Jpeg2000 2-level wavelet transform-lichtenstein


Autor/Urheber:
Attribution:
Das Bild ist mit 'Attribution Required' markiert, aber es wurden keine Informationen über die Attribution bereitgestellt. Vermutlich wurde bei Verwendung des MediaWiki-Templates für die CC-BY Lizenzen der Parameter für die Attribution weggelassen. Autoren und Urheber finden für die korrekte Verwendung der Templates hier ein Beispiel.
Größe:
512 x 512 Pixel (193969 Bytes)
Beschreibung:

The picture shows a 2 level wavelet transform. For the low-pass and high-pass filters, I have used the same of the JPEG2000, lossy transform, so that this is the wavelet that is used in the JPEG2000 format. In general, it is quite hard to show a wavelet transform properly, because of the different ranges of the different parts. I have made the following choices.

First of all, I wanted to use a picture with both flat surfaces, sharp edges and details. The standard test image Lenna is commonly used for this purpose, but I didn't want to use it because it is not in the public domain. I took a look at the big featured picture gallery con Commons and I have chosen Image:Lichtenstein img processing test.png because it has lots of details in the bottom left, while the top right has almost no details because of the sky. Moreover, the edges of the castle are really sharp, so they can be clearly seen in the wavelet transform.

I have saved the original image in a file called lichtenstein.png, to make it simpler.

Then I have used the following Matlab script:

clear all

%input must be 512x512
img=imread('lichtenstein.png');

img=im2double(img);
img=rgb2gray(img);

% filters in JPEG2000
Lo_D=[0.0267 -0.0168 -0.0782 0.2668 0.6029 0.2668 -0.0782 -0.0168 0.0267];
Hi_D=[0.0912 -0.0575 -0.5912 1.1150 -0.5912 -0.0575 0.0912];

%calculate the 2-level Wavelet transform
[scaled, vertical, horizontal, diagonal]=dwt2(img,Lo_D,Hi_D);
[scaled2, vertical2, horizontal2, diagonal2]=dwt2(scaled,Lo_D,Hi_D);

%crop pictures (for displaying purpose)
scaled2=imcrop(scaled2,[4 4 127 127]);
horizontal2=imcrop(horizontal2,[4 4 127 127]);
vertical2=imcrop(vertical2,[4 4 127 127]);
diagonal2=imcrop(diagonal2,[4 4 127 127]);
horizontal=imcrop(horizontal,[4 4 255 255]);
vertical=imcrop(vertical,[4 4 255 255]);
diagonal=imcrop(diagonal,[4 4 255 255]);

%increase contrast (for displaying purpose)
vertical=imadjust(abs(vertical));
horizontal=imadjust(abs(horizontal));
diagonal=imadjust(abs(diagonal));
vertical2=imadjust(abs(vertical2));
horizontal2=imadjust(abs(horizontal2));
diagonal2=imadjust(abs(diagonal2));

%put them all together
transform=zeros(512,512);

transform(1:128,1:128)=scaled2;
transform(1:128,129:256)=horizontal2;
transform(129:256,1:128)=vertical2;
transform(129:256,129:256)=diagonal2;
transform(1:256,257:512)=horizontal;
transform(257:512,1:256)=vertical;
transform(257:512,257:512)=diagonal;

imwrite(transform,'Jpeg2000_2-level_wavelet_transform-lichtenstein.png');

If I had placed all the transforms one next to the other, I would have got a picture wider than 512x512, with some odd behaviour close to the edges. In order to avoid those problems, I have cropped the transforms so that I can easily put one next to the other to get a 512x512 picture. In general, it is not a good idea to discard information, but here I just wanted to create a simple and clear example.

In order to show the derivatives, I have taken the absolute values (I want to show the magnitude of the derivative), then I have improved the contrast to make them look clearer.
Lizenz:
Bild teilen:
Facebook   Twitter   Pinterest   WhatsApp   Telegram   E-Mail
Weitere Informationen zur Lizenz des Bildes finden Sie hier. Letzte Aktualisierung: Fri, 06 Aug 2021 05:26:52 GMT

Relevante Bilder


Relevante Artikel

Cohen-Daubechies-Feauveau-Wavelet

Cohen-Daubechies-Feauveau-Wavelets (CDF-Wavelets) sind die historisch gesehen erste Familie der biorthogonalen Wavelets. Sie wurden von Albert Cohen, Ingrid Daubechies und Jean-Christophe Feauveau konstruiert und 1990 vorgestellt. CDF-Wavelets sind zu unterscheiden von den orthogonalen Daubechies-Wavelets, die andere Formen und Eigenschaften besitzen. Beide Wavelettypen gehen auf die gleiche Konstruktionsidee zurück, CDF-Wavelets verzichten zugunsten der Symmetrie auf Orthogonalität der Wavelets. .. weiterlesen