Satz von Szemerédi
Der Satz von Szemerédi ist ein Resultat aus der Zahlentheorie, das arithmetische Folgen in Mengen natürlicher Zahlen mit positiver Dichte betrifft.
Aussage
Für jede natürliche Zahl und für jedes , existiert ein , sodass jede Teilmenge von mit mehr als Elementen eine arithmetische Folge der Länge k enthält. Äquivalent lässt sich das Theorem auch folgenderweise formulieren:
- Sei die Größe der größten Teilmenge von ohne arithmetische Progression der Länge k. Dann gilt .
Erweiterungen
Es hat sich gezeigt, dass sich die Aussage auf polynomielle Progressionen erweitern lässt. Hat also eine Menge eine positive Dichte und Polynome mit ganzzahligen Werten, dann gibt es unendlich viele , sodass .
Der Satz von Szemerédi folgt aus der Erdős-Vermutung über arithmetische Folgen.
Literatur
- Endre Szemerédi: On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27, 199–245 (1975).