Satz über rationale Nullstellen

Der Satz über rationale Nullstellen (auch rationaler Nullstellentest oder Lemma von Gauß) ist eine Aussage über die rationalen Nullstellen ganzzahliger Polynome. Sie beinhaltet ein notwendiges Kriterium für die Existenz einer rationalen Nullstelle und liefert dabei eine endliche Menge rationaler Zahlen, in der alle rationalen Nullstellen enthalten sein müssen.

Aussage

Für jede rationale Nullstelle eines ganzzahligen Polynoms gilt, dass der Zähler ihrer gekürzten Darstellung das Absolutglied und der Nenner den Leitkoeffizienten des Polynoms teilt.

Seien also mit ein Polynom vom Grad und (wobei teilerfremd sind) eine rationale Nullstelle von , dann ist durch teilbar und durch teilbar.

Anmerkungen

Wenn der Leitkoeffizient des Polynoms den Betrag 1 besitzt, dann ist jede rationale Nullstelle eine ganze Zahl, die das Absolutglied teilt.[Note 1]

Der Satz lässt sich auch verwenden, um die rationalen Nullstellen rationaler Polynome zu berechnen. Denn wenn man ein rationales Polynom mit einem gemeinsamen Vielfachen der Nenner seiner Koeffizienten multipliziert, so erhält man ein ganzzahliges Polynom mit den gleichen Nullstellen, zu deren Bestimmung man nun den rationalen Nullstellentest anwenden kann.

Der Satz über rationale Nullstellen ergibt sich auch als Korollar zu einer auf Gauß zurückgehenden allgemeineren Aussage über Polynome über dem Quotientenkörper eines faktoriellen Ringes (siehe Lemma von Gauß). Dieses Korollar besagt, dass sich jede Nullstelle im faktoriellen Ring eines Polynoms mit Koeffizienten in als Bruch in darstellen lässt, sodass der Zähler ein Teiler des Absolutgliedes und der Nenner ein Teiler des Leitkoeffizienten ist.

Beispiele

  1. Aus dem rationalen Polynom erhält man durch Multiplikation mit 30 das ganzzahlige Polynom . Dessen rationale Nullstellen müssen dann in der Menge enthalten sein. Überprüft man nun alle diese Kandidaten durch Einsetzen in oder , so erhält man als Nullstellen , 1 und . Da als Polynom vom Grad 3 maximal drei paarweise verschiedene Nullstellen besitzen kann, existieren in diesem Fall auch keine weiteren irrationalen Nullstellen.
  2. Das Polynom besitzt keine rationale Nullstelle, da 1 und −1 die einzigen Teiler des Absolutglieds und des Leitkoeffizienten sind und und ist.
  3. Das Polynom besitzt ganzzahlige Koeffizienten.
    Die Überprüfung für die Teiler des konstanten Gliedes ergibt sich die Nullstelle .
    Weil jede ganze Zahl auch eine gaußsche Zahl ist, lassen sich die Koeffizienten als gaußsche Zahlen interpretieren.
    Wegen erhalten wir für die Teiler des konstanten Gliedes die komplexen Nullstellen und

Literatur

  • Kurt Meyberg, Peter Vachenauer: Höhere Mathematik 1. Springer, 6. Auflage 2006, ISBN 3-540-41850-4, S. 64 (Auszug in der Google-Buchsuche)
  • Phillip S. Jones, Jack D. Bedient: The historical roots of elementary mathematics. Dover Courier Publications, 1998, ISBN 0-486-25563-8, S. 116–117 (Auszug in der Google-Buchsuche)
  • Charles D. Miller, Margaret L. Lial, David I. Schneider: Fundamentals of College Algebra. Scott & Foresman/Little & Brown Higher Education, 3. überarbeitete Auflage 1990, ISBN 0-673-38638-4, S. 216–221
  • Rolf Walter: Einführung in die Analysis 1. Walter de Gruyter 2007, ISBN 978-3-11-019539-2, S. 110–111, 362 (Auszug in der Google-Buchsuche)

Weblinks

Fußnote(n)

  1. Ist aber dann hat das Polynom nach der Normierung (Division durch den Leitkoeffizienten) rationale Koeffizienten. Die nicht verschwindenden unter ihnen lassen sich in eindeutiger Weise in ein Produkt     von Primfaktoren mit ganzzahligen (auch negativen) Exponenten   zerlegen. Nun lässt sich ein   so finden, dass nach einer linearen Transformation     im transformierten und normierten Polynom
    alle Koeffizienten     ganzzahlig sind. Man nehme nur     mit als der endlichen Menge der in den nicht-verschwindenden Koeffizienten vorkommenden Primfaktoren und
            (Gaußklammer ).
    Im genannten Beispiel     normiert:     erhält man auf diese Weise     und das ganzzahlige Polynom     (welches als Nullstellen hat).