Spirale

Die Kalkschale der Ammoniten ist annähernd nach Art einer logarithmischen Spirale aufgebaut

Eine Spirale oder Schneckenlinie ist eine Kurve, die um einen Punkt oder eine Achse verläuft und sich je nach Betrachterperspektive von diesem Zentrum entfernt oder sich ihm annähert.

Spirale oder Schraube

Die Spirale wird manchmal mit der Schraube (auch Wendel oder Helix genannt) verwechselt. Während die prototypische Spirale ein Gebilde in der Ebene ist, wie zum Beispiel die Rille einer Schallplatte oder die Arme einer Spiralgalaxie, ist sowohl die Schraube als auch der Wendelbohrer ein räumliches Gebilde entlang des Hofes eines Zylinders. Auch die Abgrenzung zu einem Wirbelrad ist letztlich unklar.

Ebene Spiralen

Beschreibungen

Archimedische Spirale

Man kann Spiralen mathematisch am besten als Koordinatengleichungen im ebenen Polarkoordinatensystem beschreiben, wobei als Funktion von dargestellt wird; läuft im Allgemeinen bis unendlich anstatt nur bis 2π. Auch negative Winkel sind möglich.

Polardarstellung einer Spirale:

In --Koordinaten werden dadurch Punkte mit der Parameterdarstellung

beschrieben.

Ersetzt man in der Polardarstellung durch , so wird die Spirale um den Winkel gedreht. (Eventuell muss der Definitionsbereich angepasst werden.)

Beispiele

Hyperbolische Spirale als Zentralprojektion einer Schraubenlinie

Die archimedische Spirale entsteht z. B. beim Aufwickeln eines gleichmäßig dicken Teppichs. Sie wird in der --Ebene durch eine Gerade beschrieben.

Die hyperbolische Spirale wird in der --Ebene durch eine Hyperbel beschrieben. Sie entsteht bei der Zentralprojektion einer Schraubenlinie auf eine zur Schraubachse senkrechte Ebene (siehe Bild). Man sieht sie z. B. beim senkrechten Blick durch eine Wendeltreppe (siehe hierzu Schraublinie (Darstellende Geometrie)). Sie ist auch das Bild einer archimedischen Spirale bei einer Kreisspiegelung (Inversion).

Die Fermatsche Spirale heißt auch parabolische Spirale, da ihre Polargleichung eine Parabel beschreibt.

Die Lituus-Spirale ist das Bild einer fermatschen Spirale bei einer Kreisspiegelung.

Die logarithmische Spirale entsteht z. B. beim Wachstum von Schneckenhäusern. Ihr Name rührt von der Auflösung ihrer Polargleichung nach her: .

Neben diesen Spiralen gibt es noch solche, die nicht in dieses Konzept passen:

  • Spirale des Theodorus. Sie ist keine glatte Kurve, sondern ein Polygon mit den Seitenlängen 1.
  • Klothoide (Cornu-Spirale). Sie besitzt zwei asymptotische Punkte.

Eigenschaften

Polarkoordinaten: Definition von Sektor (hellblau) und polarer Steigungswinkel ()
Polarer Steigungswinkel

Der Winkel , unter dem die Spiraltangente den zugehörigen Polarkreis schneidet, heißt polarer Steigungswinkel und die polare Steigung. Aus der Formel für den Tangentenvektor ergibt sich

Für eine Spirale mit der Gleichung ist die polare Steigung

Für die archimedische Spirale ist und damit

Für die logarithmische Spirale ist konstant.

Krümmung

Die Krümmung einer Kurve in Polardarstellung ist

Für eine Spirale mit der Gleichung ergibt sich

Z. B. ist für (archimedische Spirale) . Die Spirale hat also keinen Wendepunkt.

Die Krümmung einer logarithmischen Spirale ist

Sektorfläche

Die Fläche eines Kurvensektors einer Kurve in Polardarstellung ist

Für eine Spirale mit der Gleichung ergibt sich

Die Sektorfläche einer logarithmischen Spirale ist

Bogenlänge

Die Länge eines Bogens einer Kurve in Polardarstellung ist

Für eine Spirale mit der Gleichung ergibt sich

Diese Integrale sind nicht mehr für alle geschlossen lösbar. Im Fall der fermatschen Spirale ergibt sich ein elliptisches Integral.

Die Bogenlänge einer logarithmischen Spirale ist

Beschränkte Spiralen

Beschränkte Spiralen:
(links),
(rechts)

Die Funktion einer Spirale ist üblicherweise eine streng monotone, stetige Funktion und unbeschränkt. In den Standardbeispielen ist eine Potenzfunktion oder eine Exponentialfunktion. Man kann allerdings für auch eine beschränkte streng monotone Funktion wählen und erhält damit dann eine beschränkte Spirale. Eine hierfür geeignete Funktion ist der Arkustangens:

Beispiel 1

Setzt man und wählt , erhält man eine Spirale, die im Ursprung beginnt (wie die archimedische Spirale) und sich dem Kreis mit Radius annähert (im Bild links).

Beispiel 2

Setzt man und wählt , erhält man eine Spirale, die sich dem Ursprung nähert (wie die hyperbolische Spirale) und sich dem Kreis mit Radius annähert (im Bild rechts).

Räumliche Spiralen

Konische Spirale mit archimedischer Spirale als Grundriss

Konische Spiralen

Ist in der --Ebene durch die Parameterdarstellung

eine ebene Spirale gegeben, so kann man eine dritte Koordinate so anfügen, dass die dadurch entstehende räumliche Kurve auf dem senkrechten Kreiskegel mit der Gleichung liegt:

Spiralen dieser Art nennt man konische Spiralen.[1] Sie waren auch schon Pappos bekannt.

Beispiel

Geht man von einer archimedischen Spirale aus, erhält man die konische Spirale (siehe Bild)

In diesem Fall kann man die konische Spirale auch als Schnittkurve eines Kegels und einer Wendelfläche auffassen.

Kugelspirale mit

Kugelspiralen

Stellt man eine Kugel mit Radius in Kugelkoordinaten dar:

und gibt eine lineare Abhängigkeit der Winkel vor, so erhält man eine Kugelspirale[2] mit der Parameterdarstellung

Auch Kugelspiralen wurden schon von Pappus untersucht. Sie sind spezielle Clelia-Kurven.

Lässt man also zu, erhält man eine vivianische Kurve.

Man beachte: Eine Loxodrome ist keine Kugelspirale in dem hier erklärten Sinne.

In der Kunst

Anders als in der Natur und in den meisten geometrischen Konstrukten kommen in der Kunst auch ein- und auswärts gewendete Doppelspiralen vor.

Vorgeschichte und Antike

Newgrange – Stein am Eingang.
In der linken Bildhälfte deutet sich bereits eine Triplespirale (Triskele) an.
Mit Spiralen dekorierte Vase aus der ägyptischen Naqada-II-Zeit

Spiralen tauchen bereits in vor- und frühgeschichtlicher Zeit als häufiges Ornamentmotiv auf Stein und Keramik auf. Beispiele finden sich in der Bandkeramik der Jungsteinzeit, aber auch in den frühen Hochkulturen Ägyptens, Kretas und Chinas. In Europa sind Spiralmotive von den Megalithkulturen über die Bronzezeit bis zur frühen Eisenzeit sowie bei den Kelten und Germanen verbreitet und erscheinen auch auf iberischer Keramik.

Spiralen vermitteln eine Vorstellung von Unendlichkeit, sie können aber auch unheilabwehrend (apotropäisch) gemeint sein oder sogar als Stammeszeichen fungieren.[3]

Tripel- und Mehrfachspiralen

Tripelspirale als vorzeitliches Motiv (Triskele) oder Celtic Triskele

In der Kirche von Vallstena wurde ein gotländischer Bildstein gefunden, dessen Mittelteil mit einem vierfachen Spiralornament verziert ist. Das Zeichen, das als Tripelspirale wesentlich älter ist und ansatzweise im Passage tomb von Newgrange in Irland vorkommt, ist auf Gotland als 4-, 6- und 7-fache Kombination anzutreffen. Auch stilisierte Tierköpfe sowie realistischere Bilder von Menschen und Tieren sind bisweilen mit diesem geometrischen Motiv vereint. Es handelt sich bei der Spirale, ebenso wie beim Wirbelrad, vermutlich um ein Sonnensymbol oder die Darstellung einer Göttervielheit. Farbe unterstützte das flache, aber fein gehauene Ornament und hob die Darstellung hervor. Das Spiralmotiv kommt in verschiedener Form und Komposition auf den älteren Steinen, die zwischen 400 und 600 n. Chr. entstanden, vor. Spiralmotive tauchen aber sowohl früher als auch später in verschiedenen Fundzusammenhängen auf. Auf den Britischen Inseln sind sie um Christi Geburt verbreitet, und in der mehrere Jahrhunderte jüngeren spätkeltischen Kunst können sie in frühchristlichen Handschriften studiert werden. Diese Kunst steht den Bildsteinen zeitlich näher; es ist daher vermutet worden, dass ein gewisser Zusammenhang besteht.

Spiralmotive im Mittelalter

In der europäischen Kunst des Mittelalters (Romanik und Gotik) sind Spiralmotive eher selten anzutreffen, obwohl – vor allem im gotischen Maßwerk – geometrische Spiele (ludi geometrici) häufig waren und in der Spätgotik auch zu zentrierten und gezogenen Dreipassformen führten, die Erinnerungen an ältere Spiralmotive wachrufen. Dagegen nehmen Labyrinthe, Flechtbänder, Rankenwerk und andere gewundene, aber sehr oft auch – anders als bei den Spiralen – sich überschneidende Dekormotive an Zahl zu. Im Tympanonfeld der Kirche von Bembrive (Provinz Pontevedra, Spanien) sind drei Spiralen zu sehen; die Stirnseite des inneren Portalbogens der Kirche von San Pedro de Gaíllos (Provinz Segovia, Spanien) zeigt – neben Rosetten und Wirbeln – auch kleine Spiralen. An mittelalterlichen Tür- und Truhenbeschlägen findet man sie häufiger – dort entwickeln sie sich jedoch aus geraden Bändern.

Renaissance, Barock, Jugendstil

In der Renaissance fand die Spirale Einzug in die Arabeske und Groteske, in der Architektur ist sie in der Volute sowie im Rollwerk und im Manierismus in der charakteristischen figura serpentinata anzutreffen.[3] Späte Höhepunkte erleben Spiralen in den Voluten der Barockzeit und im Jugendstil (z. B. bei Gustav Klimt).

Friedensreich Hundertwasser verwendete in seinem eigenen Kunststil die Spirale als Symbol von Geburt und Tod gleichermaßen und liebte sie, da sie der geraden Linie entgegenwirkte.

Sozialwissenschaften

In der Demoskopie wurde die MetapherSchweigespirale“ von Elisabeth Noelle-Neumann benutzt, um ein bestimmtes gegenseitiges sich Aufschaukeln von sozialen Reaktionen zu erklären und zugleich zu bekämpfen: In der öffentlichen Meinung würden gewisse Minderheitenstandpunkte so nachdrücklich vertreten, dass die Mehrheit zögere, sich überhaupt zu äußern, darauf würde die Minderheit immer diktatorischer und die Mehrheit immer stummer usw. Empirisch ist dieser Zusammenhang sehr schwer zu überprüfen.

Allgemein wird bei jedem Mechanismus, der eine Eskalation des Zustandes bewirkt, von einer Spirale gesprochen, etwa „Spirale der Gewalt“. In der Systemwissenschaft zeigen harmonische Oszillatoren, die exponentiell anwachsen (eskalieren), logarithmische Spiralen in ihren Phasenraumdiagrammen (Eskalationsspiralen). Daher ist dieser Begriff mathematisch korrekter als der synonym gebrauchte Begriff „Teufelskreis“, der keine Eskalation der Zustände beinhaltet.

In der Natur

Viele Pflanzen und manche Tiere weisen in ihrem Bauplan spiralige Strukturen auf wie zum Beispiel das Schneckenhaus.[4] Fossile Beispiele sind die Ammoniten. Die „Anordnung“ dieser biologisch erzeugten Spiralen, die meistens auf logarithmischen Spiralen beruhen, erfolgt wiederum in den allermeisten Fällen als Fibonacci-Folge.

Weiters – oft dreidimensional verbunden mit Chiralität:

  • Hörschnecke (lateinisch Cochlea) des Gehörorgans im Innenohr von Säugetieren
  • Das Horn mancher Arten von Schafen

In der Physik vollführt ein elektrisch geladenes Teilchen, das sich in einem Magnetfeld bewegt, eine Spiralbahn. Voraussetzung ist, dass sich das Teilchen nicht parallel, antiparallel oder quer zur Nord-Süd-Ausrichtung des Magnetfeldes bewegt. Die Kraft, die das Teilchen auf eine spiralförmige Bahn zwingt, heißt Lorentzkraft. Streng genommen ist diese Flugbahn aber eine Schraubenlinie. Bei der Bewegung parallel oder antiparallel zur Nord-Süd-Ausrichtung des Magnetfeldes entsteht eine gerade Flugbahn, und bei der Bewegung quer zur Nord-Süd-Ausrichtung des Magnetfeldes entsteht eine Kreisbahn. Wenn ein elektrisch geladenes Teilchen auf einer solchen Kreisbahn Energie durch elektromagnetische Strahlung abgibt, dann bewegt es sich auf einer immer enger werdenden Spiralbahn. Die schraubenförmige Flugbahn des elektrisch geladenen Teilchens ist eine Überlagerung einer geraden Flugbahn, und einer Kreisbahn. Bei Energieverlusten durch elektromagnetische Strahlung, und auch in inhomogenen Magnetfeldern, entstehen konische Spiralen aus der Überlagerung von Schraube und Spirale.

Commons: Spiralen und Schrauben – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Siegmund Günther, Anton Edler von Braunmühl, Heinrich Wieleitner: Geschichte der Mathematik. G. J. Göschen, 1921, S. 92.
  2. Kuno Fladt: Analytische Geometrie spezieller Flächen und Raumkurven. Springer-Verlag, 2013, ISBN 978-3-322-85365-3, S. 132.
  3. a b Wolf Stadler u. a.: Lexikon der Kunst 11. Sem – Tot. Karl Müller Verlag, Erlangen 1994, ISBN 3-86070-452-4, S. 113.
  4. Henri Brunner: Rechts oder links – in der Natur und anderswo. Wiley-VCH, Weinheim 1999, ISBN 3-527-29974-2, S. 45–65.

Auf dieser Seite verwendete Medien

Goldener Schnitt Bluetenstand Sonnenblume.jpg
Autor/Urheber: Dr. Helmut Haß, Koblenz, Lizenz: CC BY-SA 3.0
Blütenstand einer Sonnenblume mit 34 und 55 Fibonacci-Spiralen.

Mit freundlicher Genehmigung von Doris Haß

Spiralen eingezeichnet von Wolfgang Beyer
Navata1.JPG
portada de l'esgèsia vella de can Miró
SanPedroDeGaíllos20120909183100P1160309.jpg
Autor/Urheber: Rowanwindwhistler, Lizenz: CC BY-SA 3.0
Iglesia de San Pedro, San Pedro de Gaíllos, Segovia.
Lituus.svg
(c) Sakurambo in der Wikipedia auf Englisch, CC BY-SA 3.0
Created in en:Adobe Illustrator based on en:media:lituus.ps A lituus is a spiral in which the angle is inversely proportional to the square of the radius (as expressed in polar coordinates). Supersedes en:Image:Lituus.png.
Newgrange Entrance Stone.jpg
Autor/Urheber: en:User:Nomadtales, Lizenz: CC BY-SA 3.0
The entrance slab to Newgrange tomb, Ireland. This Irish megalithic stone, about 4500-5500 years old, is 10 feet by 4 feet in size and 5 tons in weight. It is one of the most famous rocks in Ireland and stands--about an hour from Dublin--at the entrance to Newgrange, a “passage tomb” 300 ft. in diameter and 40 ft. high that is older than the Egyptian pyramids and Stonehenge. The carved spiral design, though more ancient than the coming of the Celts to Ireland, was often copied by them and became one of the legendary Celtic designs.
Mplwp Euler spiral.svg
Autor/Urheber: Geek3, Lizenz: CC BY 3.0
Plot of the Euler spiral, Cornu spiral or clothoid:
KUGSPI-9 Loxodrome.gif
Autor/Urheber: German Wikipedia User Karl Bednarik, Lizenz: CC BY-SA 3.0
Ein Loxodrom hat im Gegensatz zur archimedischen Kugelspirale einen konstanten Winkel zwischen den Längengraden und den Breitengraden, der hier das Verhältnis von 10 Länge zu 1 Breite hat.
Igrexa de Santiago de Bembrive, Vigo.jpg
Autor/Urheber: Lansbricae, Lizenz: CC BY-SA 2.0
Igrexa de Santiago de Bembrive, Vigo
Archimedean spiral.svg
Autor/Urheber: AdiJapan, Lizenz: CC BY-SA 2.5

Three 360° turns of a one-arm Archimedean spiral. The spiral is drawn as a series of minimum-error Bézier segments, one for each 45° section of the spiral (24 segments in all).

  • 0°: 0px
  • 45°: 12,5px
  • 90°: 25px
  • 135°: 37,5px
  • 180°: 50px
  • 225°: 62,5px
  • 270°: 75px
  • 315°: 87,5px
  • 360°: 100px
Kugel-spirale-1-2.svg
Autor/Urheber: Ag2gaeh, Lizenz: CC BY-SA 4.0
Kugelspirale
Vase Nagada II Musée de Laon 070908.jpg
Vase à décor d'ondulations et de spirales, Egypte prédynastique, période de Nagada II. Musée de Laon.
Spiral of Theodorus.svg
(c) Pbroks13 in der Wikipedia auf Englisch, CC BY-SA 3.0
The spiral of Theodorus up to
Schraublinie-hyp-spirale.svg
Autor/Urheber: Ag2gaeh, Lizenz: CC BY-SA 4.0
Hyperbolische Spirale als Zentralprojektion einer Schraublinie
Logarithmic spiral.png
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0
Spiral-cone-arch-s.svg
Autor/Urheber: Ag2gaeh, Lizenz: CC BY-SA 4.0
konische Spirale mit arcimedischer Spirale als Grundriss
Farnblatt.jpg
Autor/Urheber: Frank Krämer, Lizenz: Copyrighted free use
Junges Farnblatt
Triple-Triple-Spiral-triskelion.svg
A triskelion of three three-fold spirals, which is "wheeled" (enclosed within overall spirals); for simpler versions, see Image:Triple-Triple-Spiral-Trisk-simpler.svg and Image:Triple-Triple-Spiral-Trisk-simple.svg . This is an ornate version of the Triple-spiral symbol. For a basic version of the Triple-spiral symbol, and links to further variants, see Image:Triple-Spiral-Symbol.svg .
Զվարթնոցի տաճար68.JPG
Autor/Urheber: Vahag851, Lizenz: CC BY-SA 3.0
Dieses Bild zeigt das Denkmal in Armenien mit der Nummer
Franchesse (03) Église Saint-Étienne 10.JPG
Autor/Urheber: GO69, Lizenz: CC BY-SA 3.0
Dieses Gebäude ist in der Base Mérimée, einer Datenbank des französischen Kulturministeriums über das architektonische Erbe Frankreichs, aufgeführt, unter der Angabe PA00093105 .
KUGSPI-5 Archimedische Kugelspirale.gif
Autor/Urheber: Der ursprünglich hochladende Benutzer war Karl Bednarik in der Wikipedia auf Deutsch, Lizenz: CC BY-SA 3.0
Archimedische Kugelspirale
    • Bei einer archimedischen Spirale vergrößert sich der Abstand zum Mittelpunkt linear zum anwachsenden Winkel ihres Umlaufes.
    • Auf einer Kugeloberfläche wird dieser Abstand als der Winkelabstand von einem ihrer Pole gemessen.
    • Daher ist die Archimedische Kugelspirale eine Linie von endlicher Länge, und nicht mit der Loxodrome identisch.
    • Gezeichnet am 8. August 2004
    • mit GW-BASIC
    • Benutzer:Karl Bednarik
  • Andere Versionen:
    • keine
  • Copyright Status:
  • Externer Link:
http://members.chello.at/karl.bednarik/KUGSPI-5.gif
Spiral-arctan-1-2.svg
Autor/Urheber: Ag2gaeh, Lizenz: CC BY-SA 4.0
beschränkte Spiralen: (links), (rechts)
Schneckenhaus 24 6 2007.JPG
Autor/Urheber: Hedwig Storch, Lizenz: CC BY-SA 3.0
Schneckenhaus
Sektor-steigung-pk-def.svg
Autor/Urheber: Ag2gaeh, Lizenz: CC BY-SA 4.0
Polarkoordinaten: Definition von Sektor und polare Steigung
Pany i porta de Santa Justa i Santa Rufina.JPG
Autor/Urheber: Jordiipa (talk), Lizenz: CC BY-SA 3.0
Església de Santa Justa i Santa Rufina (Prats de Molló i la Presta)
Fermat's spiral.png
Fermat's spiral
Ammonite Asteroceras.jpg
Autor/Urheber: Dlloyd, Lizenz: CC BY-SA 3.0
Fotografie eines Amonits der Art Asteroceras obtusum, gefunden in Dorset, England
Hyperspiral.png
Autor/Urheber: unknown, Lizenz: CC BY-SA 3.0