Grothendieck-Universum
In der Mengenlehre ist ein Grothendieck-Universum (nach Alexander Grothendieck) eine Menge (von Mengen), bei der die üblichen Mengenoperationen auf den Elementen von nicht aus hinausführen, das heißt, es handelt sich um ein Modell der Zermelo-Fraenkel-Mengenlehre, dessen mengentheoretische Operationen (Elementrelation, Potenzmengenbildung) mit denen der Zermelo-Fraenkel-Mengenlehre, in der sie definiert werden, übereinstimmen. Das Universenaxiom, das fordert, dass jede Menge Element eines Grothendieck-Universums ist, findet Anwendung in der Kategorientheorie und der algebraischen Geometrie und erweitert die Zermelo-Fraenkel-Mengenlehre zur Tarski-Grothendieck-Mengenlehre.
Formale Definition
Eine Menge heißt Grothendieck-Universum, falls sie folgende Axiome erfüllt:
- : Ist Element von , so sind alle Elemente von selbst auch Elemente von (Transitivität).
- , wobei den Potenzmengenoperator bezeichnet: Ist Element von , so ist die Potenzmenge von auch Element von , und damit nach der vorherigen Bedingung auch alle Teilmengen von .
- : Ist Element von , so ist die einelementige Menge auch Element von .
- Für jede Familie mit und gilt: : Vereinigungen von Elementen von sind wieder Elemente von .
- ist nicht leer.
Diese Definition entspricht derjenigen von P. Gabriel, vgl. Literatur. Mitunter wird auch die leere Menge als Grothendieck-Universum zugelassen, etwa im SGA.
Anders ausgedrückt ist ein Grothendieck-Universum ein Modell der Form der zweistufigen Version von ZFC (das heißt, das Ersetzungsaxiomenschema wird durch ein einziges Axiom in Logik zweiter Stufe mit Quantifizierung über Funktionen ersetzt).[1]
Unerreichbare Kardinalzahlen
Eine Kardinalzahl heißt (stark) unerreichbar, falls gilt:
- für jede Menge von Mengen mit und
Die einzige in der Zermelo-Fraenkel-Mengenlehre ZFC bekannte unerreichbare Kardinalzahl ist . Die Existenz weiterer unerreichbarer Kardinalzahlen kann im Rahmen dieser Theorie nicht bewiesen werden (die Widerspruchsfreiheit derselben einmal angenommen), sondern muss durch ein neues Axiom postuliert werden.
Der Zusammenhang zwischen unerreichbaren Kardinalzahlen und Grothendieck-Universen wird nun durch folgenden Satz hergestellt:
Für eine Menge sind folgende Eigenschaften äquivalent:
- ist ein Grothendieck-Universum
- Es gibt eine unerreichbare Kardinalzahl , sodass eine und somit alle der folgenden äquivalenten Eigenschaften gelten:
- und für jede Menge gilt:
- (siehe Von-Neumann-Hierarchie)
- (siehe transitive Menge)[2]
Dieses ist gerade die Kardinalität von .
Die Existenz von Grothendieck-Universen (außer solchen mit , welche aber nur endliche Mengen enthalten und damit nicht als interessant gewertet werden) kann im Allgemeinen nicht im Rahmen der ZFC-Mengenlehre bewiesen werden, allerdings sind nur relativ schwache Zusatzvoraussetzungen notwendig, nämlich die Existenz weiterer unerreichbarer Kardinalzahlen.
Anwendung in der Kategorientheorie
Unter Annahme der Existenz einer echten Klasse von unerreichbaren Kardinalzahlen können mit Hilfe von Grothendieck-Universen in der Kategorientheorie Aussagen über alle Mengen gemacht werden.
Es ist möglich, jeder unerreichbaren Kardinalzahl ein Grothendieck-Universum zuzuordnen. Um eine Aussage über alle Mengen machen zu können, wird für jede Menge eine entsprechende unerreichbare Kardinalzahl benötigt, die echt größer als die Kardinalität der Menge ist, damit ein passendes Grothendieck-Universum existiert, in welchem die gewünschten Konstruktionen durchgeführt werden können.
Literatur
- M. Kühnrich: Über den Begriff des Universums. In: Zeitschrift für mathematische Logik und Grundlagen der Mathematik. Bd. 12, 1966, ISSN 0044-3050, S. 37–59.
- P. Gabriel: Des catégories abéliennes. In: Bulletin de la Société Mathématique de France. Bd. 90, 1962, ISSN 0037-9484, S. 323–448, online (PDF; 10,45 MB).
- Michael D. Potter: Sets. An Introduction. Clarendon Press, Oxford u. a. 1990, ISBN 0-19-853388-8, 3.3
- Andreas Blass: The interaction between Category theory and Set theory. In: John Walker Gray (Hrsg.): Mathematical Applications of Category Theory (= Contemporary Mathematics. Bd. 30). American Mathematical Society, Providence RI 1984, ISBN 0-8218-5032-6, S. 5–29, online (PDF; 3,6 MB).
- N. Bourbaki: Univers. Anhang zu Exposé I von M. Artin, A. Grothendieck, J. L. Verdier (Hrsg.): Théorie des Topos et Cohomologie Étale des Schémas (SGA 4). 2. Auflage. Springer-Verlag, Heidelberg 1972, ISBN 3-540-05896-6.
- A. H. Kruse: Grothendieck universes and the super-complete models of Shepherdson. In: Compositio Mathematica. Bd. 17, 1965/1966, S. 96–101, online (PDF; 550 kB).
- N. H. Williams: On Grothendieck universes. In: Compositio Mathematica. Bd. 21, Nr. 1, ISSN 0010-437X, 1969, S. 1–3, online (PDF; 261 kB).
- Saunders Mac Lane: Categories for the Working Mathematician (= Graduate Texts in Mathematics. Bd. 5). 2. Auflage. Springer, New York NY u. a. 1998, ISBN 0-387-98403-8, I.6.
Einzelnachweise
- ↑ Akihiro Kanamori: The Higher Infinite. Large Cardinals in Set Theory from Their Beginnings. 2. Auflage. Springer, 2009, ISBN 978-3-540-88867-3, S. 19, doi:10.1007/978-3-540-88867-3.
- ↑ Kanamori, S. 299.