Stahlguss

Stahlgießen
Stahlgussstück mit Probenmaterial

Stahlguss ist der Ausgangswerkstoff für Gussstücke aus Stahl (im Gegensatz zu Gussstücken aus anderen Gusswerkstoffen und dem Block- und/oder Strangguss). Unlegierter Stahlguss umfasst Eisen-Kohlenstoff-Legierungen mit maximal 0,60 % Silizium- und bis zu 1 % Mangangehalt, dessen Kohlenstoffgehalt bis 0,5 % die Festigkeitseigenschaften maßgeblich bestimmt. Niedrig- bis hochlegierter Stahlguss enthält zusätzlich in wechselnden Anteilen Legierungselemente wie Chrom, Nickel, Molybdän, Vanadium, Wolfram und andere. Beim Stahlguss werden die vorteilhaften Eigenschaften des Werkstoffs Stahl und die gestalterischen Vorteile der gießtechnischen Formgebung im Endprodukt (Stahlgussstück) vereinigt. Die meisten Schmiedestähle werden auch zu Gussteilen vergossen, werden dann aber mit einem GE bzw. G (früher GS) vor der Stahlmarkenbezeichnung versehen (Beispiel: G42CrMo4).

Stahlguss ist vor allem aus zwei Gründen in der Herstellung wesentlich anspruchsvoller als andere Eisengusswerkstoffe wie das Gusseisen:

  • Stahlguss hat eine höhere Gießtemperatur (ca. 1600 °C) als Gusseisen (ca. 1150 °C). Diese erhöhten Temperaturen stellen größere Anforderungen an die Schmelztechnik, die feuerfesten Werkstoffe der Ofenverkleidungen, der Schmelztiegel und Gießwerkzeuge und schließlich an die Formstoffe.
  • Beim Stahlguss ist die Schwindung mit zwei Prozent etwa doppelt so groß wie beim Grauguss.
  • Da die Stahlgussstücke im Gusszustand spröde, grobkörnig und dendritisch erstarrt sind, müssen diese Teile einer Wärmebehandlung unterzogen werden (Normalglühen, Vergüten, Weichglühen, Spannungsarmglühen).

Durch den großen Unterschied der spezifischen Volumina des Materials knapp unter der Erstarrungstemperatur und bei Raumtemperatur neigt Stahlguss stärker zur Bildung von Lunkern als Gusseisen, auch muss ein höheres Schwindmaß berücksichtigt werden. Ohne spezielle Gegenmaßnahmen (Speiser) würden Stahlgussteile durch Lunker unbrauchbar oder durch umfangreiches Fertigungsschweißen unrentabel herzustellen. Die Speiser an Stahlgussteilen werden mit autogenem Brennschneiden entfernt, indem unter Ausnutzung der Oxidationswärme durch den zugeführten Sauerstoff der Werkstoff in der sogenannten Schnittfuge verbrannt und abgetragen wird. Bei kleineren Speiserdurchmessern und speziellen Stahllegierungen werden Abschlagspeiser bevorzugt. Wegen der mechanisch-thermisch spülenden Wirkung des Stahlgießstrahls werden zur Vergrößerung der Oberflächenfestigkeit im Eingusssystem der größeren Formen keramische Einsätze (Schamotte) verwendet (Anschnitt). Mittels Brennfugen (Fugenhobeln) wird der Werkstoff zum Freilegen und Entfernen von Gussfehlern und zum Modellieren der Oberflächen weiter muldenförmig abgetragen und für eventuelle Reparaturschweißungen vorbereitet.

Die weit untereutektische Zusammensetzung der Stahllegierungen führt zu einer sehr zähflüssigen Schmelze und daher zu einem schlechten Formfüllvermögen, wodurch feine Strukturen nur durch nachträgliches Zerspanen hergestellt werden können.

Dafür haben Erzeugnisse aus Stahlguss bessere mechanische Eigenschaften, Stahlguss ist duktil und schweißbar. Zur Anwendung können alle üblichen Stahlsorten kommen, auch Edelstähle.

Große Stahlgussstücke können mehrere hundert Tonnen wiegen, z. B. Gehäuse für Dampfturbinen.

Für zukünftige Hochtemperaturreaktoren (HTR) wird über vorgespannte Behälter aus Stahlguss oder Sphäroguss als Reaktordruckbehälter nachgedacht.

Die ersten erfolgreichen Versuche, komplizierte Teile aus Stahl in einem Stück zu gießen, unternahm der in Dunningen geborene Jacob Mayer als technischer Direktor des Bochumer Vereins im Jahr 1841. Sein Verfahren ließ er sich am 16. Dezember 1851 patentieren.

Experimente am Helmholtz-Zentrum Dresden-Rossendorf zeigen, dass Magnetbremsen Schmelzen im Stahlguss gezielt beeinflussen können. Die Qualität von Gusswerkstoffen lässt sich erhöhen, wenn von außen angelegte Magnetfelder die noch flüssigen Metallschmelzen rühren, bremsen oder beruhigen.[1]

Bearbeitungszugaben

Die Festlegung der Bearbeitungszugabe erfolgt in Abhängigkeit vom Größtmaß des Gussteils und des angewandten Guss-(Form-)verfahrens. Die Normenwerke zu diesem Werkstoff machen Vorgaben dazu, jedoch beruhen die angewandten Werte auf den Erfahrungen jeder Stahlgießerei. Für Flächen, die in der Gussform die oberen Begrenzungen bilden, werden die pauschal festgesetzten Werte der Bearbeitungszugabe um 2 bis 10 mm erhöht. Auch bei Anwendung für Einschweißteile sollten die Zugaben 20 bis 50 Prozent größer gewählt werden, um die Schweißabweichungen am Fertigteil ausgleichen zu können. Bohrungen und Nuten, die im Verhältnis zum Gussteil als klein zu betrachten sind, werden oft vollgegossen und durch spanende Bearbeitung eingebracht. Um den Guss qualitätsgerecht zu liefern, werden meistens sämtliche mit Bearbeitungszeichen versehene Flächen der Zeichnung durch die Gießerei mit einer Schnittzugabe von 3 bis 8 mm je Fläche vorbearbeitet ausgeliefert. Nicht tolerierte Maße sollten mittels der DIN EN ISO 8062-3 in den Toleranzbereichen DCTG 11 bis 14 vereinbart werden.

Nennmaßbereich
(größte Länge, Breite, Höhe
oder größter Durchmesser des Gussteils)
in mm
Anhaltswert für Zugabe je Fläche
in mm
bis 504–5
51–18006
181–31507
316–50008
501–80010
801–125012
1251–160014
1601–250016
2501–315018
3151–400020
4001–630025
6301–10.00030

Normung

  • Deutsche Norm Stahlguss für Druckbehälter DIN EN 10213; Januar 2008
  • Deutsche Norm Korrosionsbeständiger Stahlguß DIN EN 10283; Juni 2019
genaue Bezeichnung: DIN EN 10283 Korrosionsbeständiger Stahlguss; Deutsche Fassung EN 10283:2019 (2019-06)
Bezeichnung
KurznameWerkstoffnummer
Martensitische Sorten
GX12Cr121.4011
GX20Cr141.4027
GX7CrNiMo12-11.4008
GX4CrNi13-41.4317
GX4CrNiMo16-5-11.4405
GX4CrNiMo16-5-21.4411
GX5CrNiCu16-41.4525
Austenitische Sorten
GX2CrNi19-111.4309
GX5CrNi19-101.4308
GX5CrNiNb19-111.4552
GX2CrNiMo19-11-21.4409
GX5CrNiMo19-11-21.4408
GX5CrNiMoNb19-11-21.4581
GX4CrNiMo19-11-31.4443
GX5CrNiMo19-11-31.4412
GX2CrNiMoN17-13-41.4446
Vollaustenitische Sorten
GX2NiCrMo28-20-21.4458
GX4NiCrCuMo30-20-41.4527
GX2NiCrMoCu25-20-51.4584
GX2NiCrMoN25-20-51.4416
GX2NiCrMoCuN29-25-51.4587
GX2NiCrMoCuN25-20-61.4588
GX2NiCrMoCuN20-18-61.4557
Ferritisch-austenitische Sorten
GX4CrNiMoN26-5-21.4474
GX4CrNiN26-71.4347
GX2CrNiMoN22-5-31.4470
GX2CrNiMoN25-6-31.4468
GX2CrNiMoCuN25-6-3-31.4517
GX2CrNiMoN25-7-31.4417
GX2CrNiMoN26-7-41.4469
frühere nationale Ausgaben: DIN 17445
  • Deutsche Norm Stahlguss für allgemeine Anwendungen DIN EN 10293; Juni 2005
genaue Bezeichnung: DIN EN 10293 Stahlguss - Stahlguss für allgemeine Anwendungen; Deutsche Fassung EN 10293:2015 (2015-04)
Bezeichnung
KurznameWerkstoffnummer
GE2001.0420
GS2001.0449
GE2401.0446
GS2401.0455
GE2701.0454
GE3001.0558
GE3201.0591
GE3601.0597
G17Mn51.1131
G20Mn51.6220
G24Mn61.1118
G28Mn61.1165
G20Mo51.5419
G10MnMoV6-31.5410
G15CrMoV6-91.7710
G17CrMo5-51.7357
G17CrMo9-101.7379
G26CrMo41.7221
G34CrMo41.7230
G42CrMo41.7231
G30CrMoV6-41.7725
G35CrNiMo6-61.6579
G9Ni141.5638
GX9Ni51.5681
G20NiMoCr41.6750
G32NiCrMo8-5-41.6570
G17NiCrMo13-61.6781
G30NiCrMo141.6771
GX3CrNi13-41.6982
GX4CrNi13-41.4317
GX4CrNi16-41.4421
GX4CrNiMo1.4405
GX23CrMoV12-11.4931
Wärmebehandlung: Normalisieren oder Austenitisieren "+N", Normalisieren oder Austenitisieren und Anlassen "+NT", Vergüten "+QT", "+QT1", "+QT2", "+QT3"
frühere nationale Ausgaben unter: DIN 1681 Stahlguß für allgemeine Verwendungszwecke - Technische Lieferbedingungen (1985-06)
Stahlgußsorte
KurznameWerkstoffnummer
GS-381.0420
GS-451.0446
GS-521.0552
GS-601.0558
weitere unter: DIN 17182, DIN 17205
  • Deutsche Norm Hitzebeständiger Stahlguss DIN EN 10295; Januar 2003
  • Deutsche Norm Stahlguss für das Bauwesen DIN EN 10340; Januar 2008

Einzelnachweise

  1. Helmholtz-Forschungszentrum Dresden-Rossendorf (Memento vom 29. April 2013 im Webarchiv archive.today)

Auf dieser Seite verwendete Medien

WI-013c.jpg
Autor/Urheber: Wschmock, Lizenz: CC0
Stahlguss
RadCS.jpg
Autor/Urheber: Gussstahl 21:16, 9. Mai 2008 (CEST), Lizenz: CC BY-SA 3.0
Abguss Laufrad für Wasserturbine