Strahlensatz
Der Strahlensatz (man spricht auch vom ersten und zweiten Strahlensatz) oder Vierstreckensatz gehört zu den wichtigsten Aussagen der Elementargeometrie. Er befasst sich mit den Streckenverhältnissen, die entstehen, wenn zwei von einem gemeinsamen Punkt ausgehende Strahlen von einem Parallelenpaar geschnitten werden. Seine Aussagen ermöglichen es bei vielen geometrischen Überlegungen, unbekannte Streckenlängen auszurechnen. Traditionell wird der Strahlensatz dem griechischen Mathematiker Thales zugeschrieben, weshalb er außerhalb des deutschen Sprachraums oft auch als Satz des Thales bezeichnet wird.
In der synthetischen Geometrie können die ersten beiden Strahlensätze mit Einschränkungen sinngemäß auf affine Translationsebenen verallgemeinert werden und gelten uneingeschränkt für desarguesche Ebenen. Dagegen gilt der dritte Strahlensatz, der in der synthetischen Geometrie auch Dreistrahlsatz genannt wird, im Allgemeinen nur für pappussche Ebenen, siehe dazu Affine Translationsebene – Strahlensatz und Streckungen.
Formulierung der Strahlensätze
Wenn zwei von einem gemeinsamen Punkt ausgehende Strahlen von zwei Parallelen geschnitten werden, die nicht durch den Ausgangspunkt gehen, dann gelten die folgenden Aussagen:[1][2]
- Es verhalten sich je zwei Abschnitte auf der einen Geraden so zueinander wie die ihnen entsprechenden Abschnitte auf der anderen Geraden, also zum Beispiel , oder
- Es verhalten sich die Abschnitte auf den Parallelen wie die ihnen entsprechenden, vom Scheitel aus gemessenen Strecken auf jeweils derselben Geraden:.
Der erste Strahlensatz bezieht sich also auf die Verhältnisse von Strahlenabschnitten und der zweite auf die Verhältnisse von Strahlen- und Parallelenabschnitten.
Bemerkung (Umkehrung des 1. Strahlensatzes):[1]
- Ist Eigenschaft 1 erfüllt, so kann man auf parallele Geraden schließen. Ist dagegen Eigenschaft 2 gegeben, so ist ein entsprechender Schluss auf Parallelität nicht möglich.
Erweiterungen
Der erste und zweite Strahlensatz gelten auch, wenn man die beiden Strahlen mit gemeinsamen Ausgangspunkt durch zwei Geraden, die sich in schneiden, ersetzt. Liegt der Schnittpunkt auf derselben Seite der beiden Parallelen („V-Figur“), so liegt die Situation des Strahlensatzes vor. Liegt zwischen den beiden Parallelen („X-Figur“), so gelten aber weiterhin die für den Strahlensatz formulierten Streckenverhältnisse, da man diese Konfiguration („X-Figur“) durch eine Punktspiegelung in in eine Strahlensatzkonfiguration („V-Figur“) mit den gleichen Streckenlängen überführen kann.[2] Allerdings ist die Umkehrung des ersten Strahlensatzes nicht mehr möglich, wenn man ihn mit Geraden anstatt mit Strahlen formuliert.[3]
Betrachtet man mehr als zwei Geraden, die sich in einem Punkt schneiden, so erhält man auch Aussagen über die zusätzlichen auf den Parallelen entstandenen Strecken. Es stehen je zwei Abschnitte auf den Parallelen, die einander entsprechen, in gleichem Verhältnis zueinander. Schneidet zum Beispiel eine dritte Gerade die Parallelen in und (siehe Zeichnung) so gilt das folgende Streckenverhältnis:
- .
Verwandte geometrische Konzepte
Der Strahlensatz steht in engem Zusammenhang mit dem Begriff der geometrischen Ähnlichkeit. Die Dreiecke und sind in jeder der drei Skizzen sowie und in der Skizze nach Satz 3 (in „Erweiterungen“) zueinander ähnlich. Dies bedeutet insbesondere, dass entsprechende Seitenverhältnisse in diesen Dreiecken übereinstimmen – eine Aussage, aus der sich unmittelbar der Strahlensatz ergibt.
- Siehe auch: Ähnlichkeitssätze
Ein weiteres Konzept, das mit dem Strahlensatz zusammenhängt, ist das der zentrischen Streckung (einer speziellen geometrischen Abbildung). In den angesprochenen drei Skizzen bildet die erste (V-Figur) beispielsweise die zentrische Streckung mit Zentrum und Streckungsfaktor (Abbildungsfaktor) die Punkte und auf die Punkte bzw. ab. Entsprechendes gilt für die zweite Skizze (X-Figur); hier ist der Streckungsfaktor gleich
Eine ähnlich enge Beziehung besteht zur Vektorrechnung. Die Rechenregel
für zwei Vektoren und einen reellen Skalar ist nur eine andere Ausdrucksweise für den Strahlensatz, denn es gilt dann:
- .
Hierbei bezeichnet die Länge (euklidische Norm) des Vektors
Anwendungen
Vermessung
In der Verhältnisgleichung des Strahlensatz bestimmen drei (bekannte) Größen die (möglicherweise unbekannte) vierte Größe. Dies lässt sich in der Vermessung von unzugänglichen, nicht direkt messbaren Strecken verwenden, indem man die nicht direkt messbare Strecke als (unbekannte) vierte Größe in einer Strahlensatzkonfigurationen wählt. Einfache Messgeräte, die auf diesem Prinzip beruhen, sind der Jakobsstab und das Försterdreieck. Auch der Daumensprung zum Schätzen von Entfernungen beruht auf diesem Prinzip.
Höhe der Cheops-Pyramide
Ein einfaches Beispiel für die Anwendung des Strahlensatzes soll auf den antiken griechischen Philosophen und Mathematiker Thales von Milet zurückgehen. Dieser habe mit Hilfe eines Stabes durch Messung der Schattenlänge die Höhe der ägyptischen Cheopspyramide ermittelt. In anderen Sprachen wird der Strahlensatz daher oft auch als Satz des Thales[4] bezeichnet.
Die folgende Beispielrechnung ermittelt die Höhe der Cheopspyramide mit Hilfe des zweiten Strahlensatzes, sie entspricht jedoch vermutlich nicht der exakten Berechnung des Thales selbst[5]:
- Zunächst bestimmt man die Seitenlänge der Pyramide und anschließend die Länge des Schattens ebenjener. Anschließend steckt man einen Stab senkrecht in den Boden und vermisst dessen Höhe und dessen Schattenlänge. Man erhält dann die folgenden Werte:
- Höhe des Stabes:
- Schattenlänge des Stabes:
- Direkt messbare Schattenlänge der Pyramide:
- Seitenlänge der Pyramide:
- Gesamte Schattenlänge der Pyramide:
- Gesuchte Höhe der Pyramide:
- Mit Hilfe des Strahlensatzes (Skizze 2) stellt man die folgende Gleichung auf:
- Die Länge der Seite des Dreiecks setzt sich dabei aus der halben Seitenlänge und der Länge des Schattens der Pyramide zusammen. Umgestellt nach D erhielt man:
Flussbreite
Auch in der Landvermessung kann der Strahlensatz verwendet werden, um die Länge schwer zugänglicher Strecken wie zum Beispiel die Entfernung gegenüberliegender Ufer von Gewässern zu bestimmen. Die Breite eines Flusses (siehe Grafik rechts) kann man wie folgt bestimmen. Zunächst markiert man die Endpunkte A und B der zu bestimmenden Strecke, dann konstruiert man eine zu AB rechtwinklige AC. Eine solche Konstruktion kann man zum Beispiel mit Hilfe eines Drehkreuzes, Winkelspiegels oder Doppelpentagonprisma durchführen. Auf AC wählt man einen (beliebigen) Punkt E von dem man aus den Punkt B am anderen Ufer anpeilt und die Strecke EB dann über E hinaus in die entgegengesetzte Richtung verlängert. Dann konstruiert man im Punkt C eine zu AC rechtwinklige Strecke, die die Verlängerung von EB im Punkt D schneidet. Da die Strecken AE, CE und CD alle auf derselben Uferseite liegen, lassen sie sich einfach vermessen und der zweite Strahlensatz liefert dann die gesuchte Flussbreite:
Teilung einer Strecke
Der erste Strahlensatz ermöglicht, mit einem einfachen Verfahren – ohne Berechnungen oder Messungen – eine Strecke in einem (ganzzahligen) Verhältnis () zu teilen.[2] Zu einer gegebenen Strecke AB zeichnet man einen Strahl mit Startpunkt in A ein. Dann trägt man auf dem Strahl beginnend an A m+n gleich lange und aufeinander folgende Strecken ab. Den Endpunkt der m+n-ten Strecke verbindet man mit B und zeichnet dann die Parallele zu dieser Strecke durch den Endpunkt der m-ten Strecke. Diese Parallele teilt die Strecke AB im gewünschten Verhältnis .
Weitere Anwendungen und Verallgemeinerungen
- Zentrische Streckungen und damit das Skalieren von Grafiken.
- In der Strahlenoptik beschreiben die Strahlensätze die Vergrößerungsverhältnisse bei einer Lochkamera und – zusammen mit der Linsengleichung – bei einer fehlerfreien dünnen Linse.
- Die Aussagen des ersten und zweiten Strahlensatzes können in der synthetischen Geometrie auf bestimmte nichtdesarguesche Ebenen, die affinen Translationsebenen, verallgemeinert werden.
- Konstruktion einer Dezimalzahl als praktisches Anwendungsbeispiel des dritten Strahlensatzes in Kombination mit Zahlenstrahlen
- Multiplikation mit Zirkel und Lineal
- Division mit Zirkel und Lineal
- Potenz mit Zirkel und Lineal
Beweis
Die in Satz 1 aufgestellten Streckenverhältnisse lassen sich über flächengleiche Dreiecke in der Strahlensatzfigur herleiten. Die Sätze 2 und 3 sowie die Umkehrung von Satz 1 ergeben sich dann durch die Anwendung von Satz 1 bzw. der schon bewiesenen Sätze.
Satz 1
Die Lote von A' bzw. B' auf die Gerade haben die gleiche Länge, da parallel zu ist. Diese Lote sind Höhen der Dreiecke ABB' bzw. ABA', welche die zugehörige Grundseite gemeinsam haben. Für die Flächen gilt daher[1]
und weiter
oder flächenvereint
- .
Aus der ersten Zeile folgt:
und aus der zweiten:
Das Anwenden der Standardformel zur Flächenberechnung von Dreiecken () liefert dann
- und
Kürzen liefert die ersten beiden Gleichungen aus Satz 1
- und .
Aus der letzten Gleichung erhält man dann
Nun bringt man auf beiden Seiten den jeweiligen Ausdruck auf den gleichen Nenner
und dies entspricht dann der dritten Gleichung aus Satz 1
Satz 1 – Beweis nach Archimedes
Archimedes reichte es, die Gleichheit zweier Seitenverhältnisse für einen Fall nachzuweisen. Die anderen Fälle ergeben sich daraus unmittelbar.
Der Beweis wird nicht zitiert, sondern lediglich gemäß der Archimedischen Methodenlehre[6] ausgeführt. Mit den üblichen Seiten- und Winkelbezeichnungen für die Dreiecke und (siehe nebenstehende Skizze) wird gezeigt, dass (entspricht ) gilt. Die Winkel und ' sowie und ' sind als Stufenwinkel gleich.
Vorgehensweise
Bezeichne die Höhen, die durch das Lot von auf die Geraden gegeben sind, mit und sowie deren Fußpunkte mit und . Da gleich ' ist, haben jeweils die „ferne“ Kathete und die Hypotenuse in beiden rechtwinkligen Dreiecken und dasselbe Verhältnis zueinander. (In „moderner“ Formulierung: gleich Gegenkathete von zu Hypotenuse).
Demzufolge gilt
- und daher .
Aus gleich ' folgen durch entsprechende Betrachtung der Dreiecke und die Gleichungen
- bzw. .
Und schließlich
- .
Was zu beweisen war.
Satz 2
Der Satz 2 ist die konstruktive Erweiterung von Satz 1.[1]
Konstruiere eine Parallele zu durch . Diese Parallele schneidet in .
Wegen gilt aufgrund von Satz 1:
- worin sich durch ersetzen lässt:
Umkehrung von Satz 1
Angenommen und wären nicht parallel. Dann gibt es eine Parallele zu , die durch den Punkt geht und den Strahl in (*) schneidet. Da nach Voraussetzung gilt, ergibt sich
Andererseits gilt nach dem ersten Strahlensatz auch
- .
Dies bedeutet, dass und beide auf dem Strahl liegen und den gleichen Abstand von haben. Damit sind die beiden Punkte jedoch identisch, also . Dies ist ein Widerspruch dazu, dass es sich nach Bedingung (*) um 2 verschiedene Punkte handeln soll. Also führt die Annahme der Nichtparallelität zu einem Widerspruch und kann daher nicht richtig sein; oder anders ausgedrückt: Es muss gelten.[1]
Mehr als zwei Geraden
Satz 2 lässt sich zu Aussagen über drei oder mehr Geraden erweitern.
Ziehe eine Gerade durch und , dabei ergeben sich die Schnittpunkte auf sowie auf . Konstruiere eine Parallele zu durch , die in schneidet.
Wegen und gilt aufgrund von Satz 2:
Also hat man oder umgestellt auch .
Literatur
- Wendelin Degen, Lothar Profke: Grundlagen der affinen und euklidischen Geometrie. Teubner, Stuttgart 1976, ISBN 3-519-02751-8.
- Lorenz Halbeisen, Norbert Hungerbühler, Juan Läuchli: Mit harmonischen Verhältnissen zu Kegelschnitten: Perlen der klassischen Geometrie. Springer 2016, ISBN 9783662530344, S. 191–208.
- Hans Schupp: Elementargeometrie. Schöningh, Paderborn 1977, ISBN 3-506-99189-2, S. 124 ff. (Uni-Taschenbücher 669 Mathematik).
- Siegfried Krauter, Christine Bescherer: Erlebnis Elementargeometrie. Springer Spektrum, 2-te Auflage 2013, ISBN 978-3-8274-3025-0, S. 147–157
- Franz Lemmermeyer: Mathematik à la Carte. Springer Spektrum, 2015, ISBN 978-3-662-45269-1, S. 118–122
- Manfred Leppig (Hrsg.): Lernstufen Mathematik. 1. Auflage, 4. Druck. Girardet, Essen 1981, ISBN 3-7736-2005-5, S. 157–170.
- Hartmut Wellstein, Peter Kirsche: Elementargeometrie. Eine aufgabenorientierte Einführung. Vieweg+Teubner Verlag 2009, ISBN 978-3-8348-0856-1, S. 36–41
Weblinks
- Symmetrie und Ähnlichkeit, Strahlensätze – Sinusmaterialien zum Strahlensatz (pdf)
- Alexander Bogomolny: Thales' Theorems und insbesondere Thales' Theorem auf cut-the-knot.org
- Strahlensatz interaktiv
- Euklid's Elements 6. Buch, L.2 engl.
Einzelnachweise
- ↑ a b c d e Hans Schupp: Elementargeometrie. Schöningh, Paderborn 1977, ISBN 3-506-99189-2, S. 124 ff. (Uni-Taschenbücher 669 Mathematik).
- ↑ a b c Strahlensätze. In: Schülerduden: Mathematik I. Dudenverlag, 8. Auflage, Mannheim 2008, S. 431–433
- ↑ Ilka Agricola, Thomas Friedrich: Elementargeometrie. Springer Spektrum, 4-te Auflage 2015, ISBN 978-3-658-06730-4, S. 1–4
- ↑ Nicht zu verwechseln mit dem im deutschen Sprachraum als Satz des Thales bezeichneten Spezialfall des Kreiswinkelsatzes.
- ↑ Von Thales selbst sind keine Werke erhalten geblieben. Es gibt jedoch mehrere historische Quellen, die die Berechnung der Pyramidenhöhe durch Thales erwähnen. Alle diese Quellen sind aber mehrere Jahrhunderte nach dem Tode Thales verfasst worden und leicht unterschiedlich in ihrer Beschreibung, so dass sich letztendlich nicht mit Bestimmtheit sagen lässt, inwieweit Thales den Strahlensatz selbst oder einen Spezialfall von ihm als geometrischen Lehrsatz kannte oder ob er lediglich eine physikalische Beobachtung anwandte. So steht bei Diogenes Laertius: "Hieronymus sagt, dass es Thales sogar gelang die Höhe der Pyramiden zu bestimmen, indem er den Schatten der Pyramide genau in dem Augenblick vermass, in dem seine eigene Schattenlänge seiner Körpergröße entsprach." Eine ähnliche Formulierung findet man bei Plinius: "Thales entdeckte, wie man die Höhe von Pyramiden und anderen Objekten bestimmt, nämlich indem man den Schatten des Objektes genau zu dem Zeitpunkt misst, an dem Höhe und Schatten gleich lang sind." Bei Plutarch jedoch findet sich eine Beschreibung, die eventuell eine Kenntnis des Strahlensatzes vermuten lässt: "… ohne Schwierigkeiten und Zuhilfenahme eines Instrumentes, stellte er lediglich einen Stock am Ende des Pyramidenschatten auf und erhielt so zwei durch die Sonnenstrahlen erzeugte Dreiecke … dann zeigte er, dass die Höhe des Stocks und die Höhe der Pyramide im selben Verhältnis stehen, wie die Schattenlänge des Stockes und die Schattenlänge der Pyramide" (Quelle: Biographie des Thales im MacTutor)
- ↑ Archimedes Werke. Übersetzt und mit Anmerkungen versehen von Arthur Czwalina Wiss. Buchgesellschaft, Darmstadt 1983, ISBN 3-534-02029-4
Auf dieser Seite verwendete Medien
Autor/Urheber: Petrus3743, Lizenz: CC BY-SA 4.0
Beweisskizze zum dritten Strahlensatz
Autor/Urheber: Fred the Oyster, Lizenz: CC BY-SA 4.0
Pyramid vs. stick height in Thales configuration. An illustration of the geometric intercept theorem, attributed to Thales.
Autor/Urheber: Petrus3743, Lizenz: CC BY-SA 4.0
Strahlensatz, Satz 1, Beweisskizze
Autor/Urheber: Fred the Oyster, Lizenz: CC BY-SA 4.0
Computing the height of the Great Pyramid of Giza using a stick and the lengths of the shadows on the floor. An illustration of the geometric intercept theorem, attributed to Thales.
Height of the Cheops Pyramid
According to some historical sources the Greek mathematician Thales applied the intercept theorem to determine the height of the Cheops' pyramid. The following description illustrates the use of the intercept theorem to compute the height of the Cheops' pyramid. It does not however recount Thales' original work, which was lost.
Thales measured the length of the pyramid's base and the height of his pole. Then at the same time of the day he measured the length of the pyramid's shadow and the length of the pole's shadow. This yielded the following data:
- height of the pole (A): 1.63m
- shadow of the pole (B): 2m
- length of the pyramid base: 230m
- shadow of the pyramid: 65m
From this he computed
Knowing A,B and C he was now able to apply the intercept theorem to compute
Dividing a line segment in m:n ratio with compass and ruler
Autor/Urheber: Kmhkmh, Lizenz: CC BY 3.0
intercept heorem in normed vector spaces