Zerfallsreihe

Eine Zerfallsreihe im allgemeinen Sinn ist die Abfolge der nacheinander entstehenden Produkte eines radioaktiven Zerfalls. Sie bildet sich, indem ein Radionuklid sich in ein anderes, dieses in ein drittes umwandelt usw. („zerfällt“). Das zuerst entstehende Nuklid wird Tochternuklid genannt, das dem Tochternuklid folgende Enkelnuklid, das dem Enkelnuklid folgende Urenkelnuklid usw.

Aus einer vorhandenen Menge eines instabilen Nuklids bildet sich durch Zerfall ein Gemisch der Nuklide, die ihm in der Zerfallsreihe folgen, bevor irgendwann alle Atomkerne die Reihe bis zum Endnuklid durchlaufen haben. In dem Gemisch sind Nuklide mit kurzer Halbwertszeit nur in geringer Menge vorhanden, während solche mit längerer Halbwertszeit sich entsprechend stärker ansammeln.

Die drei natürlichen Zerfallsreihen

Praktisch und historisch wichtig sind die Zerfallsreihen der drei primordialen Radionuklide Uran-238, Uran-235 und Thorium-232, auch Natürlich radioaktive Familien genannt.[1] Sie entstehen durch Alpha- und Beta-Zerfall, die mehr oder weniger regelmäßig abwechselnd aufeinander folgen. Manche der beteiligten Nuklide haben auch die alternativ mögliche, aber seltene Zerfallsart Spontanspaltung; sie führt aus der jeweiligen Zerfallsreihe hinaus und wird hier nicht beachtet.

Ein Alphazerfall verringert die Massenzahl des Atomkerns um 4 Einheiten, ein Betazerfall lässt sie unverändert. Schreibt man die Massenzahl A als A = 4n+m (dabei ist n irgendeine natürliche Zahl und m eine der Zahlen 0, 1, 2 oder 3), bleibt deshalb m innerhalb einer solchen Zerfallsreihe stets konstant. Die drei genannten Anfangsnuklide haben verschiedene Werte von m. Daher erzeugt

Thorium-232 ist zwar primordial, aber nach heutiger Kenntnis sind auch seine Vorgängernuklide bis zum Plutonium-244 auf der Erde vorhanden.[2]

Eine vierte Zerfallsreihe

In der obigen (4n+m)-Systematik „fehlt“ eine Reihe mit m = 1. Da es im Massenzahlbereich von Uran und Thorium kein primordiales Nuklid mit A = 4n+1 gibt, kommt eine solche Zerfallsreihe in der Natur nicht (mehr) vor. Der Systematik zuliebe wird aber die Zerfallsreihe der künstlich erzeugbaren Nuklide Plutonium-241 oder Neptunium-237, die Neptunium-Reihe, als diese fehlende vierte Reihe betrachtet.[3] Nur das letzte Radionuklid dieser Reihe, Bismut-209, ist wegen seiner extrem langen Halbwertszeit noch vorhanden. Es wurde lange für das Endnuklid gehalten, bis 2003 entdeckt wurde, dass es ein Alphastrahler mit 19 Trillionen Jahren Halbwertszeit ist. Das Endnuklid ist daher Thallium-205.

Geringe Mengen Np-237 entstehen durch (n,2n) Reaktionen (ein [schnelles] Neutron trifft auf und wird absorbiert, zwei Neutronen werden ausgestoßen) in Uran-238 gefolgt von Betazerfall des kurzlebigen Uran-237. Die dafür benötigten schnellen Neutronen stammen aus Spontanspaltung oder kosmischer Strahlung. Diese Reaktion ist jedoch derart selten, dass inzwischen menschengemachtes Np-237 in weit größeren Ausmaß auf der Erde vorhanden ist als jenes, welches diesem Prozess entspringt. Die Reaktion, welche in Kernreaktoren üblicherweise zum größten Anteil Np-237 beträgt, ist Neutroneneinfang in Uran-235, welcher nicht zur Spaltung führt (bei thermischen Neutronen erfolgt in etwa 14,5 % der Reaktionen zwischen 235U und Neutronen keine Spaltung, sondern die Bildung von 236U) gefolgt von Neutroneneinfang in Uran-236 und wiederum Betazerfall von Uran-237. Im Naturreaktor Oklo herrschten vor fast zwei Milliarden Jahren sehr ähnliche Bedingungen wie in menschengemachten Leichtwasserreaktoren, sodass zweifellos auch Np-237 gebildet wurde. Dies ist jedoch seither zerfallen. Aufgrund der höheren Geschwindigkeit der Neutronen (Abwesenheit von Neutronenmoderatoren), der geringen Menge verfügbaren 235U, und der – im Vergleich zu Kernreaktoren – niedrigen Neutronenflussdichte, ist die oben beschriebene Reaktion in Uranerzen heutzutage jedoch kaum noch anzutreffen. Eine weitere Quelle von Np-237 ist der Zerfall von Americium-241. Dieses künstliche Radionuklid ist ein Alphastrahler mit ~432 Jahren Halbwertszeit und findet in Rauchmeldern vor allem im angloamerikanischen Raum Anwendung. Da – insbesondere in der Vergangenheit – die Entsorgung nicht immer sachgemäß erfolgte sind inzwischen geringe aber nachweisbare Mengen Neptunium in die Umwelt gelangt, sodass diese Zerfallsreihe „reaktiviert“ worden ist.

Lage in der Nuklidkarte

NeutronenzahlN = 124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150 
CuriumZ = 96





















242Cm
alpha

244Cm
alpha

246Cm
alpha
AmericiumZ = 95




















240Am
Elektroneneinfang (99,9999 %) alpha (0,0001 %)
241Am
alpha
242Am
beta (82,7 %) Elektroneneinfang (17,3 %)
243Am
alpha
244Am
beta
PlutoniumZ = 94

















236Pu
alpha
237Pu
Elektroneneinfang (99,9958 %) alpha (0,0042 %)
238Pu
alpha
239Pu
alpha
240Pu
alpha
241Pu
beta (99,0075 %) alpha (0,0025 %)
242Pu
alpha
243Pu
beta
244Pu
alpha
NeptuniumZ = 93















233Np
Elektroneneinfang (99,999 %) alpha (0,001 %)
234Np
Elektroneneinfang
235Np
Elektroneneinfang (99,9974 %) alpha (0,0026 %)
236Np
Elektroneneinfang (87,3 %) beta (12,5 %) alpha 0,2 %
237Np
alpha
238Np
beta
239Np
beta
240Np
beta


UranZ = 92













230U
alpha
231U
Elektroneneinfang (99,9945 %) alpha (0,0055 %)
232U
alpha
233U
alpha
234U
alpha
235U
alpha
236U
alpha
237U
beta
238U
alpha
239U
beta
240U
beta

ProtactiniumZ = 91













229Pa
Elektroneneinfang (99,52 %) alpha (0,48 %)
230Pa
Elektroneneinfang (91,6 %) beta (8,4 %) alpha (0,0032 %)
231Pa
alpha
232Pa
beta (99,997 %) Elektroneneinfang (0,003 %)
233Pa
beta
234Pa
beta






ThoriumZ = 90











226Th
alpha
227Th
alpha
228Th
alpha
229Th
alpha
230Th
alpha
231Th
beta (99,999999 %) alpha (0,000001 %)
232Th
alpha
233Th
beta
234Th
beta





ActiniumZ = 89











225Ac
alpha
226Ac
Elektroneneinfang (83 %) beta (17 %) alpha (0,006 %)
227Ac
beta (98,62 %) alpha (1,38 %)
228Ac
beta










RadiumZ = 88








221Ra
alpha
222Ra
alpha
223Ra
alpha
224Ra
alpha
225Ra
beta
226Ra
alpha
227Ra
beta
228Ra
beta









FranciumZ = 87









221Fr
alpha (99,9 %) beta (0,1 %)
222Fr
beta
223Fr
beta (99,994 %) alpha (0,006 %)













RadonZ = 86






217Rn
alpha
218Rn
alpha
219Rn
alpha
220Rn
alpha

222Rn
alpha













AstatZ = 85





215At
alpha

217At
alpha (99,99 %) beta (0,01 %)
218At
alpha (99,90 %) beta (0,10 %)
219At
alpha (99,99 %) beta (0,01 %)















PoloniumZ = 84

210Po
alpha
211Po
alpha
212Po
alpha
213Po
alpha
214Po
alpha
215Po
alpha (99,999977 %) beta (0,000023 %)
216Po
alpha

218Po
alpha (99,98 %) beta (0,02 %)















BismutZ = 83

209Bi
alpha
210Bi
beta (99,99987 %) alpha (0,00013 %)
211Bi
alpha (99,72 %) beta (0,28 %)
212Bi
beta (64,06 %) alpha (35,94 %)
213Bi
beta (97,91 %) alpha (2,09 %)
214Bi
beta (99,98 %) alpha (0,02 %)
215Bi
beta

















BleiZ = 82206Pb
207Pb
208Pb
209Pb
beta
210Pb
beta (˜100%) alpha (1,9·10−6 %)
211Pb
beta
212Pb
beta

214Pb
beta

















ThalliumZ = 81205Tl
206Tl
beta
207Tl
beta
208Tl
beta
209Tl
beta
210Tl
beta




















QuecksilberZ = 80

206Hg
beta























NeutronenzahlN = 124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150 
 
Legende:
Uran-Radium-Reihe
Uran-Actinium-Reihe
(Plutonium-) Thorium-Reihe
(Plutonium-)Neptunium-Reihe
(Pfeile nicht maßstäblich)
 
Fortsetzung
Fortsetzung
Fortsetzung
Fortsetzung
 

Historische Bezeichnungen

In der klassischen Zeit der Erforschung der radioaktiven Zerfallsreihen – also im frühen 20. Jahrhundert – wurden die verschiedenen Nuklide mit anderen Namen bezeichnet, an denen sich die Zugehörigkeit zu einer natürlichen Zerfallsreihe und die Ähnlichkeit in den Eigenschaften erkennen ließ (z. B. sind Radon, Thoron und Actinon allesamt Edelgase):[4]

Nuklidhistorischer Name
kurzLangform
238UUIUran I
235UAcUActinuran
234UUIIUran II
234mPaUX2Uran X2
234PaUZUran Z
231PaPaProtactinium
234ThUX1Uran X1
232ThThThorium
231ThUYUran Y
230ThIoIonium
228ThRdThRadiothor
227ThRdAcRadioactinium
228AcMsTh2Mesothor 2
227AcAcActinium
228RaMsTh1Mesothor 1
226RaRaRadium
224RaThXThorium X
223RaAcXActinium X
223FrAcKActinium K
222RnRnRadon
220RnTnThoron
219RnAnActinon
218PoRaARadium A
216PoThAThorium A
215PoAcAActinium A
214PoRaC'Radium C'
212PoThC'Thorium C'
211PoAcC'Actinium C'
210PoRaFRadium F
214BiRaCRadium C
212BiThCThorium C
211BiAcCActinium C
210BiRaERadium E
214PbRaBRadium B
212PbThBThorium B
211PbAcBActinium B
210PbRaDRadium D
208PbThDThorium D
207PbAcDActinium D
206PbRaGRadium G
210TlRaC"Radium C"
208TlThC"Thorium C"
207TlAcC"Actinium C"

Die drei natürlichen Zerfallsreihen sähen in dieser alten Bezeichnungsweise folgendermaßen aus:

  • Uran-Radium-Reihe: UI → UX1 → UX2 (→ UZ) → UII → Io → Ra → Rn → RaA → RaB → RaC → RaC' (oder RaC") → RaD → RaE → RaF → RaG
  • Uran-Actinium-Reihe: AcU → UY → Pa → Ac → RdAc (oder AcK) → AcX → An → AcA → AcB → AcC → AcC" (oder AcC') → AcD
  • Thorium-Reihe: Th → MsTh1 → MsTh2 → RdTh → ThX → Tn → ThA → ThB → ThC → ThC' (oder ThC") → ThD

Berechnung der Konzentration von Nukliden einer Zerfallsreihe

Nuklide zerfallen nach einer Kinetik erster Ordnung (vgl. Zerfallsgesetz), so dass die zeitabhängige Konzentration eines einzelnen Nuklids recht einfach zu berechnen ist. Die Fragestellung wird deutlich komplizierter, wenn das Nuklid als Glied einer Zerfallsreihe aus Vorläufernukliden laufend nachgebildet wird. Ein kurzer und übersichtlicher Weg zur Berechnung seiner Konzentration unter dieser Voraussetzung findet sich bei Jens Christoffers (1986);[5] der Autor gibt auch einen Algorithmus zur Programmierung der Berechnung an.

Radionuklide außerhalb der Zerfallsreihen

Es gibt einige Betastrahler, welche nicht aufgrund zu hoher Atommasse, sondern aufgrund des instabilen Verhältnisses von Neutronen zu Protonen radioaktiv sind. Dies ist der Grund für die „Lücken“ im Periodensystem der stabilen Elemente bei den Kernladungszahlen 43 und 61 (abgesehen von diesen beiden haben alle Elemente von Wasserstoff bis Blei nach heutiger Kenntnis mindestens ein stabiles Isotop, aber kein Element mit Kernladungszahl >82 hat stabile Isotope). Die Elemente Technetium und Promethium, welche dieser Kernladungszahl entsprechen, wurden erstmals als Spaltprodukte nachgewiesen und entsprechend benannt („das durch Technologie entdeckte Element“ bzw. „das Element des Feuerbringers“). Jedoch ist inzwischen bekannt, dass sie in der Natur in extrem geringer Konzentration durch Spontanspaltung entstehen und respektive durch Betazerfall wieder zerstört werden. Technetium-99, das bedeutendste (wenn auch nicht das langlebigste) Technetium-Isotop, wird jedoch auch durch Neutroneneinfang in Molybdän-98, gefolgt von Betazerfall, hergestellt. Diese Produktionsmethode wird vom Menschen angewandt, kommt jedoch auch in der Natur vor, wenn Molybdänmineralien entsprechenden Neutronenströmen ausgesetzt sind.

Mengenmäßig der bedeutendste Betastrahler auf Erden (und auch im menschlichen Körper) ist jedoch Kalium-40, ein sehr langlebiges Kalium-Isotop, welches sowohl zu Argon-40 als auch (häufiger) zu Calcium-40 zerfallen kann. Die Menge an Kalium-40, welche einst auf Erden vorhanden gewesen sein muss, lässt sich nicht nur durch „Zurückrechnen“ abschätzen, sondern auch anhand der Tatsache, dass Argon das dritthäufigste Gas der Erdatmosphäre ist und dabei – anders als Argon in der Sonne – fast ausschließlich aus 40Ar besteht, also mit an Sicherheit grenzender Wahrscheinlichkeit aus dem Zerfall von 40K entstanden ist.

Beryllium-8 ist derartig instabil, dass in Sternen das „Heliumbrennen“ das beinahe gleichzeitige Aufeinandertreffen dreier Alphateilchen erfordert, da Beryillium-8 binnen Bruchteilen von Sekunden in zwei Alphateilchen zerfällt. Da es nicht durch radioaktiven Zerfall entsteht, ist Beryllium kein Mitglied einer Zerfallsreihe, auch wenn seine Massenzahl =2α+0 ist.

Kosmogene Radionuklide finden sich auf der Erde in einem dynamischen Fließgleichgewicht, wobei in der oberen Atmosphäre größenordnungsmäßig so viel gebildet wird wie im gleichen Zeitraum zerfällt. Bekanntestes dieser Radionuklide ist Kohlenstoff-14, welches zur Datierung mittels Radiokarbonmethode genutzt wird.

Siehe auch

Weblinks

Commons: Zerfallsreihe – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Karlsruher Nuklidkarte. Nachdruck der 6. Auflage. Karlsruhe 1998
  2. D. C. Hoffman, F. O. Lawrence, J. L. Mewherter, F. M. Rourke: Detection of Plutonium-244 in Nature. In: Nature 234, 1971, S. 132–134, doi:10.1038/234132a0
  3. E. B. Paul: Nuclear and Particle Physics. North-Holland, 1969, S. 41
  4. C. M. Lederer, J. M. Hollander, I. Perlman: Table of Isotopes. 6. Auflage. Wiley & Sons, New York 1968
  5. https://www.uni-oldenburg.de/fileadmin/user_upload/chemie/ag/occhris/download/pdf1.pdf

Auf dieser Seite verwendete Medien

Pfeil links unten.svg
Pfeil nach links unten
Pfeil links oben.svg
Pfeil nach links oben
Pfeil rechts unten.svg
Pfeil nach rechts unten