Seyfertgalaxie

Die Circinusgalaxie, eine Typ-2-Seyfertgalaxie
Die Galaxie NGC 7742

Seyfertgalaxien sind Spiral- oder irreguläre Galaxien mit einem sehr hellen Galaxienkern. Die Spektren dieser Kerne zeigen charakteristische Emissionslinien, die nicht durch Sterne angeregt werden. Seyfertgalaxien sind eine Unterordnung der Aktiven Galaktischen Kerne. Die Seyfertgalaxien wurden nach dem Astronomen Carl Keenan Seyfert benannt, der sich in den 1940er Jahren sehr intensiv mit ihnen beschäftigte.

Erscheinungsbild, Klassifizierung in Typ 1 und Typ 2

Typisch für Seyfertgalaxien sind die oft sehr hellen Kerne und elektromagnetische Spektren mit sehr hellen Spektrallinien von unter anderem Wasserstoff, Helium, Stickstoff und Sauerstoff. Die Stärkenverhältnisse dieser Linien unterscheiden sich deutlich von denen in HII-Regionen, die von heißen Sternen angeregt werden. Diese Spektrallinien zeigen oft starke Dopplerverbreiterungen, die auf Geschwindigkeiten des emittierenden Gases von bis zu 10.000 Kilometern pro Sekunde hindeuten. Anhand dieser Verbreiterung wurden Seyfertgalaxien in ursprünglich zwei verschiedene Typen klassifiziert:

  • Typ 2: nur „schmale“ Linien von bis zu etwa 1000 km/s Breite;
  • Typ 1: zusätzlich „breite“ Linienkomponenten einiger Linien von bis über 10.000 km/s Breite.

Später wurden von Donald Osterbrock auch Zwischentypen wie 1.5 und 1.9 definiert, bei denen breite Komponenten nur bei einigen der Linien gesehen werden, die sie bei Typ 1 aufweisen würden. Es zeigt sich, dass verbotene Linien mit geringer Übergangswahrscheinlichkeit, die nur in dünnem Gas entstehen können, im Spektrum stets schmal sind. Breite Komponenten werden nur bei erlaubten Linien beobachtet, die wegen ihrer höheren Übergangswahrscheinlichkeit auch in dichtem Gas stark emittiert werden. In Seyfert-1-Galaxien ist also eine kompakte und dichte „Broad Line Region“ und eine ausgedehnte dünnere „Narrow Line Region“ sichtbar, in Seyfert-2-Galaxien nur die letztere.

Außerdem senden Seyfertgalaxien starke Strahlung über weite Teile des elektromagnetischen Spektrums aus, von Radiowellen über Mikrowellen, Infrarot-, Ultraviolett-, Röntgen- bis zu Gammastrahlen. Die Intensität der vom Kern emittierten Strahlung kann sich innerhalb eines Jahres merklich verändern. Daraus folgt, dass der Durchmesser der emittierenden Region weniger als ein Lichtjahr betragen muss.

Energiequelle

Als Energiequelle von Seyfertgalaxien wird heute allgemein Materieeinströmung auf ein supermassereiches Schwarzes Loch angesehen. Diese kann sogar dazu führen, dass die umgebende Galaxie durch den Kern überstrahlt wird. Zwischen den leuchtkräftigsten Seyfertgalaxien und den noch intensiveren Quasaren besteht ein stetiger Übergang. Die einfallende Materie setzt durch Reibung Energie frei, vermutlich in einer Akkretionsscheibe, die das zentrale Schwarze Loch umgibt. Die Akkretionsscheibe ist die Quelle eines großen Teils der von der Seyfertgalaxie emittierten elektromagnetischen Strahlung, die dann beim Auftreffen auf weiter außen liegende Materie sekundäre Phänomene wie die im sichtbaren Licht beobachteten Emissionslinien erzeugt.

Vereinheitlichte Modelle

Vereinheitlichte Modelle erklären den Unterschied zwischen Typ 1 und Typ 2 nicht durch Anwesenheit oder Fehlen einer Broad Line Region. Sie nehmen an, dass diese immer vorhanden ist, aber bei Seyfert-2-Galaxien in unserer Blickrichtung durch dichte interstellare Materie und Staub verdeckt ist. In Einklang mit dieser Vorstellung kann bei einigen Seyfert-2-Galaxien die breite Spektralkomponente in polarisiertem Licht beobachtet werden. Die Polarisation zeigt an, dass uns dieses Licht auf Umwegen durch Streuung an heißem Gas oder Staub um den Kern erreicht hat. Dieser Effekt wurde erstmals bei der Typ-2-Galaxie NGC 1068 entdeckt. Weiter unterstützt werden vereinheitlichte Modelle durch die Beobachtung, dass Röntgenstrahlung vom Kern der Seyfertgalaxien in Objekten vom Typ 2 normalerweise stärkere Spuren von Abschwächung zeigt als in Objekten vom Typ 1.

Literatur

  • Carl Seyfert: Nuclear Emission in Spiral Nebulae. In: Astrophys. Journal. 97, 28 (1943).
  • Donald Osterbrock: Astrophysics of Gaseous Nebulae and Active Galactic Nuclei. University Science Books, Mill Valley 1989, ISBN 0-935702-22-9.

Auf dieser Seite verwendete Medien

Circinus.galaxy.750pix.jpg
Resembling a swirling witch's cauldron of glowing vapors, the black hole-powered core of a nearby active galaxy appears in this colorful NASA Hubble Space Telescope image. The galaxy lies 13 million light-years away in the southern constellation Circinus.

This galaxy is designated a type 2 Seyfert, a class of mostly spiral galaxies that have compact centers and are believed to contain massive black holes. Seyfert galaxies are themselves part of a larger class of objects called Active Galactic Nuclei or AGN. AGN have the ability to remove gas from the centers of their galaxies by blowing it out into space at phenomenal speeds. Astronomers studying the Circinus galaxy are seeing evidence of a powerful AGN at the center of this galaxy as well.

Much of the gas in the disk of the Circinus spiral is concentrated in two specific rings — a larger one of diameter 1,300 light-years, which has already been observed by ground-based telescopes, and a previously unseen ring of diameter 260 light-years.

In the Hubble image, the smaller inner ring is located on the inside of the green disk. The larger outer ring extends off the image and is in the plane of the galaxy's disk. Both rings are home to large amounts of gas and dust as well as areas of major "starburst" activity, where new stars are rapidly forming on timescales of 40 - 150 million years, much shorter than the age of the entire galaxy.

At the center of the starburst rings is the Seyfert nucleus, the believed signature of a supermassive black hole that is accreting surrounding gas and dust. The black hole and its accretion disk are expelling gas out of the galaxy's disk and into its halo (the region above and below the disk). The detailed structure of this gas is seen as magenta-colored streamers extending towards the top of the image.

In the center of the galaxy and within the inner starburst ring is a V-shaped structure of gas. The structure appears whitish-pink in this composite image, made up of four filters. Two filters capture the narrow lines from atomic transitions in oxygen and hydrogen; two wider filters detect green and near-infrared light. In the narrow-band filters, the V-shaped structure is very pronounced. This region, which is the projection of a three-dimensional cone extending from the nucleus to the galaxy's halo, contains gas that has been heated by radiation emitted by the accreting black hole. A "counter-cone," believed to be present, is obscured from view by dust in the galaxy's disk. Ultraviolet radiation emerging from the central source excites nearby gas causing it to glow. The excited gas is beamed into the oppositely directed cones like two giant searchlights.

Located near the plane of our own Milky Way Galaxy, the Circinus galaxy is partially hidden by intervening dust along our line of sight. As a result, the galaxy went unnoticed until about 25 years ago. This Hubble image was taken on April 10, 1999 with the Wide Field Planetary Camera 2.

The research team, led by Andrew S. Wilson of the University of Maryland, is using these visible light images along with near-infrared data to further understand the dynamics of this powerful galaxy.