Stochastische Geometrie

Die Stochastische Geometrie beschäftigt sich mit der mathematischen Beschreibung und Analyse von zufälligen geometrischen Strukturen, wie Punkten oder Liniensegmenten oder komplizierteren Mengen im Raum oder der Ebene. Wichtige Grundlagen sind zufällige Mengen, insbesondere zufällige abgeschlossene Mengen, Punktprozesse und zufällige Maße.

Eine wichtige Anwendung liegt in der stereologischen Gewinnung von Aussagen über räumliche Strukturen durch die statistische Analyse von linearen und ebenen Schnitten.

Verschiedene Modelle der statistischen Mechanik (insbesondere werden hier Gittermodelle in zwei Dimensionen betrachtet) wie die Perkolationstheorie ergeben ebenfalls zufällige geometrische Strukturen, die mathematisch streng mit der Methode der Schramm-Löwner-Evolution behandelt werden können.

Punktprozesse

Zufällige abgeschlossene Menge

Boolesches Modell

Beispiel eines booleschen Modelles für einen Poisson-Prozess

Boolesche Modelle sind einfache Beispiele für zufällige geschlossene Mengen. Es handelt sich dabei um ein Keim-Korn-Modell.

Sei ein homogener Poisson-Punktprozess auf mit Intensität . Sei eine zufällige kompakte Menge genannt typisches Korn, die unabhängig von ist und es gelte für alle kompakten Mengen

wobei und das -dimensionale Lebesguemaß bezeichnet.

Sei eine Folge von iid zufälligen kompakten Mengen auf genannt Körner, welche die gleiche Verteilung wie haben und unabhängig von und sind. Das boolesche Modell ist definiert als

wobei Keime genannt werden.[1]

Keim-Korn-Modell

Betrachtet man ein boolesches Modell und ersetzt den Poisson-Punktprozess durch einen allgemeinen Punktprozess, dann spricht man von einem Keim-Korn-Modell. Man betrachtet dabei einen markierten Punktprozess mit und kompakten Mengen , die Terminologie ist analog wie im booleschen Modell.

Literatur

  • O. E. Barndorff-Nielsen, W. S. Kendall und M. N. M. van Lieshout (Hrsg.): Stochastic Geometry. Likelihood and Computation. Chapman & Hall/CRC, Boca Raton FL u. a. 1998, ISBN 0-8493-0396-6 (Monographs on statistics and applied probability 80).
  • Dietrich Stoyan, Wilfrid S. Kendall, Joseph Mecke: Stochastic Geometry and Its Applications. 2. Auflage. Wiley, Chichester u. a. 1995, ISBN 0-471-95099-8 (Wiley series in probability and statistics).

Einzelnachweis

  1. Sung Nok Chiu, Dietrich Stoyan, Wilfrid S. Kendall, Joseph Mecke: Stochastic Geometry and Its Applications. Hrsg.: John Wiley & Sons Ltd. ISBN 0-471-95099-8.

Auf dieser Seite verwendete Medien

A boolean model.png
Autor/Urheber: Tensorproduct, Lizenz: CC BY-SA 4.0
Ein Beispiel eines booleschen Modelles aus der stochastischen Geometrie.