Sehne (Geometrie)
Eine Sehne einer ebenen Kurve ist eine Verbindungsstrecke zweier Punkte auf der Kurve. Sie ist also derjenige Teil einer Sekante, der zwischen den beiden Kurvenpunkten liegt.[1]
Sehne am Kreis
Die Sehne eines Kreises teilt den Kreis in zwei in der Regel ungleich große Kreisbögen und , in denen jeweils der Peripheriewinkelsatz gilt: Alle Dreiecke mit der Sehne als Grundseite und einem dritten Punkt auf einem der Bögen oder haben im Scheitelpunkt gleich große Winkel bzw. .
Verläuft die Sehne durch den Kreismittelpunkt , so heißt sie Durchmesser. Der Peripheriewinkel ist dann ein rechter Winkel (Satz des Thales).
Für die Sehnenlänge gilt
und wegen sowie
- und
- .
Historisch wurde die Sehnenlänge mit der heute nicht mehr gebräuchlichen Winkelfunktion Chord berechnet. Früher wurde das Lot der Sehne auf den Kreismittelpunkt als Apothema bezeichnet. Die Verlängerung des Lots über die Sehne hinaus auf den Kreisrand nannte man Sagitta. Die Längen von Apothema und Sagitta ergeben zusammen den Kreisradius.
Al-Battânîs (* zw. 850 und 869, † 929) war der erste, der statt geometrischer Sehnen den Sinus gebrauchte.
Siehe auch
- Zindler-Kurve
- Sehnensatz
- Schmetterlingssatz
Literatur
- Schülerduden: Mathematik I, Dudenverlag, 8. Auflage, Mannheim 2008, S. 415–418
Weblinks
- Eric W. Weisstein: Chord. In: MathWorld (englisch).
Einzelnachweise
- ↑ Ilja Nikolajewitsch Bronstein, Konstantin Adolfowitsch Semendjajew: Taschenbuch der Mathematik. 5. Auflage. Verlag Harri Deutsch, Thun / Frankfurt am Main 2001, ISBN 3-8171-2005-2, S. 143.
Auf dieser Seite verwendete Medien
Autor/Urheber: SweetWood, (basierend auf „Sehne.png“), Lizenz: CC0
Kreis mit Mittelpunkt und Radius (mit Mittelpunktswinkel und Umfangswinkeln und für die Winkelscheitel ), der durch eine Sehne (rot, gelb hinterlegt) in zwei Kreisbögen (grün) und (schwarz) unterteilt wird.