Dichtefunktion der Gleichverteilung für (blau), (grün) und (rot)
Die stetige Gleichverteilung, auch Rechteckverteilung, kontinuierliche Gleichverteilung oder Uniformverteilung genannt, ist eine stetigeWahrscheinlichkeitsverteilung. Sie hat auf einem Intervall eine konstante Wahrscheinlichkeitsdichte. Dies ist gleichbedeutend damit, dass alle Teilintervalle gleicher Länge dieselbe Wahrscheinlichkeit besitzen.
Die Möglichkeit, die stetige Gleichverteilung auf dem Intervall von 0 bis 1 zu simulieren, bildet die Basis zur Erzeugung zahlreicher beliebig verteilter Zufallszahlen mittels der Inversionsmethode oder der Verwerfungsmethode.
Als abkürzende Schreibweise für die stetige Gleichverteilung wird häufig oder verwendet. In einigen Formeln sieht man auch oder als Bezeichnung für die Verteilung. Die stetige Gleichverteilung ist durch ihre ersten beiden zentralen Momente komplett beschrieben, d. h. alle höheren Momente sind aus Erwartungswert und Varianz berechenbar.
Eigenschaften
Wahrscheinlichkeiten
Die Wahrscheinlichkeit, dass eine auf gleichverteilte Zufallsvariable in einem Teilintervall liegt, ist gleich dem Verhältnis der Intervalllängen:
.
Erwartungswert und Median
Der Erwartungswert und der Median der stetigen Gleichverteilung sind gleich der Mitte des Intervalls :
Verteilungsdichten der Summe von bis zu 6 Gleichverteilungen U(0,1)
Die Summe zweier unabhängiger und stetig gleichverteilter Zufallsvariablen ist dreiecksverteilt, falls die Breite der beiden Träger identisch ist. Unterscheiden sich die Trägerbreiten, so ergibt sich eine trapezförmige Verteilung. Genauer:
Zwei Zufallsvariablen seien unabhängig und stetig gleichverteilt, die eine auf dem Intervall , die andere auf dem Intervall . Sei und . Dann hat ihre Summe die folgende Trapezverteilung:
Die Summe von unabhängigen gleichverteilten Zufallsvariablen auf dem Intervall [0;1] ist eine Irwin-Hall-Verteilung, sie nähert sich der Normalverteilung an (Zentraler Grenzwertsatz).
Eine zuweilen verwendete Methode (Zwölferregel) zur approximativen Erzeugung (standard-)normalverteilter Zufallszahlen funktioniert so: man summiert 12 (unabhängige) auf dem Intervall [0,1] gleichverteilte Zufallszahlen und subtrahiert 6 (das liefert die richtigen Momente, da die Varianz einer U(0,1)-verteilten Zufallsvariablen 1/12 ist und sie den Erwartungswert 1/2 besitzt).
Simulation von Verteilungen aus der stetigen Gleichverteilung
Mit der Inversionsmethode lassen sich gleichverteilte Zufallszahlen in andere Verteilungen überführen. Wenn eine gleichverteilte Zufallsvariable ist, dann genügt beispielsweise der Exponentialverteilung mit dem Parameter .
Verallgemeinerung auf höhere Dimensionen
Die stetige Gleichverteilung lässt sich vom Intervall auf beliebige messbare Teilmengen des mit Lebesgue-Maß verallgemeinern. Man setzt dann
für messbare .
Diskreter Fall
Die Gleichverteilung ist auch auf endlichen Mengen definiert, dann heißt sie diskrete Gleichverteilung.
Beispiel für das Intervall [0, 1]
Häufig wird und angenommen, also betrachtet. Dann ist die Dichtefunktion auf dem Intervall konstant gleich 1 und für die Verteilungsfunktion gilt dort . Der Erwartungswert beträgt dementsprechend , die Varianz und die Standardabweichung , wobei die letztgenannten beiden Werte auch für beliebige Intervalle der Länge 1 gelten. Siehe hierzu auch den obigen Abschnitt Summe gleichverteilter Zufallsvariablen.