Aufklärungssatellit

KH-4B Corona – optischer Aufklärungssatellit
Vermutlich ein „Lacrosse“-Radar-Aufklärungssatellit im Bau
Aufnahme des Pentagon mittels des Satelliten Keyhole (1967)
Flughafen Moskau-Domodedowo, aufgenommen von Bord des Spionagesatelliten KH-9-Hexagon, 150fache Vergrößerung der Fotoaufnahme (1979)

Ein Aufklärungssatellit ist ein Satellit im Weltall, der mit hochauflösenden optischen Kameras, Radar oder anderer Sensorik ausgestattet ist, um die Erdoberfläche zu beobachten[1] oder Kommunikation im Radiobereich mitzuhören.

Zweck

Aufklärungssatelliten sind Erdbeobachtungssatelliten, die primär zu militärischen Zwecken verwendet werden. Die gewonnenen Bilder und Daten werden ausgewertet, um Informationen über die Streitkräfte fremder Staaten wie etwa Truppenbewegungen, Truppenstärke, Kampfhandlungen oder Ähnliches zu gewinnen. Außerdem lassen sich Naturkatastrophen und zivile Unglücke mithilfe dieser Satelliten beobachten.

Um eine möglichst hohe Auflösung des Zielgebietes zu erhalten, werden Aufklärungssatelliten zur Beobachtung in einen niederen Orbit abgesenkt und später wieder angehoben. Dieses Vorgehen ist sehr teuer und beschränkt die chemisch angetriebenen Satelliten stark in ihrer Lebensdauer. Es begründet jedoch in der Hauptsache den Qualitätsunterschied zu zivilen Erdbeobachtungssatelliten, deren Produkte teilweise auf dem freien Markt erhältlich sind.

Auflösungsvermögen

Das Auflösungsvermögen eines Satelliten bezeichnet die Distanz zweier Punkte voneinander (in gegebenem Abstand vom Satelliten), bei der sie vom Satelliten gerade noch als getrennte Punkte erkannt werden können. Die Begrenzung der Auflösung beruht auf der Interferenz zwischen den von den einzelnen Punkten ausgehenden Lichtwellen. Auch wenn das Auflösungsvermögen militärischer Aufklärungssatelliten geheim gehalten wird, kann man zumindest einige Näherungswerte berechnen. Wichtigster Punkt ist der Öffnungs- oder Hauptspiegeldurchmesser, der sich unter anderem aus der Nutzlastverkleidung der Trägerrakete ableiten lässt. Durch die Diffraktion des Hauptspiegels der Optik ist die Auflösung physikalisch begrenzt. In den Jahren 1994 und 1995 gestartete US-amerikanische Aufklärungssatelliten verwenden dazu Parabolantennen mit 150 cm Durchmesser.[2]

Die folgende Formel[3] berechnet das theoretisch mögliche Auflösungsvermögen der Satellitenoptik:

Auflösungsberechnungen am Beispiel des Satelliten KH-11
Wellenlänge des sichtbaren Lichts: 5,5 · 10−5 cm.
Spiegeldurchmesser des KH-11 (nach Jeffrey Richelson): 234,0 cm
Perigäumshöhe: ~ 300 km = 3 · 107 cm.
→ Auflösung: 8,6 cm aus 300 km Höhe

Bei einem angenommenen Spiegeldurchmesser von 4 m (Annahme für gegenwärtig maximal mögliche Spiegeldurchmesser) liegt die Auflösung bei ca. 5 cm. Durch atmosphärische Störeffekte verschlechtert sich die Auflösung gegenüber dem berechneten Wert.

Störungen und weitere Begrenzungen ergaben und ergeben sich aus folgenden Parametern:

  • Korngröße der Fotoemulsion im Zusammenhang mit der Belichtungszeit
  • atmosphärische Turbulenzen, Dunst und Wolken
  • Pixelgröße, Belichtungszeit und damit verbunden das Rauschen elektronischer Bildsensoren.

Obwohl längere Wellenlängen nach obiger Formel zu einer geringeren Auflösung führen, nutzt man das Nahe und Mittlere Infrarot, um atmosphärische Streuung zu verringern und um mittels Thermografie Wärmequellen zu finden. Das können Atomexplosionen, die Flammen von Raketenstarts, Fahrzeuge oder auch im Boden verborgene, Wärme entwickelnde Anlagen sein.

Auch Radaraufnahmen der Erdoberfläche werden seit mindestens 1978 zur militärischen Aufklärung genutzt. Damit hergestellte dreidimensionale Profile der Erdoberfläche und deren Veränderung bzw. Vermessung mit Auflösungen im Millimeterbereich geben Aufschluss über unterirdische Vorgänge. So konnte ein unterirdischer Atomtest Nordkoreas vom 3. September 2017 im Nachhinein anhand der mit den Radar-Satelliten TerraSAR-X und ALOS-2 beobachteten Geländeveränderungen analysiert werden: ein nahegelegener Berg war breiter und um 20 Zoll (0,5 m) niedriger geworden.[4]

Übersicht

US-Spionage­satelliten­typen seit 1959
Übersicht einzelner Spionagesatelliten (nicht vollständig)
NameLandSensorik
LacrosseUSARadar (Funk)
SAR-LupeDeutschlandRadar
Helios 1 und 2Frankreichoptisch (sichtbare und Wärmestrahlung)
Keyhole (KH)USAoptisch
Ofeq 3, 4, 5 und 6Israeloptisch (sichtbar und UV-Strahlung)
ORS-1USAoptisch (Wärme)
VelaUSAEM-Strahlung (Gamma-, Röntgen- und Neutronenstrahlung)
IGSJapanoptisch und Radar
KOMPSAT-3,
KOMPSAT-3A,
KOMPSAT-5
Südkoreaoptisch und Radar
RORSATSowjetunionRadar

Literatur

  • William E. Burrows: Deep black – space espionage and national security. Random House, New York 1986, ISBN 0-394-54124-3.
  • Pat Norris: Spies in the Sky – Surveillance Satellites in War and Peace. Springer, New York 2007, ISBN 978-0-387-71672-5.
  • Josef Gerner: Information aus dem Weltraum - die neue Dimension des Gefechts. Mittler, Herford 1990, ISBN 3-8132-0336-0.
  • Thomas Graham, Keith A. Hansen: Spy satellites - and other intelligence technologies that changed history. Univ. of Washington Press, Seattle 2007, ISBN 978-0-295-98686-9.

Weblinks

Einzelnachweise

  1. Rainer Paul: Rüstung: Tandem der Himmelsspäher. In: Der Spiegel. Nr. 42, 1997 (online).
  2. Anatol Johansen Riesige Lauscher am Himmel. In: Die Zeit, Nr. 31/1995
  3. Ted Molczan: Keyhole Resolution.
  4. Robert Sanders: Radar reveals details of mountain collapse after North Korea’s most recent nuclear test, Berkeley News, 10. Mai 2018, abgerufen am 25. Nov. 2021

Auf dieser Seite verwendete Medien

U.S. RecSat Big Picture.jpg
Autor/Urheber: Giuseppe De Chiara 1968, Lizenz: CC BY-SA 3.0
The complete list of U.S. Reconeissance Satellite from 1960 to current days
Kubinka3.jpg
Aerial view of Domodedovo airport near Moscow, taken by KH-9 spy satellite. Misidentified as Kubinka airfield on original document.
Corona pentagon.jpg
Corona image of the Pentagon, 25 Sep 1967