit ergibt sich für die Bewegungsgleichung der schwingenden Saite

Anwendung in der Relativitätstheorie

Anwendung findet die Beschreibung physikalischer Vorgänge über die Lagrange-Dichte statt über die Lagrange-Funktion vor allem in relativistischen Vorgängen. Hier ist eine kovariante Darstellung der Lagrange-Funktion gewünscht, dann ist die Wirkung über

definiert. Damit ist die Lagrange-Funktion ein Lorentz-Skalar, also invariant unter Lorentz-Transformationen:

mit , wobei der Lorentz-Transformationstensor ist.

Literatur

  • Franz Schwabl: Lagrange-Dichte. In: Ders.: Quantenmechanik für Fortgeschrittene (QM II). Springer, Berlin 2005, ISBN 978-3-540-28865-7, S. 281ff.

Auf dieser Seite verwendete Medien

String Solution 3D.gif
Autor/Urheber: Me40005, Lizenz: CC BY-SA 4.0
Animated solution of string equation of motion in 3 dimensions