Tanc-Funktion

Die tanc-Funktion im Bereich von −11 bis 11

Die tanc-Funktion oder auch Kardinaltangens (Tangens cardinalis) ist eine mathematische Funktion, die durch

definiert ist. Hierbei bezeichnet den gewöhnlichen Tangens.[1]

Analog zur gebräuchlicheren sinc-Funktion wird die Funktion an der hebbaren Definitionslücke bei durch ihren Grenzwert fortgesetzt. Trotz ihrer strukturellen Ähnlichkeit zählt sie nicht zu den Kardinalfunktionen.[2]

Eigenschaften

Allgemeines

An der hebbaren Singularität bei werden die Funktionen durch den Grenzwert bzw. stetig fortgesetzt, der sich aus der Regel von de L’Hospital ergibt; manchmal wird die Definitionsgleichung auch mit Fallunterscheidung geschrieben:

.

Nullstellen

Die tanc-Funktion hat ihre Nullstellen bei ganzzahligen Vielfachen von :

gilt für

Asymptotisches Grenzverhalten

Für -Koordinaten der Form mit ganzzahligem hat die -Funktion ein asymptotisches Grenzverhalten, da divergiert.

Ableitungen

Die erste Ableitung von ist gegeben durch:

Integrale

Das Integral vom Kehrwert der tanc-Funktion hat bis zur ersten Nullstelle folgenden Wert:

Dies wird im Folgenden bewiesen:

Abgrenzung

Die hat strukturell große Ähnlichkeit zu der -Funktion, ist allerdings keine Kardinalfunktion, hat aber Definitionslücken bei . Daher ist bspw. in der Physik die Verwendung von gebräuchlicher.

Weblinks

Einzelnachweise

  1. Eric W. Weisstein: Tanc Function. Abgerufen am 23. Januar 2020 (englisch).
  2. Cardinal Function, Eric W. Weisstein, Wolfram Web Resource.

Auf dieser Seite verwendete Medien

Tanc.svg
Autor/Urheber: Georg-Johann, Lizenz: CC BY-SA 3.0
Plot of the function

using cubic Bézier curves. Tangents to the w:inflection points located at

all intersect at (0,−1).