Tiefinelastische Streuung

Tiefinelastische Streuung eines Leptons an einem Hadron in führender Ordnung Störungstheorie

Die tiefinelastische Streuung ist eine Streuung eines Elementarteilchens hoher kinetischer Energie, z. B. eines Elektrons, Myons oder Neutrinos, an einem Nukleon mit großem Energie- und Impulsübertrag. Bei solchen Streuvorgängen zeigt sich, dass sehr viel mehr Streuelektronen mit niedriger Energie detektiert werden, als man aufgrund von Resonanzen der Nukleonen, z. B. der Δ-Resonanz, erwartet. Die tiefinelastische Streuung deutet darauf hin, dass Nukleonen aus punktförmigen Konstituenten, Partonen genannt, aufgebaut sind. Es zeigte sich, dass die Partonen die von Murray Gell-Mann postulierten Quarks sind. Die Wechselwirkung der Nukleonen mit den Elektronen geschieht also an Quarks im Nukleon.

Streuexperimente

Physikalische Streuexperimente geben Aufschluss über die Struktur von Teilchen. Mit der Rutherford-Streuung zeigte sich, dass ein Atom aus einem kleinen, massereichen, positiv geladenen Atomkern und viel leerem Raum mit den negativ geladenen Elektronen besteht. Die Alphateilchen geben bei der Rutherford-Streuung keine kinetische Energie ab, es handelt sich um eine elastische Streuung.

Die tiefinelastische Streuung ist eine inelastische Streuung an Nukleonen, d. h., die gestreuten Teilchen geben kinetische Energie an das Nukleon ab. Die gestreuten Teilchen treffen mit sehr hoher kinetischer Energie auf das Nukleon. Die kinetische Energie ist so gewählt, dass die De-Broglie-Wellenlänge viel kleiner ist als die Ausdehnung des Nukleons. Die tiefinelastische Streuung gibt aufgrund der genügend kurzen Wellenlänge der Streuteilchen Aufschluss über die Struktur tief im Nukleon.

Elektron-Proton-Streuung

Durch die Streuung von Elektronen am Proton kann man die dimensionslosen Strukturfunktionen und bestimmen. Dabei ist der übertragene Viererimpuls und die Bjorken-Skalierung. Die Strukturfunktionen sind – von QCD-Korrekturen abgesehen – nicht vom Viererimpuls abhängig. Dies zeigt, dass die Elektronen an punktförmigen Konstituenten des Protons gestreut werden.[1] Diese sind die Valenzquarks (zwei Up-Quarks und ein Down-Quark, aus denen das Proton aufgebaut ist) und die Seequarks (virtuelle Quark-Antiquark-Paare, die im Gluonenfeld zwischen den Quarks auftreten).

Äquivalent dazu ist die Myon-Proton-Streuung. Myonen verhalten sich elektromagnetisch genauso wie Elektronen, sind zwar weit schwieriger zu produzieren, können aber mit erheblich höherer Strahlenergie erzeugt werden.

Neutrino-Proton-Streuung

Bei Experimenten zur Neutrino-Steuung werden Myon-Neutrinos () in Myonen bzw. Myon-Antineutrinos () in Antimyonen umgewandelt. Da dabei über virtuelle W-Bosonen elektrische Ladung übertragen wird, reagieren die nur mit negativ geladenen (Anti-)quarks (u, d, …) und die nur mit positiv geladenen (Anti-)quarks (u, d, …). Außerdem spielt aufgrund der Paritätsverletzung der schwachen Wechselwirkung die Chiralität eine Rolle, was durch eine zusätzliche Strukturfunktion beschrieben wird. Dadurch ermöglicht es die Neutrinostreuung, selektiv den Anteil der Antiquarks und damit der Seequarks zu bestimmen.

Streuung an Atomkernen

Experimente zur tiefinelastischen Streuung werden auch an Atomkernen vorgenommen. Ursprünglich tat man dies, um a) die Strukturfunktionen des Neutrons zu ermitteln, indem man aus der Streuung am Atomkern die Protonen „herausrechnet“, und b) mehr Targetmaterial zur Verfügung zu haben, was insbesondere bei Neutrinoexperimenten wichtig ist. Da die Bindungsenergie der Nukleonen im Kern klein ist verglichen mit der Bindung der Quarks im Nukleon, erwartete man dieselben Ergebnisse wie für freie Nukleonen. Stattdessen beobachtete man, dass sich die Kernumgebung sehr wohl auswirkt (EMC-Effekt), was eine ganze Serie weiterer Experimente veranlasste.

Verwandte Prozesse

Wenn bei der Streuung an einem Atomkern das Elektron, Myon oder Neutrino mit einem Proton als ganzem (und nicht mit einem seiner Bestandteile) wechselwirkt (Bjorken-Variable x = 1), bezeichnet man dies als quasielastische Streuung.

Wenn bei der Streuung eines Elektrons oder Myons an einem Proton dieses intakt bleibt und nur ein Photon ausgestrahlt wird, handelt es sich um tief virtuelle Compton-Streuung (deeply virtual Compton scattering – DVCS). Dieser Prozess wiederum ist vom Bethe-Heitler-Prozess zu unterscheiden, bei dem das reelle Photon vom Elektron bzw. Myon emittiert wird.[2]

Literatur

  • B. Povh, K. Rith, Ch. Scholz, F. Zetsche, W. Rodejohann: Teilchen und Kerne – Eine Einführung in die physikalischen Konzepte. 9. Auflage. SpringerSpectrum, Berlin 2013, ISBN 978-3-642-37821-8.

Einzelnachweise

  1. Jörn Bleck-Neuhaus: Elementare Teilchen. 2. Auflage, Springer Spektrum 2013, ISBN 978-3-642-32578-6, S. 602.
  2. Frédéric Georges: Deeply virtual Compton scattering at Jefferson Lab, High Energy Physics - Experiment [hep-ex]. Université Paris-Saclay, 2018. NNT:2018SACLS391. (englisch)

Auf dieser Seite verwendete Medien

DIS.svg
Deep inelastic scattering