Terence Tao

Terence Tao (2021)

Terence „Terry“ Chi-Shen Tao (chinesisch 陶哲軒 / 陶哲轩, Pinyin Táo Zhéxuān; * 17. Juli 1975 in Adelaide) ist ein australisch-US-amerikanischer Mathematiker und Fields-Medaillen-Preisträger.

Leben

Paul Erdős und Terence Tao (1985)

Tao wurde als mathematisches Wunderkind bekannt. Er erreichte mit acht Jahren ein SAT-Testresultat im mathematischen Teil, das einem überdurchschnittlichen Studienanfänger entspricht (760 Punkte). Im Alter von zehn Jahren war er 1986 der bisher jüngste Teilnehmer bei der Internationalen Mathematik-Olympiade, bei der er in dem Jahr eine Bronzemedaille gewann. Es folgten eine Silbermedaille 1987 und eine Goldmedaille 1988, womit er bis heute der jüngste Gewinner aller drei Medaillenarten ist.[1] Tao hat einen IQ von 230, was der höchste je ermittelte Wert ist. Er gilt demzufolge als der intelligenteste Mensch der Welt.[2]

Tao besuchte in Australien die Flinders University und schloss sein Studium dort 1991 im Alter von 16 Jahren mit einem Master ab. Anschließend studierte er von 1992 bis 1996 an der Princeton University (Promotion 1996 bei Elias Stein Three Regularity Results in Harmonic Analysis) und ist seit dem Jahr 2000 Professor an der UCLA.

Seine Ehefrau Laura ist Elektroingenieurin am Jet Propulsion Laboratory.[3][4] Sie leben zusammen mit ihrem Sohn William und ihrer Tochter Madeleine in Los Angeles.[4]

Neben der australischen hat er die US-Staatsbürgerschaft.[5]

Leistungen

Tao ist ein sehr vielseitiger Mathematiker, der auf den unterschiedlichsten Gebieten (Analytische Zahlentheorie, Harmonische Analysis, Kombinatorik, Partielle Differentialgleichungen u. a.) bedeutende Fortschritte erzielte. Besondere Beachtung in der mathematischen Gemeinschaft fand sein Beweis, dass es beliebig lange arithmetische Folgen von Primzahlen gibt, den er 2004 zusammen mit Ben Green aufstellte (Satz von Green-Tao). Die längste (2020) bekannte arithmetische Folge von Primzahlen hat die Länge 27[6].

Mit Emmanuel Candès begründete er 2004 (unabhängig von David Donoho) das Forschungsgebiet des Compressed Sensing (Rekonstruktion von Signalen aus wenigen zufällig angeordneten Proben).[7][8]

Mit Nets Katz zeigte er, dass die Minkowski-Dimension von Besikowitsch-Mengen (in denen Strecken von Einheitslänge in jeder beliebigen Orientierung liegen) in n-dimensionalen euklidischen Räumen (nach der Kakeya-Vermutung ) mindestens ist.[9] Sie verbesserten damit eine zuvor bewiesene untere Schranke von Thomas Wolff. Mit Katz und Izabella Laba fand er zuvor im dreidimensionalen Fall die bisher beste untere Schranke.

2014 veröffentlichte er einen Beweis, dass eine gemittelte Version der Navier-Stokes-Gleichung in drei Dimensionen glatte Lösungen mit Blowup (Divergenz) in endlicher Zeit hat.[10][11] Er skizzierte auch ein Programm eines ähnlichen Vorgehens bei den vollen Navier-Stokes-Gleichungen in drei Dimensionen (eines der Millennium-Probleme).

Von ihm und Mitarbeitern („I-Team“ mit James Colliander, Markus Keel, Gigliola Staffilani, Hideo Takaoka) stammen eine Reihe von bedeutenden Resultaten und neuen Techniken bei der nichtlinearen Schrödingergleichung und anderen dispersiven nichtlinearen partiellen Differentialgleichungen. Ein weiteres Forschungsgebiet, das in der Laudatio für die Fields-Medaille hervorgehoben wurde, sind seine Arbeiten über Wellen-Abbildungen (wave maps), die einen Hintergrund in den Wellenlösungen der Gleichungen der Allgemeinen Relativitätstheorie haben, die als schwer angreifbar gelten und für die wave-maps als vereinfachte Näherungsprobleme aufgefasst werden können.[12]

Mit Van H. Vu veröffentlichte er 2006 und 2010 einen Beweis des Kreisgesetzes für die Verteilung der Eigenwerte von Zufallsmatrizen.[13]

Mit Allen Knutson trug er zur Lösung der Vermutung von Horn bei, die die Spektren der Summe hermitescher Matrizen durch die Spektren der Summanden beschreibt.[14]

2012 gelang ihm ein Fortschritt in Hinblick auf die Goldbachsche Vermutung, indem er bewies, dass jede ungerade Zahl Summe von höchstens fünf Primzahlen ist.[15]

2015 bewies er die Diskrepanz-Vermutung von Paul Erdős. Das entstand aus seiner Beteiligung am Polymath-Projekt.

2019 gelang ihm ein bedeutender Fortschritt beim Collatz-Problem.[16][17]

Er ist für einen mathematischen Blog bekannt, dessen Beiträge auch in mehreren Büchern veröffentlicht wurden.

Ehrungen

Er ist Fellow der Royal Society, der National Academy of Sciences, der American Mathematical Society, der American Philosophical Society und der Australian Academy of Science.

Schriften

Bücher

  • Solving Mathematical Problems: A personal perspective. Deakin University Press, Geelong, Vic. 1992, ISBN 0-7300-1365-0.
  • spätere erheblich erweiterte Auflage: Solving Mathematical Problems. Oxford University Press 2006, ISBN 0-19-920560-4.
  • Analysis I. Hindustan Books 2006, ISBN 81-85931-62-3.
  • Analysis II. Hindustan Books 2006, ISBN 81-85931-62-3.
  • mit Van Vü: Additive Combinatorics, Cambridge University Press 2006.
  • Nonlinear dispersive equations: local and global analysis, CBMS regional series in mathematics, 2006.
  • Structure and randomness: Pages from Year One of a Mathematical Blog, AMS 2008.
  • Poincaré’s Legacies: Pages from Year Two of a Mathematical Blog, American Mathematical Society (AMS), 2009.
  • An Epsilon of Room: Pages from Year Three of a Mathematical Blog, I. AMS 2010, ISBN 978-0-8218-5278-1 (wordpress.com PDF).
  • An Epsilon of Room: Pages from Year Three of a Mathematical Blog, II. AMS 2011, ISBN 978-0-8218-5280-4 (wordpress.com PDF).
  • An Introduction to Measure Theory. AMS 2011, ISBN 978-0-8218-6919-2 (wordpress.com PDF).
  • Topics in Random Matrix Theory. AMS 2012, ISBN 978-0-8218-7430-1 (wordpress.com PDF).
  • Higher Order Fourier Analysis. AMS 2012, ISBN 978-0-8218-8986-2 (wordpress.com PDF).
  • Compactness and Contradiction. AMS 2013, ISBN 978-0-8218-9492-7 (wordpress.com PDF).
  • Komplexität und Universalität, e-enterprise, ISBN 978-3-945059-14-2, Lemgo, 2014.
  • Hilbert’s Fifth Problem and Related Topics, American Mathematical Society, 2014
  • Expansion in Finite Simple Groups of Lie Type, American Mathematical Society, 2015

Aufsätze und Journalpublikationen

Literatur

Weblinks

Commons: Terence Tao – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Terence Tao auf imo-official.org. Abgerufen am 30. Dezember 2021.
  2. Die intelligentesten Menschen der Welt Die Welt online, abgerufen am 6. Januar 2022
  3. Primed for Success. (Nicht mehr online verfügbar.) Archiviert vom Original am 9. September 2012; abgerufen am 10. Juli 2020 (englisch).
  4. a b Stephanie Wood: Terence Tao: the Mozart of maths. In: The Sydney Morning Herald. 5. März 2015, abgerufen am 10. Juli 2020 (englisch).
  5. Tao, Curriculum Vitae, von seiner Homepage
  6. PrimeGrid: PrimeGrid’s AP27 Search. (PDF) Abgerufen am 29. Februar 2020 (englisch).
  7. E. J. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math., Band 59, 2006, S. 1207–1223
  8. Tao, Candès „Near-optimal signal recovery from random projections: universal encoding strategies?“, IEEE Transactions on Information Theory, Band 52, Heft 12, 2006, S. 5406–5425
  9. Katz, Tao New bounds for Kakeya problems, J. Anal. Math. 87 (2002), 231–263
  10. Finite time blowup for an averaged three-dimensional Navier-Stokes equation. arxiv:1402.0290 [abs], 2014. Erschienen in J. American Math. Soc., Band 29, 2016, S. 601–674.
  11. Finite time blowup for an averaged three-dimensional Navier-Stokes equation, Blog von Tao 2014
  12. Laudatio auf Terence Tao, ICM 2006, pdf
  13. Tao, Vu, Random matrices: the circular law, Commun. Contemp. Math., Band 10, 2008, S. 261–307, Tao, Vu, Manjunath Krishnapur: Random matrices: Universality of ESD and the Circular Law, Annals of Probability, Band 38, 2010, S. 2023–2065, arxiv:0807.4898 [abs].
  14. Knutson, Tao, Honeycombs and sums of Hermitian matrices, Arxiv 2000
  15. Tao: Every odd number greater than 1 is the sum of at most five primes. Preprint, 2012, Mathematics of Computation, arxiv:1201.6656 [abs].
  16. Kevin Hartnett, Mathematician Proves Huge Result on ‘Dangerous’ Problem, Quanta Magazine, 11. Dezember 2019.
  17. Tao: Almost all orbits of the Collatz map attain almost bounded values. arxiv:1909.03562 [abs] 2019.
  18. King Faisal Foundation, abgerufen am 12. Januar 2010.
  19. Nemmers Prize 2010
  20. Breakthrough Prize 2014 (Memento des Originals vom 24. Juni 2014 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/breakthroughprize.org
  21. Prinzessin-von-Asturien-Preis 2020
  22. Vitae and Bibliography for Terence Tao Mitteilung der UCLA (www.math.ucla.edu); abgerufen am 13. November 2020

Auf dieser Seite verwendete Medien

FieldsMedalFront.jpg
Photo of the obverse of a Fields Medal made by Stefan Zachow for the International Mathematical Union (IMU), showing a bas relief of Archimedes (as identified by the Greek text). The Latin phrase states: Transire suum pectus mundoque potiri
Paul Erdos with Terence Tao.jpg
Autor/Urheber: either Billy or Grace Tao, Lizenz: CC BY-SA 2.0
Paul Erdős teaching Terence Tao in 1985, at the University of Adelaide. At the time, Terence was 10 years old. Years later, Terence would grow to become one of the greatest Mathematicians alive. Terence Tao received the Fields Medal in 2006, and was elected a Fellow of the Royal Society in 2007.
Terence Tao, PCAST Member (cropped).jpg
Portrait of Terence Tao as a member of the President’s Council of Advisors on Science and Technology under President Biden.