Die Lagrange-Dichte (nach dem Mathematiker Joseph-Louis Lagrange) spielt in der theoretischen Physik eine Rolle bei der Betrachtung von Feldern. Sie beschreibt die Dichte der Lagrange-Funktion in einem Volumenelement. Daher ist die Lagrange-Funktion definiert als das Integral der Lagrange-Dichte über dem betrachteten Volumen:
mit dem betrachteten Feld .
Der eigentliche Zweck der Lagrange-Dichte ist die Beschreibung von Feldern durch Bewegungsgleichungen. So, wie man die Lagrange-Gleichungen zweiter Art aus dem Hamiltonschen Prinzip erhält, kann man die Lagrange-Gleichungen für Felder aus dem Hamiltonschen Prinzip für Felder erhalten (Herleitung). Entsprechend lautet die Bewegungsgleichung:
Beispielhafte Lösung der Bewegungsgleichung einer schwingenden Saite (String) in 3 Dimensionen. Parameter: , Animation läuft mit 10 % der tatsächlichen Geschwindigkeit.
Für eine in einer Dimension schwingendeSaite ergibt sich für die Lagrange-Dichte
In diesem Beispiel bedeuten:
die Auslenkung eines Punktes der Saite aus der Ruhelage (Feldvariable)
Damit ergibt sich für die Bewegungsgleichung der schwingenden Saite
Anwendung in der Relativitätstheorie
Anwendung findet die Beschreibung physikalischer Vorgänge über die Lagrange-Dichte statt über die Lagrange-Funktion vor allem in relativistischen Vorgängen. Hier ist eine kovariante Darstellung der Lagrange-Funktion gewünscht, dann ist die Wirkung über