Reziprokenregel

Die Reziprokenregel[1] oder Kehrwertregel[2] dient zur Ableitung von mathematischen Funktionen der Form

Ist die Funktion von einem Intervall in die reellen oder komplexen Zahlen an der Stelle mit differenzierbar, dann ist auch die Funktion an der Stelle differenzierbar und nach der Kettenregel gilt für die Ableitung:

Die Reziprokenregel lautet damit wie folgt in Kurzschreibweise:

Die Reziprokenregel kann auch als ein Spezialfall der Quotientenregel mit aufgefasst werden.

Beispiel

Die Ableitung der Funktion

berechnet sich an allen Stellen, an denen ist, nach obiger Reziprokenregel zu

,

denn die Kosinusfunktion ist die Ableitung der Sinusfunktion.

Einzelnachweise

  1. Harro Heuser: Lehrbuch der Analysis. Teil 1. 17. Auflage. Vieweg + Teubner, Wiesbaden 2009, ISBN 978-3-8348-0777-9, S. 271.
  2. Kehrwertregel für Ableitungen. In: Formelsammlung-Mathe.de. Abgerufen am 15. August 2019.