Mengendiagramm

Bleiverglastes Fenster mit einem Venn-Diagramm im britischen Cambridge, dem Studienort John Venns

Mengendiagramme dienen der grafischen Veranschaulichung der Mengenlehre. Es gibt unterschiedliche Arten von Mengendiagrammen, insbesondere Euler-Diagramme (nach Leonhard Euler) und Venn-Diagramme (nach John Venn).

Mengendiagramme können Mengenbeziehungen verdeutlichen, sind jedoch im Allgemeinen nicht als mathematische Beweismittel geeignet. Als Beweismittel eignen sich nur solche Mengendiagramme, die alle möglichen Relationen der vertretenen Mengen darstellen; solche Diagramme werden Venn-Diagramme genannt. Der Nachteil von Venn-Diagrammen liegt darin, dass sie bei mehr als drei beteiligten Mengen rasch unübersichtlich werden, weil sie bei n Objekten 2n Möglichkeiten darstellen müssen. Venn selber konnte unter der Verwendung von Ellipsen bis zu vier, schließlich sogar fünf beteiligte Mengen darstellen.

Beispiele

Euler-Diagramme

Euler-Diagramme werden in erster Linie dazu eingesetzt, mengentheoretische Sachverhalte, zum Beispiel die Teilmengeneigenschaft, anschaulich zu machen. Folgende Veranschaulichungen sind üblich:

Weitere Beispiele für Euler-Diagramme sind:

Venn-Diagramme

Venn-Diagramme stellen alle Relationen zwischen den betrachteten Mengen dar. Daher kann man an ihnen Zusammenhänge ablesen und aus dem Vorliegen einzelner Relationen auf das Vorliegen anderer Relationen schließen:

Erweiterung auf mehrere Mengen

Venn-Diagramme sind vor allem in der Darstellung für drei Mengen mit Kreisen bekannt. Venn hatte jedoch den Ehrgeiz, „in sich elegante symmetrische Figuren“ zu finden, die eine größere Anzahl an Mengen darstellen, und zeigte ein Diagramm für vier Mengen in Ellipsenform. Er gab dann ein Konstruktionsverfahren an, mit dem man Venndiagramme für eine „beliebige“ Anzahl von Mengen darstellen kann, wobei jede geschlossene Kurve mit den anderen verflochten ist, ausgehend vom Diagramm mit drei Kreisen. Dabei wird ein „Schlauch“ über die jeweils letzte Mengendarstellung gezogen. Damit werden alle anderen Mengen geschnitten.

Unterschiede zwischen Venn- und Eulerdiagrammen

Der Unterschied beider Mengendiagrammarten wird insbesondere dann deutlich, wenn man sich beide Diagramme für ein konkretes Beispiel anschaut. Man nehme hierzu die folgenden drei Mengen:

Das Euler- bzw. Venn-Diagramm dieser drei Mengen sieht folgendermaßen aus:

Während in Euler-Diagrammen nur die tatsächlichen Überschneidungen zwischen den Mengen zu sehen ist, werden in Venn-Diagrammen alle möglichen Überlappungen der Flächen dargestellt (auch wenn diese keine Objekte enthalten).

Johnston-Diagramme

Johnston-Diagramme sind eine zweiwertige aussagenlogische Interpretation von Mengendiagrammen, speziell Venn-Diagrammen. In einem Johnston-Diagramm wird ein Kreis (eine Menge) P als Menge der Sachverhalte interpretiert, unter denen eine Aussage P wahr ist. Der Bereich außerhalb des Kreises (das Komplement der Menge) P wird als Menge der Sachverhalte interpretiert, unter denen die Aussage falsch ist. Um zu sagen, dass eine Aussage wahr ist, malt man den ganzen Bereich außerhalb ihres Kreises schwarz an; man zeigt so an, dass die Sachverhalte, unter denen die Aussage nicht wahr ist, nicht zutreffen können. Um umgekehrt zu sagen, dass eine Aussage falsch ist, malt man den Bereich innerhalb ihres Kreises schwarz aus; man sagt so, dass die Sachverhalte, unter denen die Aussage wahr ist, nicht zutreffen können. Kombiniert man zwei Aussagen P, Q durch eine Konjunktion, d. h. will man ausdrücken, dass beide Aussagen wahr sind, malt man die gesamte Fläche, die außerhalb der Schnittfläche der Kreise P, Q liegt, schwarz an; man sagt so, dass keiner der Sachverhalte, unter denen nicht sowohl P als auch Q zutreffen, vorliegen kann.

Johnston-Diagramme sind somit eine Abbildung der klassischen Aussagenlogik auf die elementare Mengenlehre, wobei die Negation als Komplementbildung, die Konjunktion als Schnitt und die Disjunktion als Vereinigung dargestellt werden. Die Wahrheitswerte wahr und falsch werden auf die Allmenge beziehungsweise auf die leere Menge abgebildet.

Geschichte

Leibniz benutzte bereits um 1690 Mengendiagramme zur Darstellung der Syllogistik.[1] Christian Weise, Rektor des Gymnasiums in Zittau, verwendet um 1700 Mengendiagramme zur Darstellung logischer Verknüpfungen.[2] Johann Christian Lange (1669–1756) veröffentlichte 1712 das Buch Nucleus Logicae Weisianae, in dem Weises Logik behandelt wird.[2] Leonhard Euler, Schweizer Mathematiker im 18. Jahrhundert, führte das Euler-Diagramm ein, das er erstmals in einem Brief vom 24. Februar 1761 verwendete.[3]

John Venn, britischer Mathematiker im 19. Jahrhundert, führte 1881 das Venn-Diagramm ein. 1964 werden erstmals Arbeiten von Charles Sanders Peirce akademisch gewürdigt, die dieser im letzten Viertel des 19. Jahrhunderts verfasst hatte und die die Existentiellen Graphen beschreiben.

Anwendungsbeispiel Syllogistik

Die folgenden Grafiken zeigen, wie Venn-Diagramme seit dem 17. Jahrhundert zur Veranschaulichung von Syllogismen genutzt werden. Die Gültigkeit eines Schlusses kann mit dieser Methode überprüft werden. (So sieht man etwa, dass der Modus Darapti nur unter Voraussetzung eines nichtleeren Mittelbegriffs gültig ist.)

In schwarzen Bereichen existiert kein Element (Allaussage).
In roten Bereichen existiert mindestens ein Element x (Existenzaussage).

Beweis des Modus Barbara mittels Venn-Diagrammen:
 
Es gibt keine M außerhalb von P,
es gibt keine S außerhalb von M;
also gibt es keine S außerhalb von P.
   
Beweis des Modus Darii mittels Venn-Diagrammen:
 
Es gibt keine M außerhalb von P,
es gibt einige S in M;
also gibt es einige S in P.

Solche Venn-Diagramme lassen sich einfach in Euler-Diagramme umformen, wie die folgende Grafik zeigt. Venn-Diagramme haben den Vorteil, dass man keine Überschneidung vergessen kann, so dass sie auch für Beweise geeignet sind. Dagegen lässt sich bei Euler-Diagrammen intuitiver erfassen, welche Mengen ineinander liegen oder sich überschneiden.

Venn-Diagramme und Euler-Diagramme

Weblinks

 Commons: Mengendiagramme – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Mengendiagramm – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. De Formae Logicae per linearum ductus. ≈1690, erst posthum 1903 veröffentlicht in: Couturat: Opuscules et fragmentes inedits de Leibniz. S. 292–321
  2. a b Moritz Wilhelm Drobisch: Logik nach ihren einfachsten Verhältnissen. 5. Auflage. Verlag Leopold Voss, Hamburg Leipzig 1887 S. 99
  3. begriffslogik.de, abgerufen am 30. August 2008

Auf dieser Seite verwendete Medien

Venn-stainedglass-gonville-caius.jpg
Autor/Urheber: User:Schutz. The stained glass was designed by Maria McClafferty and installed in 1989., Lizenz: CC BY-SA 2.5
Stained glass window by Maria McClafferty in the dining hall of Gonville and Caius College, in Cambridge (UK), commemorating John Venn, who invented the concept of Venn diagram and was a fellow of the college. The text on the windows reads: JOHN VENN; FELLOW 1857–1923; PRESIDENT 1903–1923.
Supranational European Bodies-de.svg
Autor/Urheber:

The Emirr, Wdcf, Mrmw

, Lizenz: CC BY 3.0
Mengendiagramm der Mitgliedschaften in europäischen Organisationen
3-set Euler diagram.svg
Autor/Urheber: , Lizenz: CC0
Euler-Diagramm der Mengen A={1;2;5}, B={1;6} und C={4;7}
Syllogism-Set-Diagrams.svg

Venn diagrams containing empty sets are easily transformed into Euler diagrams.

This kind of diagram is used to represent syllogisms. Compare:

Modus Barbara.svg Modus Barbara (Euler).svg
Modus Darii.svg Modus Darii (Euler).svg


Inkscape-yes.svg
Diese Vektorgrafik wurde mit Inkscape erstellt.
British Isles Euler diagram 15.svg
Autor/Urheber: TWCarlson, Lizenz: CC0
Euler diagram of the British Isles
Venn6.svg
A Venn diagram with n = 6. In the SVG file, hover over a set to highlight it. I wrote a program to draw these: en:User:Kopophex/venn.ml
Venn diagram - x is in A.svg
Mengendiagramm: ; ist ein Element von .
Venn diagram - B is subset of A.svg
Mengendiagramm: bzw.  ; ist eine Teilmenge von bzw. ist Obermenge von .
EulerDiagram-de.svg
Autor/Urheber: , Lizenz: CC0
Ein Euler-Diagramm, welches die Beziehungen zwischen Dingen repräsentiert, die Tiere, Mineralien oder Lebewesen mit vier Beinen sind
Modus Barbara.svg

One of the 24 syllogisms listed below.

The deduction is represented by a 3 circle Venn diagram.
Premises and the logical consequence are represented by 2 circle Venn diagrams.

The left circle stands for S, the top circle for M, and the right circle for P.

Areas marked in black are empty - there are no elements in these areas.
In red areas there is at least one element, represented by an x.

White areas are not important for the deduction, and nothing is told about them. There may be elements or not.
Venn diagram - x is not in A.svg
Mengendiagramm: ; ist nicht Element von .
Number-systems.svg
Diagramm zur Veranschaulichung der Zahlenmengen ℝ, ℚ, ℤ und ℕ als Untermengen voneinander
3-set Venn diagram.svg
Autor/Urheber: , Lizenz: CC0
Venn-Diagramm der Mengen A={1;2;5}, B={1;6} und C={4;7}
Venn4.svg
A Venn diagram with n = 4. I wrote a program to draw these: User:Kopophex/venn.ml
Venn's four ellipse construction.svg
Autor/Urheber: RupertMillard, Lizenz: CC BY-SA 3.0
Four ellipses with all 15 possible intersections
Venn5.svg
A Venn diagram with n = 4. I wrote a program to draw these: User:Kopophex/venn.ml
Modus Darii.svg

One of the 24 syllogisms listed below.

The deduction is represented by a 3 circle Venn diagram.
Premises and the logical consequence are represented by 2 circle Venn diagrams.

The left circle stands for S, the top circle for M, and the right circle for P.

Areas marked in black are empty - there are no elements in these areas.
In red areas there is at least one element, represented by an x.

White areas are not important for the deduction, and nothing is told about them. There may be elements or not.
Venn3.svg
A Venn diagram with n = 3.