Sophie-Germain-Primzahl

Eine Primzahl p nennt man Sophie-Germain-Primzahl oder auch Germainsche Primzahl, wenn auch 2p + 1 eine Primzahl ist (2p + 1 ist dann eine sichere Primzahl (vom englischen Safe prime)). Diese Primzahlen sind nach der Mathematikerin Sophie Germain (1776–1831) benannt, die sich mit der Fermatschen Vermutung beschäftigte und bewies, dass der erste Fall der Vermutung für alle Sophie-Germain-Primzahlen zutrifft.[1]

Beispiele

p = 2 ist eine Sophie-Germain-Primzahl, denn 2p + 1 = 5 ist prim. Das Gleiche gilt für 3, 5 und 11.

p = 7 ist keine Sophie-Germain-Primzahl, da 2p + 1 = 15 nicht prim ist.

Zwischen 1 und 10.000 gibt es die folgenden 190 Sophie-Germain-Primzahlen:

23511232941538389113131173179191233239251281293
359419431443491509593641653659683719743761809911953101310191031
10491103122312291289140914391451148114991511155915831601173318111889190119311973
20032039206320692129214122732339235123932399245925432549269326992741275328192903
29392963296930233299332933593389341334493491353935933623376137793803382138513863
39114019407342114271434943734391440944814733479348714919494350035039505150815171
52315279530353335399544155015639571157415849590360536101611361316173626362696323
63296449649165216551656365816761689969837043707971037121715171937211734974337541
76437649769178237841788379018069809381118243827385138663869387418951896990299059
9221929393719419947394799539962996899791

Die ersten Sophie-Germain-Primzahlen kann man auch dem folgenden OEIS-Link entnehmen:

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, … (Folge A005384 in OEIS)

Die dazugehörigen sicheren Primzahlen sind die folgenden:

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, … (Folge A005385 in OEIS)

Der folgenden Liste kann man die 10 größten bekannten Sophie-Germain-Primzahlen entnehmen. Sämtliche Entdecker dieser Primzahlen sind Teilnehmer des PrimeGrid-Projektes.

RangRang in
Primzahl-
listea[2][3]
Primzahl Dezimal-
stellen
von
Datum der
Entdeckung
EntdeckerQuelle
11609.29. Februar 2016Scott Brown (USA)[4][5]
21678.4. oder 9. April 2012Lee Blyth (AUS)[6][7]
31697.22. März 2010Tom Wu[8]
41703.18. November 2009Zoltán Járai, Gabor Farkas, Timea Csajbok, János Kasza, Antal Járai[9]
51704.2. November 2009Zoltán Járai, Gabor Farkas, Timea Csajbok, János Kasza, Antal Járai[10]
61722.17. Mai 2020Michael Kwok[11]
71729.1. April 2016S. Urushihata[12]
81743.18. September 2009Tom Wu[13]
91748.25. Januar 2007David Underbakke[14]
101752.3. Mai 2006Zoltán Járai, Gabor Farkas, Timea Csajbok, János Kasza, Antal Járai[15]
a Stand: 4. Juni 2020; der Rang verrät nur, an welcher Stelle diese Primzahlen in dieser Liste sind

Bedeutung

Eigenschaften

  • Eine Sophie-Germain-Primzahl kann im Dezimalsystem niemals die Endziffer 7 haben.
Beweis:
Sei p eine Primzahl mit Endziffer 7. Dann kann man p darstellen als p = 10k + 7. Dann gilt: 2p + 1 = 20k + 14 + 1 = 20k + 15 = 5·(4k + 3).
Das bedeutet, 2p + 1 ist durch 5 teilbar, aber größer als 14, also nicht prim.
  • Alle Sophie-Germain-Primzahlen gehören der Restklasse an, haben also die Form mit ganzzahligem .
Beweis:
Alle Zahlen der Restklassen r ≡ 0 (mod 6), r ≡ 2 (mod 6) und r ≡ 4 (mod 6) sind gerade und demnach durch 2 teilbar.
Alle Zahlen der Restklassen r ≡ 0 (mod 6) und r ≡ 3 (mod 6) sind durch 3 teilbar.
Zwar existieren Primzahlen in der Restklasse r ≡ 1 (mod 6), jedoch ergibt 2·(6n+1)+1 = 12n+3 = 3·(4n+1) – und 3·(4n+1) ist durch 3 teilbar.
Als einzige Sechser-Restklasse für die Sophie-Germain-Primzahlen bleibt die Restklasse r ≡ 5 (mod 6) übrig. Nur in diesem Fall hat die zu einer Sophie-Germain-Primzahl gehörende sichere Primzahl die Form 2·(6n+5)+1 = 12n+11 ≡ 5 (mod 6) und kann prim sein.

Zusammenhang mit den Mersenne-Zahlen

Die folgende Eigenschaft wurde von Leonhard Euler und Joseph-Louis Lagrange bewiesen:

Ist p > 3 eine Sophie-Germain-Primzahl mit p ≡ 3 (mod 4), dann ist 2p+1 ein Teiler der p-ten Mersenne-Zahl M(p).
Beispiel:
p = 11 ist eine Sophie-Germain-Primzahl, denn 2p+1 = 23 ist prim. Weiter ist 11 ≡ 3 (mod 4), denn 11 dividiert durch 4 ergibt als Rest 3.
Die 11. Mersenne-Zahl M(11) = 211-1 = 2047 ist also nicht prim, sondern durch 2p+1 = 23 teilbar; konkret ist M(11) = 23 · 89.

Häufigkeit von Sophie-Germain-Primzahlen

1922 veröffentlichten Godfrey Harold Hardy und John Edensor Littlewood ihre Vermutung bzgl. der Häufigkeit von Sophie-Germain-Primzahlen:

Die Anzahl aller Sophie-Germain-Primzahlen unterhalb einer Grenze N beträgt ungefähr

mit C2 = 0,6601618158 (siehe Primzahlzwillingskonstante). Diese Formel kann man mit den bekannten Sophie-Germain-Primzahlen recht gut bestätigen. Für N = 104 liefert die Vorhersage 156 Sophie-Germain-Primzahlen, was einen Fehler von 18 % zur exakten Anzahl von 190 bedeutet. Für N = 107 liefert die Vorhersage 50822, was bereits nur noch 9 % vom exakten Wert 56032 entfernt ist. Eine numerische Approximation des Integrals liefert noch bessere Ergebnisse, etwa 195 für N = 104 (Fehler nur noch 2,6 %) und 56128 für N = 107 (Fehler fast vernachlässigbar bei 0,17 %).

Die Dichte der Sophie-Germain-Primzahlen fällt in der Größenordnung um ln(N)-mal stärker als die der Primzahlen selbst. Sie findet Anwendung für eine genauere Laufzeitabschätzung für den AKS-Primzahltest, der die Primeigenschaft in polynomialer Zeit feststellen kann.

Cunningham-Kette

Bei einer Cunningham-Kette der ersten Art handelt es sich, mit Ausnahme der letzten Zahl, um eine Folge von Sophie-Germain-Primzahlen. Ein Beispiel für eine solche Kette ist die Folge: 2, 5, 11, 23, 47.

Offene Fragen

Man vermutet, dass es unendlich viele Sophie-Germain-Primzahlen gibt, aber ein Beweis dafür wurde bis heute nicht gefunden.

Einzelnachweise

  1. Man unterscheidet mögliche Lösungen der Fermatschen Gleichung in zwei Fälle: der erste Fall bedeutet, dass der Exponent p kein Teiler von a·b·c ist.
  2. Chris K.Caldwell: The Top Twenty: Sophie Germain (p). Prime Pages, abgerufen am 4. Juni 2020.
  3. Liste der größten bekannten Primzahlen (englisch). Abgerufen am 4. Juni 2020.
  4. 2618163402417·21290000 - 1 auf primegrid.com (PDF)
  5. 2618163402417·21290000 - 1 auf Prime Pages
  6. 18543637900515·2666667 - 1 auf primegrid.com (PDF)
  7. 18543637900515·2666667 - 1 auf Prime Pages
  8. 183027·2265440 - 1 auf Prime Pages
  9. 648621027630345·2253824 - 1 auf Prime Pages
  10. 620366307356565·2253824 - 1 auf Prime Pages
  11. 1068669447·2211088 - 1 auf Prime Pages
  12. 99064503957·2200008 - 1 auf Prime Pages
  13. 607095·2176311 - 1 auf Prime Pages
  14. 48047305725·2172403 - 1 auf Prime Pages
  15. 137211941292195·2171960 - 1 auf Prime Pages

Weblinks