Spiegelteleskop

Aufbau des ELT, dessen Hauptspiegel einen Durchmesser von 39 m aufweist, Fertigstellung 2025 geplant

Spiegelteleskope sind optische Teleskope, die als Objektiv einen Hohlspiegel besitzen, statt Linsen wie Fernrohre. Die meisten Bauformen verwenden neben diesem Hauptspiegel noch weitere optische Elemente wie Linsen, Umlenk- oder Fangspiegel.

Spiegelteleskope werden in der beobachtenden Astronomie eingesetzt – sowohl visuell als auch fotografisch oder für die Spektroskopie. Sie eignen sich neben Beobachtungen im Bereich des sichtbaren Lichts für einen weiten Bereich des elektromagnetischen Spektrums, vom Ultraviolett[1] bis zum fernen Infrarot.

Auf großen Sternwarten werden Spiegelteleskope mit Durchmessern von etwa 2 bis 10 Meter verwendet, auf Forschungssatelliten von 0,5 bis 3 Meter. In Planung sind ein 40-Meter-Teleskop der ESO (ELT) und Weltraumteleskope bis 6 Meter. Unter den Schul- und Amateurteleskopen sind Spiegelfernrohre die häufigste Bauart, weil sie gegenüber Linsenfernrohren leichter und billiger sind. Sie haben meist Spiegeldurchmesser von 10 bis 30 cm, beim eigenen Spiegelschleifen manchmal auch darüber.

Geschichte des Spiegelteleskops

Bereits im 13. Jahrhundert war die vergrößernde Wirkung konkaver Spiegel bekannt[2] und Leonardo da Vinci beschrieb 1512 deren Verwendung zur Beobachtung des Sternenhimmels.[3][4] Aber erst 1616, acht Jahre nach der Erfindung des Linsenfernrohrs, baute der Jesuitenpater Nicolaus Zucchius das erste Spiegelteleskop. Es bestand aus einem leicht gekippten Hohlspiegel und einer Zerstreuungslinse, die das Okular bildete und seitlich angeordnet war, damit der Beobachter den Lichteinfall zum Hohlspiegel nicht verdeckt. Wegen der Spiegelkippung hatte das Teleskop jedoch starke Abbildungsfehler.[4]

Ein Spiegelteleskop der Firma Carl Zeiss AG (Spiegeldurchmesser 40 cm) wurde 1905 in der Universitäts-Sternwarte in Innsbruck aufgestellt. Im Video erklärt Astronomin Konstanze Zwintz Details.

Von den anfangs aus Glas geschliffenen Spiegeln ging man mit größer werdenden Durchmessern bald auf Metallspiegel über, in deren Schlifftechnik es besonders James Short und Wilhelm Herschel zur Meisterschaft brachten. Sie dominierten bis etwa 1900, als bessere Methoden des Glasgusses entwickelt wurden.

Gregory-, Cassegrain- und Newton-Teleskop

Strahlengang im Cassegrain-Teleskop

In den folgenden Jahren beschäftigten sich unter anderen der Bolognese Cesare Caravaggi[5][6] sowie die Mathematiker Bonaventura Cavalieri[7] (1632), Marin Mersenne[8] (1636) und James Gregory[9] (1663) mit verschiedenen Bauformen zur Konstruktion eines Spiegelteleskops. Die beste Lösung gelang 1672 dem französischen Priester Laurent Cassegrain,[10] die bis heute als Cassegrain-Teleskop verwendet wird.

Nachbildung des Teleskops von Isaac Newton, 1672; der Spiegel hatte einen Durchmesser von 5 cm.
Illustration von der Rezension im Construction d’un telescope par reflexion, de mr. Newton, ayant seize pouces de longueur … (Acta eruditorum, 1741)

In den Jahren 1668–1672 entwickelte Isaac Newton ein Teleskop, das mittels eines Hilfsspiegels den Nachteil des gekippten Hauptspiegels vermied, und führte es der Öffentlichkeit vor.[11][12] In der optischen Achse des Hauptspiegels brachte er einen planen Umlenkspiegel an, über den der Beobachter seitlich in das Instrument hineinblicken konnte. Diese Bauart bildete wegen ihres einfachen Aufbaus den Prototyp vieler folgender Teleskope, wobei unter den Gelehrten eine europaweite Diskussion über die Vor- und Nachteile der verschiedenen Systeme stattfand.[4]

Spiegelteleskop „Leviathan“ von 1860; der Metallspiegel hatte einen Durchmesser von 1,83 m.

Parabolische Hauptspiegel ergeben im Gegensatz zu sphärisch geformten Hauptspiegeln ein fehlerfreies Bild, wie bereits Gregory postulierte. 1721 gelang es den Brüdern John, Henry und George Hadley, den ungleich schwieriger zu fertigenden parabolischen Hauptspiegel herzustellen.[13] Auf dieser Grundlage wurden in den nachfolgenden 150 Jahren immer größere Teleskope gebaut, bis hin zu dem 183 cm durchmessenden Leviathan.

Spiegelmaterial, Schliff und Korrekturoptik

Die Hauptspiegel wurden bis Mitte des 19. Jahrhunderts aus Spiegelmetall gefertigt. Das hatte neben einem Reflexionsvermögen von anfänglich ca. 60 %[14] den Nachteil, dass das Metall mit der Zeit korrodierte, was regelmäßiges Polieren notwendig machte, wodurch die parabolische Form litt und aufwendig wiederhergestellt werden musste. Mit einem Verfahren von Justus Liebig, einen dünnen Silberfilm auf Glas abzuscheiden, entwickelten Léon Foucault und Carl August von Steinheil Spiegel aus Glas mit einer Reflexionsschicht aus Silber, die ein deutlich höheres Reflexionsvermögen besaß und sich leicht erneuern ließ. Foucault entwickelte des Weiteren ein vereinfachtes Verfahren zur Prüfung der Spiegelform, welches die Herstellung der Spiegel deutlich erleichterte.

1905 publizierte Karl Schwarzschild seine Arbeit über Abbildungsfehler höherer Ordnung in Mehrspiegelsystemen und legte damit die Grundlage zu komafreien, aplanatischen Mehrspiegeloptiken. Diese wurden von George Willis Ritchey und Henri Chrétien in dem nach ihnen benannten Ritchey-Chrétien-Teleskop in Cassegrain-Anordnung umgesetzt[15], das nicht nur scharfe Bilder im Zentrum, sondern auch Beobachtungen mit größerem Bildwinkel ermöglicht. Da man sich allerdings zunächst nicht an die schwierig herzustellenden, asphärischen Spiegel des Ritchey-Chrétien-Teleskops bei Großteleskopen wagte, setzte sich diese Konstruktion erst ab den 1960er Jahren durch. Weitere Konstruktionen, die einen teilweise sehr großen Bildwinkel ermöglichten, wurden gefunden: So etwa die von Bernhard Schmidt um 1930 entwickelte Schmidt-Kamera, bei der eine große Korrekturlinse vor dem Spiegel saß. Ende der 1930er entwarf Frank E. Ross für das 2,5-m-Hooker-Teleskop eine Korrekturoptik nahe dem Brennpunkt, die deshalb im Vergleich zum Hauptspiegel deutlich kleiner gebaut war und sich somit auch für größere Spiegeldurchmesser eignete. Diese Konstruktion wurde von Charles G. Wynne weiter verbessert und findet sich, teilweise in abgewandelter Form, auch in vielen modernen Teleskopen.

Selentschuk: 6-m-Primärspiegel (rechts unten) in offener, azimutaler Montierung

Moderne Großteleskope

Das Prinzip der aus massiven Glasspiegeln gebauten und parallaktisch montierten Teleskope wurde bis zu einem Spiegeldurchmesser von 5 m (Mount Palomar 1948) erfolgreich beibehalten (siehe auch Hale-Teleskop). Der 1975 am Selentschuk-Observatorium installierte Sechs-Meter-Spiegel BTA-6 zeigte jedoch die Grenzen. Der 42 Tonnen schwere Glasspiegel hatte interne Spannungen und zeigte nach einiger Zeit einen Riss. Um diese Limitierung zu überschreiten, musste der Spiegel dünner und leichter werden. In den 1980er Jahren wurden Verfahren entwickelt, wie man große dünne Glasspiegel auf einem rotierenden Ofen, der direkt die Parabelform erzeugt, und mit stützenden Hohlstrukturen, meist in Wabenform, herstellen konnte.[16] Mit dieser Technik wurden monolithische Spiegel bis zu 8 m Durchmesser hergestellt wie z. B. für das Very Large Telescope (VLT), das Giant Binocular Telescope (GBT) und viele mehr.

Um zu noch größeren Spiegeldurchmessern vorzudringen, muss der Spiegel aus einzelnen Segmenten zusammengesetzt werden. Voraussetzung dafür sind extrem präzise Halterungen der Spiegel, die die Segmente auf Bruchteile der Lichtwellenlänge zueinander ausrichten bzw. die Verformung der dünnen Spiegel mit der gleichen Genauigkeit verhindern. Wegen der dafür notwendigen aktiven Elemente in der Halterung werden solche Systeme auch als aktive Optik bezeichnet. Mit diesen Techniken gelang es bisher, Teleskope bis etwa zehn Meter Spiegeldurchmesser herzustellen, siehe Keck-Observatoriummit 10 m Spiegeldurchmesser. Im Bau befindet sich momentan (Stand 2024) das Extremely Large Telescope (ELT) mit 39 m Spiegeldurchmesser. Mehrere weitere Teleskope der 30 m-Klasse sind in Planung oder bereits im Bau wie z. B. das Thirty Meter Telescope (TMT) oder das Giant Magellan Telescope (GMT).

In einer anderen Beziehung war das BTA-6 jedoch richtungsweisend. Wegen des hohen Gewichtes war eine parallaktische Montierung des Teleskops nicht mehr sinnvoll, stattdessen wurde eine mechanisch einfachere azimutale Montierung gewählt. Die zur Ausrichtung und Nachführung des Teleskops auf die betrachtete Himmelsregion erforderliche synchrone Steuerung über mehrere Achsen wurde durch Fortschritte in der Computertechnik möglich. Nachteilig ist die resultierende langsame Drehung des Bildfeldes, die durch einen hochpräzisen, motorisch per Computersteuerung angetrieneben Bildfeld-Derotator ausgeglichen werden muss. Die computergesteuerte Ausrichtung und Bewegung des Fernrohrs in 2 oder 3 Achsen wurde im Folgenden bei allen Großteleskopen übernommen und ist heutzutage auch für kleinere Amateurteleskope als sog. GoTo-Steuerung verfügbar.

Neben diesen häufig verwendeten Bauweisen wurden weitere Konstruktionen für Sonderzwecke entwickelt, beispielsweise:

  • die Schmidt-Kamera und die Baker-Nunn-Kamera, um einen möglichst großen Himmelsbereich beobachten zu können;
  • das Hubble-Weltraumteleskop, für Beobachtungen ungestört von der Atmosphäre.
  • Für Spektrometrie werden Großteleskope (Hobby-Eberly-Teleskop, Southern African Large Telescope) wieder mit sphärischem Hauptspiegel ausgestattet, der sich zudem nur um eine Achse drehen lässt und segmentiert ist. Das erlaubt eine sehr kostengünstige Errichtung, bzw. bei gegebenem Budget eine größere Spiegelfläche zu erzielen. Die Abbildungsfehler werden hier durch weitere, aber deutlich kleinere und günstigere Spiegel ausgeglichen.

Bestandteile

Optische Elemente

Der segmentierte Hauptspiegel des Southern African Large Telescope
Flüssiger Spiegel aus Quecksilber (Large Zenith Telescope mit 6 m Durchmesser)

Ein Spiegelteleskop besteht im Wesentlichen aus einem Hauptspiegel und einem im selben Tubus montierten Fangspiegel (Ausnahme Schiefspiegler), die auch Primär- und Sekundär-Spiegel genannt werden. Im Gegensatz zum Objektiv eines Fernrohrs wird das einfallende Licht nicht gebrochen, sondern vom Hauptspiegel reflektiert, dadurch werden Farbfehler vermieden. Da das Licht den Spiegel im Gegensatz zu einer Linse nicht durchdringt, kann man den Hauptspiegel mit geeigneten Mechaniken abstützen und daher in fast beliebiger Größe ausführen. In der wissenschaftlichen Astronomie nähern sich die aktuellen Hauptspiegeldurchmesser mittlerweile der Zehn-Meter-Marke. Bei Glaslinsen gibt es aufgrund der Gewichtsverhältnisse und der daraus resultierenden Durchbiegung der Linse eine Obergrenze von 1,2 Metern.

Statt eines konventionellen Spiegels kann auch ein flüssiger Spiegel aus Quecksilber verwendet werden. Ein solcher ist im Vergleich zu festen Spiegeln sehr preisgünstig und es werden bereits Durchmesser von bis zu 6 Metern erreicht (siehe Large Zenith Telescope).

Der Hauptspiegel ist zumeist annähernd parabolisch geformt. Er bündelt das vom Himmelskörper einfallende Licht und spiegelt es in Richtung Fangspiegel zurück. Dieser lenkt das Licht zur Seite oder durch eine Bohrung im Primärspiegel in Richtung Okular bzw. Strahlungsdetektor. Der Detektor ist nur noch bei Hobbyastronomen das Auge. Im wissenschaftlichen Betrieb wurden die traditionellen Empfänger, wie Fotoplatte oder Fotofilm durch CCD- oder CMOS-Sensoren ersetzt. Das zu untersuchende, gebündelte Licht kann vor der Aufnahme durch Farbfilter gefiltert oder durch Spektrografen einer Spektralanalyse unterzogen werden. Bei großen Spiegelteleskopen besitzen die Strahlungsdetektoren bzw. Instrumente zur Lichtanalyse oft ein Gewicht von bis über 1000 kg. Besonders massive Apparaturen werden bisweilen nicht mehr direkt hinter dem Teleskop, sondern getrennt davon aufgestellt und mit dem Teleskop über eine spezielle Lichtfaseroptik verbunden.

Stützelemente

Die wabenförmige Stützstruktur des Primärspiegels von SOFIA, bevor die Spiegelschicht aufgebracht wurde.

Im Gegensatz zu Linsenfernrohren kann bei Spiegelteleskopen ein durch die Schwerkraft verursachtes Durchbiegen der optischen Elemente auch für sehr große Spiegel durch Stützkonstruktionen weitgehend verhindert werden.

Die konzeptionell einfachste Methode besteht darin, den Spiegel hinreichend dick zu gestalten, so dass durch seine mechanische Steifigkeit die Durchbiegung reduziert wird. Dafür wird die Dicke typisch mit einem Sechstel des Durchmessers gewählt. Diese Methode findet jedoch ihre Grenzen bei größeren Spiegeldurchmessern, die aufwendig zu fertigen sind, da die sich ergebenden dicken gegossenen Glasplatten viel Material erfordern und sehr lange brauchen, um spannungsfrei auszukühlen. Eine Weiterentwicklung besteht im Fertigen einer leichtgewichtigen hohlen Stützkonstruktion aus demselben Material, meist in Bienenwabenform oder durch Hohlkammern; diese ist durch eine entsprechende Gestaltung der Gussform an dem Spiegel integriert.

Unterseite des Primärspiegelträgers des MOA-Teleskops – gut zu erkennen sind die Lassell-Hebel, gebildet aus den weißen Kompensationsgewichtsscheiben an den schwarzen Hebelkonstruktionen.

Alternativ oder ergänzend kann die Schwerkraft durch einen sogenannten Whiffletree aufgenommen werden. Bei diesem wird die Last durch meist mehrstufig gelenkig gelagerte Balken oder Platten, das Prinzip einer Tafelwaage weiterführend, an vielen Punkten abgestützt.[17] Ein anderer Stützmechanismus, von William Lassell um 1840 entwickelt und nach ihm benannt,[18] verwendet Hebelmechanismen an diesen Punkten, über die jeweils eine der optischen Achse parallele Komponente der Gewichtskraft entsprechende Gegenkraft durch Gewichte eingeleitet wird. Die senkrecht zur optischen Achse wirkende Komponente der Gewichtskraft wird bei diesen Konstruktionen häufig durch eine Halbschlinge um den Spiegel aufgenommen.

Andere Stützkonstruktionen hingegen verformen den Spiegel gezielt, beispielsweise um eine einfach herzustellende sphärische Oberfläche in eine parabolische oder hyperbolische zu überführen, indem sie gezielt Kräfte mittels Federn oder Unterdruck einleiten.[19][20][21]

Bei modernen großen Teleskopen werden die Primärspiegel so dünn gebaut, dass sie unter ihrem Eigengewicht zerbrechen würden, falls sie nicht von aktiven Stützelementen in Form gehalten würden. Die dünne Konstruktion hat zum einen den Vorteil, dass der Spiegel leichter ist und somit die Teleskopkonstruktion weniger massiv ausfallen kann. Zum anderen kann bei solchen Spiegeln wesentlich einfacher die erforderliche Form des Paraboloids durch eine aktive Optik in jeder Ausrichtung des Spiegels erreicht werden. Die aktive Optik bewirkt mittels Computer und regelbarer Stützelemente eine automatische Korrektur der durch sein Eigengewicht entstehenden Verzerrungen des Spiegels.

Der größte Spiegel war von 1947 bis 1975 das 5-m-Teleskop am Mt. Palomar, Kalifornien. In den Jahren von 1990 bis 2000 wurden Spiegeldurchmesser über 8 m realisiert, wie beispielsweise das Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) in Chile. Es wurden auch Spiegelteleskope gebaut, wie das Keck-Teleskop auf Hawaii mit insgesamt 10 m Spiegeldurchmesser, deren Hauptspiegel aus einzelnen sechseckigen Segmenten besteht, die bienenwabenartig aneinander gelegt sind und deren Lage hydraulisch korrigiert werden kann. Ein Computer regelt die Lage der Segmente automatisch, so dass immer ein optimales Bild entsteht. Seit Juli 2009 steht das größte Spiegelteleskop mit 10,4 m Spiegeldurchmesser in rund 2400 Metern Höhe auf dem Roque de los Muchachos, dem höchsten Gipfel der Kanaren-Insel La Palma.

Tubus

Serruier-Gitterrohrtubus des 60-cm-Zeiss-Teleskops in Ostrowik

Der Tubus eines Spiegelteleskopes trägt Haupt- und Fang- bzw. Ablenkspiegel, in vielen Realisierungen auch Okular oder Bildaufnehmer und hält diese auf einer gemeinsamen optischen Achse. Er wird als Rohr- oder Gitterrohrkonstruktion ausgeführt, bei denen der Primärspiegel an einem Ende, Sekundär- bzw. Ablenkspiegel am anderen Ende angeordnet sind.

Um eine Dezentrierung der optischen Komponenten aufgrund deren Gewichts, insbesondere des Primärspiegels, bei Neigung des Teleskops zu vermeiden, wird für größere Spiegelteleskope meist ein Gittertubus nach Serruier verwendet, der 1935 für das 5-m-Hale-Teleskop entwickelt wurde.

Der Serruier-Tubus besteht aus zwei Teilen, die vor und hinter der als Deklination-Pivot bezeichneten Neigungsachse angeordnet sind. Seitlich betrachtet bilden beide Teile jeweils ein Parallelogramm, bestehend aus Pivot-Rahmen, oberen und unteren Gitterrohren und Frontrahmen bzw. Primärspiegelhalterung. Mittels seitlicher Streben wird die Steifigkeit des vorderen und hinteren Teils so eingestellt, dass sie bei jeder Neigung unter dem Einfluss der Gewichtskraft gleich weit nachgeben und die optischen Komponenten auf einer gemeinsamen optischen Achse verbleiben und nur diese parallel verschoben wird.

Streulichtblenden

Für kontrastreiche Bilder sind Streulichtblenden in einem Teleskop erforderlich, die verhindern, dass Licht durch Streuung im Tubus oder aus Himmelsregionen außerhalb des Beobachtungsfeldes zum Okular bzw. Bildaufnehmer gelangt. Je nach Spiegelanordnung wurden dafür unterschiedliche Konzepte entwickelt. Für den Primärspiegel kommen häufig eine Reihe von Lochblenden mit zum Spiegel hin abnehmenden Durchmesser zum Einsatz, so dass das Sichtfeld nicht beschnitten wird.[22] Für Cassegrain-Teleskope eignen sich Venetian Blind (engl.) und für Gregorian-Teleskope eine wiederholte Anordnung wie für einfache Spiegel.[23]

Herstellung und Wartung

Von der Glasschmelze zum Rohling

Öffnen des Rotationsofens nach dem Guss des VLT-Zerodur-Spiegels
Schleifen eines der Hauptspiegel für das VLT

Die genaue Formgebung großer astronomischer Spiegel ist eine technisch anspruchsvolle und meist sehr langwierige Arbeit, auf die sich weltweit nur wenige Firmen spezialisiert haben; zu den bekanntesten gehören Zeiss in Oberkochen/Württemberg, Schott in Mainz, welche beide Unternehmen der Carl-Zeiss Stiftung sind und der russische Hersteller LZOS. Bis zu Durchmessern von 50 bis 60 cm kann man das Spiegelschleifen aber auch selbst durchführen.

Nach Herstellen der Glasschmelze und dem Guss des Spiegels (Spezialist dafür ist die Fa. Schott in Mainz) muss der Rohling langsam auskühlen, was z. B. beim 5-m-Spiegel von Mount Palomar über ein Jahr dauerte, und bei dem 6-m-Spiegel des BTA-6 beinahe scheiterte. Die heute verwendeten glaskeramischen Materialien wie Borofloat, Pyrex, Cervit, Sital, Zerodur sind zwar auf thermische Spannungen weniger empfindlich, doch erst mit der Fertigung in Rotationsöfen, die bereits der Schmelze eine Parabelform geben, gelang die Herstellung größerer Spiegel bis zu einem Durchmesser von 8,4 m. Noch größere Spiegel als diese werden aus einzelnen hexagonalen Segmenten zusammengesetzt.

Nach dem Erkalten der Schmelze wird der Glasrohling einer ersten Kontrolle unterzogen und auf seine Freiheit von Schlieren im Glas überprüft. Danach erhält er durch Schleifen seine Form, die zumeist einem Kugelsegment oder einem Paraboloid entspricht.

Schleifen und Polieren des Hauptspiegels

Die Kunst des Spiegelschleifens kann für Spiegel bis etwa 60 cm Durchmesser in Kursen erlernt werden, die bereits von Astrovereinen und Volkssternwarten regelmäßig angeboten werden. Das Schleifen wird mit zunehmend besserer Anpassung an die Idealform, die mit eigenen Prüfverfahren beurteilt wird, mit immer feinerem Karborund und Schleifpulver durchgeführt. Bei größeren Spiegeln ist dieser Prozess automatisiert und wird von großen programmierbaren Robotern durchgeführt.

Die letzte Feinheit seiner Form erhält der Spiegel durch das Polieren. Seit Anfang 1990 steht dafür ein alternatives, durch die Firma Kodak entwickeltes Verfahren zur Verfügung, das sogenannte Ion-Beam-Milling oder Ion-Beam-Figuring. Abschließend wird der Spiegel mit einer oder mehreren Reflexionsschichten aus Aluminium bedampft und mit einer abschließenden Schutzschicht, meist aus SiO2, überzogen. Der Spiegel erhält damit ein Reflexionsvermögen von bis zu 96 %. Die endgültige optische Toleranz liegt für Amateurfernrohre bei mindestens λ/4 („Lambda Viertel“) der verwendeten Wellenlänge, wird aber meist trotz höherer Kosten auf λ/8 oder sogar unter λ/10 festgelegt. Bei professionellen Sternwarten gelten noch höhere Ansprüche, was neben den größeren Spiegeldurchmessern noch zusätzlichen Aufwand mit sich bringt.

Die erste wirkliche Funktionsprüfung ist das sog. Erste Licht, die erstmalige Aufnahme eines gut geeigneten und meist bekannten Himmelskörpers oder einer Galaxie. Eine gelungene Aufnahme wird gerne publiziert und findet bei vielen Medien hohes Interesse – z. B. im Oktober 2005 die milchstraßenähnliche Spiralgalaxie NGC 891 vom Ersten Licht des Large Binocular Telescope. Diesem Test folgen dann weitere, oft langwierige Justierungsarbeiten am Haupt- und auch Sekundärspiegel, bis das Teleskop nach etwa einem Jahr seine volle Funktion aufnehmen kann.

Wenn die Optik gewisse Fehlertoleranzen überschreitet, muss sie einer Nachbearbeitung unterzogen werden. Jene des Hubble-Weltraumteleskops ging durch die Medien, war allerdings neben dem Einbau einer Korrektionsoptik auch ein Test für die Arbeitsfähigkeit von Astronauten bei anspruchsvollen Reparaturen.

Justierung

Justierlaser im Okularauszug

Kleinere Amateurteleskope, die häufig transportiert werden und erheblichen Temperaturschwankungen unterworfen sind, müssen regelmäßig neu justiert werden. Das betrifft insbesondere Newton-Teleskope und geschieht hier am einfachsten mit einem batteriebetriebenen Laser und einer Markierung in der Mitte des Hauptspiegels (dafür muss der Spiegel einmalig ausgebaut werden).

Der Tubus des Newton-Teleskops wird so ausgerichtet, dass der Okularauszug nach oben zeigt. Der Justierlaser wird ohne Klemmung in den Okularauszug bzw. in die auf dem Foto sichtbare Reduzierhülse gesteckt und anschließend der Fangspiegel so verstellt, dass der Laserstrahl die Markierung in der Mitte des Hauptspiegels trifft. Nach dem Lösen der Kontermuttern (Hauptspiegel) werden die Justierschrauben des Hauptspiegels so verstellt, dass der Laser in sich selbst reflektiert. Dafür hat der Laser eine Mattscheibe mit einem kleinen Loch in der Mitte. Fällt der rote Laserstrahl wieder durch das Loch (ist also auf der Mattscheibe nicht mehr zu sehen) ist das Teleskop justiert. Abschließend wird der Hauptspiegel mit den Kontermuttern fixiert.

Auflösungsvermögen

Die Beugung des Lichtes begrenzt das Auflösungsvermögen eines Spiegelteleskops. Das theoretische Auflösungsvermögen eines Spiegelteleskops, also der minimale Winkel zwischen zwei gerade noch trennbaren Objekten, hängt vom Durchmesser des Hauptspiegels (Apertur) und von der Wellenlänge des empfangenen Lichts ab. Zwei benachbarte Sterne lassen sich auflösen, wenn ihre Beugungsscheibchen nicht zu stark überlappen. Angenähert gilt das Dawes-Kriterium (Winkel in Bogenmaß):

Um Bildfehler zu verringern, müssen die Spiegel sehr präzise bearbeitet werden. Das Schleifen und Polieren der Spiegel erfolgt auf 1/4 bis 1/20 der Licht-Wellenlänge, also mit Genauigkeiten von 150 bis 30 nm.

In der Praxis wird das Auflösungsvermögen aber vom Seeing sehr stark begrenzt, welches hauptsächlich durch Turbulenzen und sonstige Bewegungen in der Erdatmosphäre verursacht wird. Durch das Seeing beträgt die erreichbare Auflösung im sichtbaren Licht typisch ca. 1 bis 2 Bogensekunden auf dem europäischen Festland, was dem theoretischen Auflösungsvermögen eines 12-cm-Spiegels entspricht. In anderen Regionen der Erde kann das Seeing erheblich günstiger sein. Der beste je gemessene Wert liegt bisher bei 0,18 Bogensekunden in der Atacamawüste auf dem Paranal im Norden Chiles. Die Bildqualität wird darüber hinaus von Staub, dem Streulicht von Städten – die so genannte Lichtverschmutzung – und dem Anteil an Wasserdampf in der Luft beeinflusst; im nahen Infrarot stört besonders Wasserdampf in der Atmosphäre die Beobachtung, da dieser die entsprechenden Wellenlängen des Lichtes sehr stark dämpft. Großteleskope werden daher meist fernab menschlicher Siedlungen in trockenen Regionen auf hohen Bergen aufgestellt, um eine möglichst gute Auflösung zu erhalten.

Durch eine adaptive Optik gelingt es bei neuen Geräten in zunehmendem Maße, das höhere Auflösungsvermögen großer Optiken dennoch zu nutzen. Dabei wird entweder ein bekanntes punktförmiges Objekt wie zum Beispiel ein heller Stern als Referenz benutzt oder es wird mittels eines Lasers Natrium, das von Mikrometeoriten stammt, die in der Erdatmosphäre verglühen, in der oberen Erdatmosphäre in ungefähr 90 km Höhe zum Leuchten angeregt und somit ein künstlicher Leitstern mit bekannter Form erzeugt. Computerprogramme werten dann das vom Teleskop erzeugte Bild dieses Leitsterns viele Male pro Sekunde aus (teilweise über 1000-mal pro Sekunde) und verbiegen einen zusätzlichen Korrekturspiegel mit regelbaren Stellelementen so, dass die Verzerrungen durch die Luft möglichst ausgeglichen werden. Dadurch werden die zu beobachtenden Objekte in derselben Region ebenfalls bis an die theoretische Auflösungsgrenze scharf abgebildet.

Bauformen

Eine Vielzahl von unterschiedlichen Bauformen sind entwickelt worden, die sich in der Anzahl und Konfiguration der optischen Elemente unterscheiden. Sie optimieren den Aufbau hinsichtlich unterschiedlicher, sich teilweise widersprechender Kriterien:

  • große Apertur,
  • großer Bildwinkel,
  • kleine Gesamtabmessung,
  • einfach herstellbare optische Flächen,
  • einfache Montage und Betrieb.

Für die kurzen Wellenlängen der Röntgenstrahlung ist kein geeignetes spiegelndes Material bekannt. Stattdessen wird in Wolter-Teleskopen die Totalreflexion bei kleinem Einfallswinkel genutzt, was einen anderen konstruktiven Aufbau mit sich bringt. Für Schallwellen hingegen kann die gleiche Anordnung wie für Licht verwendet werden, was in Hohlspiegelmikrofonen realisiert wird. Auch Radioteleskope sind nach den gleichen Prinzipien wie ein Spiegelteleskop konstruiert.

Bekannte Bauformen von Spiegelteleskopen mit ihren Strahlengängen sind in der folgenden Tabelle gelistet.

BezeichnungEigenschaftSchematische Darstellung
Newton-Teleskopparaboloider oder sphärischer Hauptspiegel, planarer Ablenkspiegel,
einfacher Aufbau
Schematische Darstellung „Newton-Teleskop“
Nasmyth-Teleskopplaner Tertiärspiegel, kann in Cassegrain- oder anderen Bauformen verwendet werden, typischerweise, um externe Messapparaturen anzuschließenSchematische Darstellung „Nasmyth-Teleskop“
Herschel-TeleskopObstruktionsfrei (keine Abdeckung der Eingangsöffnung durch den Sekundärspiegel)Schematische Darstellung „Herschel-Teleskop“
Cassegrain-Teleskop
  1. Klassisch
  2. Dall-Kirkham-Teleskop
  3. Pressman-Camichel-Teleskop[24][25]
  4. Ritchey-Chrétien-Teleskop
konkaver Hauptspiegel / konvexer Fangspiegel:
  1. parabolisch / hyperbolisch
  2. Ellipsoid / sphärisch
  3. sphärisch / ellipsoid
  4. hyperbolisch / hyperbolisch
Schematische Darstellung „Cassegrain-Teleskop“
Gregory-TeleskopParaboloider Hauptspiegel / konkaver ellipsoider FangspiegelSchematische Darstellung „Gregory-Teleskop“
Schmidt-Teleskop
auch Schmidt-Kamera
asphärische Korrekturlinse,
sphärischer Hauptspiegel,
sehr großes Sichtfeld, aber durch die Korrekturlinse begrenzte Apertur von < 1,35 m
Bei innenliegendem Fokus nur als Kamera geeignet (Schmidt-Kamera); bei Instrumenten mit langer Brennweite kann das konvergente Strahlenbündel auch durch ein Loch im Hauptspiegel zur visuellen Beobachtung nach außen geführt werden (siehe Schmidt-Cassegrain-Teleskop.)
Schematische Darstellung „Schmidt-Teleskop“
Baker-Nunn-KameraÄhnelt der Schmidt-Kamera, apochromatischer Korrektor aus drei asphärischen Linsen,
sphärischer Hauptspiegel,
extrem großes Sichtfeld von 30°,
Öffnungsverhältnis von 1:1 bei 50 cm Apertur,
durch den innenliegenden Fokus nur als Kamera geeignet
Schmidt-Cassegrain-Teleskopasphärische Korrekturlinse, sphärischer Hauptspiegel, sphärischer FangspiegelSchematische Darstellung „Schmidt-Cassegrain-Teleskop“
Schwarzschild-Teleskop,
Couder-Teleskop
Aplanat, ebenes Bild
Anastigmat, aber gewölbtes Bild
Schematische Darstellung „Schwarzschild-Teleskop“
Maksutov-Teleskop
oder Maksutov-Cassegrain-Teleskop
sphärische, meniskusförmige Korrekturlinse,
sphärischer Hauptspiegel,
durch die Korrekturlinse begrenzte Apertur von < 1 m
Schematische Darstellung „Maksutov-Teleskop“
Lurie-Houghton-Teleskopkonkave und konvexe sphärische Korrekturlinse,
sphärischer Hauptspiegel
durch die Korrekturlinse begrenzte Apertur von < 1 m
Klevtsov-Teleskopsphärischer Hauptspiegel,
sphärische Subapertur-Korrekturlinse
und sphärischer Mangin-Fangspiegel
Schematische Darstellung „Klevtsov-Teleskop“
Kutter-Schiefspiegler
Yolo-Schiefspiegler
kleines Öffnungsverhältnis bei vergleichsweise kompakter Bauform,
obstruktionsfrei
Schematische Darstellung „Kutter-Schiefspiegler“

Beim Bau sehr großer Teleskope, z. B. dem Very Large Telescope der ESO oder dem Hubble-Weltraumteleskop (HST), hat sich das Ritchey-Chrétien-Cassegrain-System durchgesetzt. Bei Teleskopen mit Durchmessern von mehr als 10 m verwendet man aufgrund der geringeren Herstellungskosten wieder zunehmend sphärische Hauptspiegel, dafür aber aufwendigere Sekundäroptiken. Beispiele sind das Hobby-Eberly-Teleskop, das Southern African Large Telescope und das bis 2005 verfolgte Overwhelmingly Large Telescope. Ebenfalls üblich ist die Verwendung von Nasmyth-Tertiärspiegeln, um den Strahlengang zwischen verschiedene Messplattformen umzuschalten.

Um große Teleskope zu tragen und zu bewegen, benötigt man Montierungen. Diese müssen eine der Teleskopgröße entsprechende Tragfähigkeit und Stabilität aufweisen, insbesondere auch bei Temperaturschwankungen. Um das Teleskop der scheinbaren Bewegung der Sterne in nur einer Achse nachführen zu können, muss eine parallaktische Montierung auf den Himmelspol ausgerichtet werden. Die Nachführung erfolgt dann manuell oder motorisch. Bei den größeren Spiegelteleskopen haben sich jedoch aus Kostengründen die einfacheren azimutalen Montierungen durchgesetzt, welche aber eine Nachführung in beiden Achsen erfordern, wodurch als weiterer Nachteil Bildfelddrehung entsteht. Für Fotografien (Langzeitbelichtungen) sind exakte Steuerungsmöglichkeiten notwendig.

Schutzmaßnahmen bei der Sonnenbeobachtung

Bei der Sonnenbeobachtung durch ein Teleskop muss zwingend ein geeigneter Sonnenfilter verwendet werden. Sonnenfilter, die am Okular angebracht sind, bieten in der Regel keinen ausreichenden Schutz, da sie unter der großen Hitzebelastung zerspringen oder schmelzen können. Der Sonnenfilter sollte daher vor der Öffnung des Teleskops angebracht werden. Alternativ kann die Sonne auch auf einen weißen Schirm projiziert werden, was aber nicht bei allen Teleskopen ratsam ist (Hitzebelastung im Okular).

Große Spiegelteleskope

Literatur

Commons: Spiegelteleskope – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Spiegelteleskop – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. vgl. GALEX, ALEXIS und STEREO. Mit ALEXIS und STEREO sind Beobachtung bis 13 bzw. 17 nm möglich: Aufnahme der Sonne bei verschiedenen Wellenlängen im EUV.
  2. Archivierte Kopie (Memento vom 23. Februar 2007 im Internet Archive)
  3. L. d. Vinci:Codex Arundul (Memento desOriginals vom 8. Juni 2010 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.bl.uk, 1512
  4. a b c J. Sant: Reflecting on History (engl.).
  5. Cesare Marsili: Un certo Messer Giovanni il quale pretende, doppo la morte d'in Mess. Cesare Caravaggi Bolognese …, Brief, 1626 (ital.)
  6. Bartolomeo Imperiali: Il motivo di Vostra Signoria di non aver voluto accettar la riconciliazione del Padre Oratio Grassi …, Brief, 1626 (ital.).
  7. Bonaventura Cavalieri: Lo specchio ustorio ouero trattato delle settioni coniche, 1632 (ital.)
  8. Marin Marsenne: Harmonie universelle, S. Cramoisy (Paris), 1636–1637, S. 59–63 (frz.) (N. Zucchius konstruierte 1652 ein Exemplar).
  9. James Gregory, Optica Promota, Londini, 1663 (lat.) (ins Englische übersetzt von Ian Bruce), gebaut von Robert Hooke 1674, Royal Society.
  10. Reflexions sur la Description d’une Lunette publièe sous le nom de M. Cassegrain, Journal des sçavans, 1672, S. 98 (frz.).
  11. Isaac Newton: An Accompt of a New Catadioptrical Telescope Invented by Mr. Newton, … Philosophical Transactions, Royal Society, Vol. 7, 1672, S. 4004–4010.
  12. A. Rupert Hall, A. D. C. Simpson: An Account of the Royal Society’s Newton Telescope. Notes and Records of the Royal Society of London Vol. 50, Number 1 / 1996.
  13. Henry C. King: The History of the Telescope, 2003 (engl.)
  14. E. Hagen, H. Rubens: Das Reflexionsvermögen von Metallen und belegten Glasspiegeln. Annalen der Physik, Bd. 306, 1900, S. 352–375.
  15. R. N. Wilson, Karl Schwarzschild and Telescope Optics, Reviews in Modern Astronomy, Vol. 7, 1994, S. 1–30, bibcode:1994RvMA....7....1W
  16. New Technology Telescope (Memento vom 30. September 2007 im Internet Archive).
  17. A Short History of Armagh Observatory (Memento vom 25. Januar 2010 im Internet Archive)
  18. Hans Jürgen Kärcher: Die Kunst, Linsen und Spiegel zu halten, Sterne und Weltraum, März 2012.
  19. Alan Adler: Microflexing (PDF; 558 kB) (Memento vom 19. März 2013 im Internet Archive), Sky & Telescope, November 2000.
  20. Übergang von sphärischen zu paraboloiden Spiegeln, Analyse von „Kelly’s Method“ mittels FEM (Memento vom 20. Oktober 2001 im Internet Archive) (engl.)
  21. G. R. Lemaitre: A Three Reflection Sky Survey at Dome-C with active optics modified-Rumsey telescope (en; PDF; 1,5 MB).
  22. Interaktives Programm zum Design von Newton-Teleskopen, berechnet optimale Blendenanordnungen (engl. Baffles), engl.
  23. James E. Gunn et al.: The 2.5 m Telescope of the Sloan Digital Sky Survey, S. 63 arxiv:astro-ph/0602326
  24. R. E. Pressman: An Experimental Compound Reflecting Telescope. In: Journal of the British Astronomical Association. 57. Jahrgang, 1947, S. 224.
  25. J. Texereau: Commission des Instruments : 80e et 81e séances. In: L’Astronomie. 68. Jahrgang, 1954, S. 387, bibcode:1954LAstr..68..387T.

Auf dieser Seite verwendete Medien

NewtonsTelescopeReplica.jpg
Autor/Urheber: User:Solipsist (Andrew Dunn), Lizenz: CC BY-SA 2.0
A replica of Isaac Newton's second reflecting telescope of 1672.
MOA telescope underside of main mirror.jpg
Autor/Urheber: Evil Monkey, Lizenz: CC BY-SA 2.5
The underside of the Microlensing Observations in Astrophysics (MOA) telescope. The levers are designed to stop deformation of the telescope mirror.
Spiegelteleskop erklärt von Konstanze Zwintz von der Universität Innsbruck.webm
(c) Universität Innsbruck / CC-BY-SA 4.0
Astronomin Konstanze Zwintz spricht im Video über Details zum Zeiss-Spiegelteleskop (Reflektor) der historischen Sternwarte der Universität Innsbruck im Stadtteil Hötting. Sie geht auch auf Geschichte, Funktionen und Anwendungen ein. Der Spiegel hat einen Durchmesser von 40 Zentimetern. Es ist eines der ersten Teleskope, das die Firma Carl Zeiss AG gebaut hat.
The European Extremely Large Telescope.jpg
Autor/Urheber: ESO, Lizenz: CC BY 4.0
The European Extremely Large Telescope (E-ELT), with a main mirror 39 metres in diameter, will be the world’s biggest eye on the sky when it becomes operational early in the next decade. The E-ELT will tackle the biggest scientific challenges of our time, and aim for a number of notable firsts, including tracking down Earth-like planets around other stars in the “habitable zones” where life could exist — one of the Holy Grails of modern observational astronomy.

The telescope design itself is revolutionary and is based on a novel five-mirror scheme that results in exceptional image quality. The primary mirror consists of almost 800 segments, each 1.4 metres wide, but only 50 mm thick. The optical design calls for an immense secondary mirror 4.2 metres in diameter, bigger than the primary mirrors of any of ESO's telescopes at La Silla.

Adaptive mirrors are incorporated into the optics of the telescope to compensate for the fuzziness in the stellar images introduced by atmospheric turbulence. One of these mirrors is supported by more than 6000 actuators that can distort its shape a thousand times per second.

The telescope will have several science instruments. It will be possible to switch from one instrument to another within minutes. The telescope and dome will also be able to change positions on the sky and start a new observation in a very short time.

The very detailed design for the E-ELT shown here is preliminary.
M1grinda94 sd.ogv
Autor/Urheber: ESO, Lizenz: CC BY 4.0
The initial rough polishing process of the M1 mirror. REOSC, France, 1994. (M1 = The primary mirror of the Very Large Telescope / VLT)
Schwarzschild-TeleskopII.svg
Schwarzschild-Telescope
BirrCastle 72in.jpg

Lord Rosse's observatory at Birr Castle (Ireland) - here, its 72-inch (183 cm) telescope called "Leviathan" at Parsonstown.

Copperplate engraving published ca. 1860
Justierlaser.jpg
Autor/Urheber: Joe MiGo, Lizenz: CC0
Justierlaser im Okularauszug eines 8-Zoll-Newton. Bei optimal justiertem Strahlengang wäre der rote Laserpunkt nicht sichtbar, da er durch das Loch in sich selbst reflektiert würde.
SOFIA Teleskop.jpg
SOFIA Teleskop, Das Bild zeigt den Spiegel des SOFIA-Projektes vor der Beschichtung, man erkennt schön die Wabenstruktur des Spiegels, die der Gewichtsreduzierung dient.
Off-axis optical telescope diagram.svg
Autor/Urheber: User:Eudjinnius, Lizenz: CC BY-SA 3.0
Das Bild sollte unter Beachtung des Reflexionsgesetzes neu gezeichnet werden.
Herschel-Lomonosov reflecting telescope.svg
Autor/Urheber: User:Eudjinnius, Lizenz: CC BY-SA 3.0
Diagram of Herschel-Lomonosov telescope system. Das Bild sollte unter Beachtung des Reflexionsgesetzes neu gezeichnet werden.
SAO-6m-Telescope-main-mirror.jpg
The main Mirror of the SAO 6-m telescope
0.6m telescope in Ostrowik.jpg
Autor/Urheber: Krzysztof Ulaczyk (more work on Wikimedia Commons: Kszulogaleria), Lizenz: CC BY-SA 4.0
0.6m Carl Zeiss Cassegrain telescope in Ostrowik near Warsaw
Klevtsov-Teleskop.png
Autor/Urheber:

NikoK

, Lizenz:

Strahlengang eines Klevtsov-Teleskops

180724main 6-mMirror.jpg
Large Zenith Telescope
Gregory-TeleskopII.svg
Autor/Urheber:

ArtMechanic, Fabian R

, Lizenz: PD-Schöpfungshöhe

Gregory-Telescope

VLTMirrorCastG93 SD.ogv
Autor/Urheber: ESO, Lizenz: CC BY 4.0
Casting work on the VLT mirror in 1993
Schmidt-Cassegrain-TeleskopII.svg
Autor/Urheber:

ArtMechanic, Fabian R

, Lizenz: PD-Schöpfungshöhe

Schmidt-Cassegrain-Telescope

Newton-TeleskopII.svg
Autor/Urheber:

ArtMechanic, Fabian R

, Lizenz: PD-Schöpfungshöhe

Newton Telescope

Casegraintelescope.png
Autor/Urheber: Szőcs Tamás Tamasflex, Lizenz: CC BY-SA 3.0
Cassegrain telescope design.
Maksutov-TeleskopII.svg
Autor/Urheber:

ArtMechanic, Fabian R

, Lizenz: PD-Schöpfungshöhe

Maksutov-Telescope

Nasmyth-Telescope.svg
Autor/Urheber: Rainald62, Lizenz: CC BY-SA 3.0
Strahlengang eines Nasmyth-Teleskops.
Schmidt-TeleskopII.svg
Autor/Urheber:

ArtMechanic, Fabian R

, Lizenz: PD-Schöpfungshöhe

Schmidt-Telescope

Cassegrain-TeleskopII.svg
Autor/Urheber:

ArsMechanik, Fabian R

, Lizenz: PD-Schöpfungshöhe

Cassegrain Telescope

Salt mirror.jpg
Autor/Urheber: Mark J. Roe / Janusz Kałużny, Lizenz: Copyrighted free use
Mirror of the Southern African Large Telescope (SALT)