Recycling

Universelles Recycling-Symbol angelehnt an das Möbiusband

Beim Recycling (gelegentlich als RC abgekürzt) bzw. bei der regenerativen Abfallverwertung werden nicht mehr gebrauchte Produkte und Materialien wiederverwertet, indem sie vollständig oder teilweise zu Sekundärrohstoffen aufbereitet werden. Die so produzierten Stoffe werden als Rezyklate (seltener: Recyclate) oder Regenerate bezeichnet.

Der Begriff „Recycling“ ist ein Lehnwort aus dem Englischen (recycling – ausgesprochen [ɹɪˈsaɪklɪŋ] – für „Wiederverwertung“ oder „Wiederaufbereitung“); etymologisch leitet er sich vom griechischen kýklos (Kreis) sowie dem lateinischen Präfix re- (zurück, wieder) ab.

Recycling trägt als wesentlicher Bestandteil der Kreislaufwirtschaft dazu bei, Materialkreisläufe zu schließen oder zu verlangsamen und so den Einsatz natürlicher Ressourcen und die Erzeugung von Emissionen zu vermindern. Gesetzlich wird erst von Recycling gesprochen, wenn der Rohstoff zuvor als Abfall einzustufen war; andernfalls handelt es sich um Wiederverwendung. Der umgangssprachliche Gebrauch des Begriffs „Recycling“ umfasst oft beide Bedeutungen.

Recyclingstelle an der Technischen Universität Danzig
Video: Recycling – eine uralte Idee

Definition und Einordnung

Die Abfallrahmenrichtlinie der EU (Richtlinie 2008/98/EG) und das Kreislaufwirtschaftsgesetz (KrWG) definieren Recycling folgendermaßen:

„Recycling [...] ist jedes Verwertungsverfahren, durch das Abfälle zu Erzeugnissen, Materialien oder Stoffen entweder für den ursprünglichen Zweck oder für andere Zwecke aufbereitet werden; es schließt die Aufbereitung organischer Materialien ein, nicht aber die energetische Verwertung und die Aufbereitung zu Materialien, die für die Verwendung als Brennstoff oder zur Verfüllung bestimmt sind.“

§ 3 Abs. 25 KrWG[1]

Das Recycling wird dabei in eine Abfallhierarchie eingeordnet, die als grundlegende Prioritätenfolge für alle Rechtsvorschriften und politischen Maßnahmen im Bereich der Abfallvermeidung und -bewirtschaftung festgelegt ist:[2]

  1. Vermeidung – unter anderem durch das Verbot umweltgefährdender Stoffe wie PCB und FCKW
  2. Vorbereitung zur Wiederverwendung – zur erneuten Nutzung des Guts für denselben Zweck wie bei Mehrweg-Pfandflaschen oder Second-Hand-Nutzung oder für neue Produkte wie beim Upcycling gebrauchter Paletten zu Möbelstücken
  3. Recycling – die Aufbereitung definierter Abfallstoffströme oder Teilen davon zu vermarktungsfähigen Sekundärrohstoffen durch stoffliche Verwertung
  4. sonstige Verwertung z. B. energetische Verwertung – die Verbrennung oder Vergasung zur Energiegewinnung
  5. Beseitigung – z. B. durch Deponieren.

Entgegen dem häufig etwas unklaren allgemeinen Sprachgebrauch beinhaltet Recycling demnach nur den Punkt 3 dieser Liste. Die Gesetzgebung legt damit eindeutig fest, dass Maßnahmen zur Vermeidung von Abfällen dem Recycling vorzuziehen sind.

Hat ein Abfallgegenstand das Ende der Abfallhierarchie erreicht und soll beseitigt werden, ist dies gemäß § 28 KrWG nur in den dafür zugelassenen Anlagen (z. B. Deponien) zulässig. Die Nichteinhaltung kann mit einem Bußgeld nach § 69 Abs. 1 Nr. 2 KrWG, in schweren Fällen auch ein Strafverfahren nach § 326ff. Strafgesetzbuch nach sich ziehen.

Downcycling und Upcycling

Möbel aus alten Reifen (aufgenommen in Osttimor)

Das Ausgangsprodukt und das Erfassungskonzept (Gelber Sack, Recyclinghof, gewerbliche Schrottsammlung etc.) entscheiden darüber, welche Recyclingrouten möglich sind und damit über die Qualität des gewonnenen Rezyklats. Viele vermischte oder verschmutzte Stoffe lassen sich nicht ökonomisch aufbereiten, ohne die Stoffeigenschaften oder die Verarbeitbarkeit zu verschlechtern. Um die Qualitätsminderung, die mit vielen Recyclingprozessen einhergeht, zu verdeutlichen, wird der Begriff Downcycling verwendet.

Wird ein Produkt hingegen in ein neues, höherwertiges Produkt umgewandelt, wird dies als Upcycling bezeichnet. Dabei sind viele Formen des Upcyclings wie die Bearbeitung von Produktionsresten für Kunstprojekte oder die Sammlung von Fallobst eigentlich eine Vorbereitung zur Wiederverwendung, also kein Recycling im Sinne des KrWG, sondern eine Maßnahme zur Abfallvermeidung.[3] Beispiele für Upcycling als Formen des Recyclings im engeren Sinn sind die Verwertung von Kaffeesatz bei der Produktion von Kaffeetassen oder die Herstellung von Designermode aus Textilabfällen.

Die Verwertung von Kunststoffabfällen ist in der Regel ein Downcycling, da Polymere bei der Wiederverarbeitung und unter Umwelteinflüssen dazu neigen zu degradieren.[4] Der Grad der Degradation hängt vom Grundpolymer, von der Beanspruchung während der Nutzung, vom gewählten Aufbereitungs- und dem anschließenden Verarbeitungsverfahren sowie vom Gehalt an Additiven ab. Stabilisierende Additive können den oxidativen Abbau der Molekülketten bei der Verarbeitung und während der Gebrauchsphase stark herabsetzen.[5] In einigen Fällen erreicht der verwertete Kunststoff durchaus das Eigenschaftsniveau der Primärware, insbesondere bei hoher Qualität und Sortenreinheit der Ausgangsstoffe.[6]

Bei der Wiederaufarbeitung von Kernbrennstoffen ist kein vollständiges Recycling möglich. Nach der Abtrennung und Entsorgung der Spaltprodukte können die restlichen Bestandteile des Kernbrennstoffs jedoch wieder zur Produktion neuer Brennelemente genutzt werden.

Gewinnung von Sekundärrohstoffen

Kunststoffe

Vorsortierte und zu Ballen gepresste Polyethylen-Flaschen

Beim Kunststoffrecycling ist zwischen werkstofflichem Recycling und chemischem Recycling zu unterscheiden.[7] Bei Ersterem bleibt die Molekülstruktur der Polymere erhalten, aus alten Getränkeflaschen werden beispielsweise neue Flaschen oder Fasern für die Textilindustrie hergestellt. Beim chemischen Recycling werden hingegen die Moleküle in kleinteilige Bausteine (Monomere) aufgespalten, die entweder zu neuen Kunststoffen polymerisiert oder anderweitig, z. B. zur Herstellung von Treibstoffen, verwendet werden können. Werden aus dem so gewonnenen Rohstoff wieder neue Polymere hergestellt, ist der Energiebedarf für das chemische Recycling viel höher als für das werkstoffliche, da die Moleküle erst zerlegt und anschließend wieder zusammengesetzt werden müssen und beide Prozesse Energie erfordern.

Die meisten Kunststoffabfälle werden daher werkstofflich recycelt. Von den 5,67 Mio. Tonnen Kunststoffabfällen, die 2021 in Deutschland angefallen sind, wurden nur 0,03 Mio. Tonnen (also weniger als 1 %) der rohstofflichen Verwertung, d. h. dem chemischen Recycling zugeführt, 2,32 Mio. Tonnen (also gute 40 %) hingegen dem werkstofflichen Recycling. 1,65 Mio. Tonnen (knapp 30 %) wurden als Rezyklate wieder eingesetzt und haben Neuware substituiert.[8]

Beim Recycling von Kunststoffen besteht ein wesentlicher Unterschied zwischen der Wiederaufbereitung von Produktionsabfällen (Post-Industrial-Recycling) und der Verwertung bereits gebrauchter Produkte (Post-Consumer-Recycling). Sortenreine Produktionsabfälle lassen sich recht einfach recyceln, indem sie zerkleinert, ggf. entstaubt und bei der Produktion der Primärware beigemischt werden. Bei den meisten Produktionsbetrieben ist dies gängige Praxis zur Kosteneinsparung. Die Aufbereitung von Post-Consumer-Abfällen ist hingegen viel aufwendiger. Sie erfordert in den meisten Fällen eine vorgeschaltete Sortierung, die den gemischten Abfallstrom (z. B. die Verpackungen aus dem Gelben Sack) in diverse Fraktionen, darunter die verschiedenen Kunststoffe, trennt. Die eigentliche Verwertung beginnt dann mit dem Schreddern, woraufhin weitere Aufbereitungsschritte zur Abtrennung von Nebenbestandteilen und Kontaminationen folgen. Übliche Verfahren sind hier Magnetscheidung zum Entfernen (ferromagnetischer) Metalle, Dichtetrennung (z. B. mittels Schwimm-/Sink-Verfahren), Waschen, Trocknen und Windsichten. Anschließend wird das aufbereitete Mahlgut entweder direkt zur Produktion neuer Artikel eingesetzt oder durch Extrusion zu Granulat verarbeitet. Der Gesamtenergieverbrauch beim werkstofflichen Recycling wird vielfach überschätzt. Mit rund 10 bis 15 MJ/kg Polymer ist bei Teilen aus thermoplastischen Kunststoffen mit einer Einzelmasse von mehr als 100 g die komplette Aufbereitung durchführbar.[9][10][11]

Stark vermischte oder verschmutzte Kunststoffabfälle lassen sich häufig nicht ökonomisch werkstofflich recyceln. Sie können chemisch (z. B. durch Depolymerisation, Hydrierung, Pyrolyse oder Vergasen) oder thermisch (z. B. als Ersatzbrennstoff in Zementfabriken) verwertet werden. 2021 wurden in Deutschland insgesamt über 50 % der Kunststoffabfälle energetisch genutzt, davon etwa ein Drittel als Ersatzbrennstoff, der Rest zur Stromerzeugung in Müllverbrennungsanlagen.[8]

Metalle

Mischschrott

Metalle werden üblicherweise in hohem Maße recycelt, da die Gewinnung aus Erzen sehr aufwendig und kostenintensiv ist. Das Umschmelzen bedarf nur eines Bruchteils der Energie und der Rohstoffkosten. Allerdings kommt es beim Recycling von Metallen durch die Vermischung von Schrottsorten unterschiedlicher Legierungen in der Schmelze zu Qualitätsverlusten. Dies äußert sich in der Kontamination von Legierungen mit Störstoffen oder in Verlusten von hochwertigen Legierungselementen durch eine zu starke „Verdünnung“ der Schmelze. Hochwertige Legierungen werden derzeit meist durch die Zugabe großer Mengen an ressourcen- und treibhausgasintensiverem Primärmaterial erzeugt.[12]

Der Recyclingprozess ist in seinen Grundzügen für viele Metalle ähnlich. Wenn sie mit anderen Materialien vermischt sind, müssen zunächst Nebenbestandteile und äußere Verunreinigungen abgetrennt werden. Dies erfolgt in der Regel durch Zerkleinern und einen oder mehrere der folgenden Trennprozesse:

Die separierten Metalle werden in einem Schmelzofen, häufig einem Lichtbogen- oder Induktionsofen, aufgeschmolzen und anschließend einer Schmelzebehandlung unterzogen. Dabei werden wasserstoffhaltige Komponenten (Hydroxide und organischen Verunreinigungen), Oxide und störende Elemente entfernt. Beim Recycling von Schrott ist es Stand der Technik, Anhaftungen wie Fette, Öle und Lacke in einem vorgeschalteten Prozess abzubrennen, um zu verhindern, dass der darin enthaltene Wasserstoff die Schmelze verunreinigt. Legierungselemente können während der Schmelzebehandlung entweder hinzugefügt werden, um Oxidationsverluste auszugleichen oder besondere Eigenschaften einzustellen oder abgetrennt werden. Bestimmte Elemente, die sich aufgrund ihrer Stoffeigenschaften chemisch und physikalisch ähnlich verhalten, lassen sich jedoch nur bedingt oder mit großen Aufwand trennen.

Stahl

Recycling-Code für Eisenwerkstoffe und Stahl

Stahl ist mit 630 Mio. t/a (Stand 2019) der weltweit meistrecycelte Industriewerkstoff.[13] Er wird mehrfach recycelt, so dass aktuell rund 70 % des bisher erzeugten Stahls im Gebrauch sind. Die Recyclingquote einzelner Stahlanwendungen liegt z. T. bei deutlich über 90 %.[14] 2017 wurden 35,5 % des weltweit erzeugten Rohstahls aus Sekundärrohstoffen hergestellt. 2018 lag der Schrotteinsatz für die EU-Rohstahlproduktion bei 93,8 Mio. t.[15] Laut dem Weltstahlverband „worldsteel“ wurden seit dem Jahr 1900 mehr als 22 Mrd. t Stahl recycelt.[16]

Der Einsatz von Stahlschrott in der Stahlproduktion spart gegenüber der Produktion mit Primärrohstoffen 60–75 % Energie[17] und verringert die CO2-Emission um deutlich über 50 %; die genaue CO2-Bilanz hängt von der Art der Stromerzeugung ab. Die Wiederverwertung einer Tonne Stahl spart laut dem Europäischen Dachverband für die Recyclingindustrie EuRIC 1,4 t Eisenerz, 0,8 t Kohle, 0,3 t Kalkstein und Zusatzstoffe sowie 1,67 t CO2. 2018 wurden in der EU durch die Wiederverwertung von 94 Mio. t Stahlschrott 157 Mio. t CO2 eingespart. Dies entspricht dem CO2-Ausstoß der Fahrzeugflotten Frankreichs, Großbritanniens und Belgiens.[15]

Für den Korrosionsschutz von Eisen und Stahl werden Stoffe eingesetzt, die das Recycling stören, verloren gehen oder als umweltrelevante Stoffe entweichen bzw. zurückgehalten werden müssen. Dazu gehören insbesondere die Legierungselemente Chrom und Nickel sowie als Beschichtungen Lacke, Zinn (Weißblech) und Zink. Auch Kupfer aus Elektrogeräten stellt ein Problem beim Stahlrecycling dar.

Kupfer

Granulat aus elektrolytisch gereinigtem Kupfer

Kupfer kann aus Altmaterialien ohne Qualitätseinbußen beliebig oft recycelt werden. Nahezu alle kupferhaltigen Materialien können als Rohstoffe zur Kupfergewinnung dienen. Nicht verunreinigte Produktionsabfälle aus der Metallverarbeitung (Neu- bzw. Produktionsschrotte) können direkt wieder eingeschmolzen und weiterverarbeitet werden, ebenso sortenrein sortierte Kupfer- und Legierungsschrotte. Alle anderen kupferhaltigen Sekundärrohstoffe wie isolierte Kabel und Leitungen oder in Kraftfahrzeugen und Elektrogeräten verbaute Komponenten müssen zunächst von Nebenbestandteilen und äußeren Verunreinigungen getrennt werden. Je nach Güte der Trennprozesse lassen sich Reinheiten von bis zu 99,95 % erzielen, so dass das produzierte Kupfergranulat direkt in der Metall-, Automobil- und der chemischen Industrie eingesetzt werden kann. Wenn Verunreinigungen mit Begleitelementen oder sonstige mineralische und organische Anhaftungen ein direktes Einschmelzen zur Legierungsherstellung aus Qualitätsgründen verhindern, müssen pyrometallurgische Recyclingverfahren angewendet werden. In einem mehrstufigen Prozess, an dessen Ende die elektrolytische Raffination steht, können Verunreinigungen nahezu restlos entfernt werden, so dass eine Reinheit über 99,99 % erzielt wird.[18]

2022 wurde weltweit knapp ein Drittel des jährlichen Kupferbedarfs von 32 Mio. t aus Recyclingmaterial gedeckt,[19] in der EU sind es rund 45 %,[15] in Deutschland über 50 %. Nimmt man eine durchschnittliche Lebensdauer aller Kupferprodukte von ca. 33 Jahren an und bezieht die Altkupfermenge auf die Kupferproduktion im selben Zeitraum, ergibt sich ein Anteil an wiederverwertetem Kupfer von ca. 80 %.[18] 2019 wurden von den 2,63 Mio. t in der EU aus gebrauchten Produkten generierten Kupferschrotten 1,60 Mio. t, also 61 % gesammelt und in der EU wiederverwertet.[15]

Aluminium

Transportfertiger Aluminiumschrott

Wenn Aluminiumlegierungen sortenrein gesammelt und aufbereitet werden, können sie aus dem resultierenden Umschmelzaluminium ohne Qualitätsverlust recycelt werden. Da verschiedene Legierungselemente (z. B. Magnesium) beim Umschmelzen nicht entfernt werden können, kommt es bei nicht sortenreiner Erfassung häufig zum Downcycling. Mittlerweile lassen sich verschiedene Aluminiumlegierungen auch großtechnisch mithilfe laserinduzierter Plasmaspektroskopie (LIBS) voneinander trennen.[20][21][22]

Recyceltes Aluminium bietet gegenüber primär erzeugtem große ökonomische und ökologische Vorteile, da seine Herstellung nur etwa 5 % der Energie erfordert, die zur Gewinnung aus Bauxit benötigt wird, und 85–95 % der CO2-Emissionen eingespart werden können.[23][15][24] Das Wiedereinschmelzen einer Tonne Aluminiumschrott erfordert ca. 2800 kWh an elektrischer Energie und erzeugt etwa 600 kg CO2.[25] Die Absolutwerte für Energiebedarf und CO2-Emissionen sind damit immer noch hoch und liegen, trotz des deutlich niedrigeren Schmelzpunktes von Aluminium, in derselben Größenordnung wie die beim Stahlrecycling.

2019 stammten 33 % des weltweit produzierten Aluminiums aus der Recyclingroute, 19 % aus gebrauchten Produkten (post-consumer, PC) und 14 % aus Industrieabfällen (post-industrial, PI). In Europa waren es 59 % (37 % PC, 22 % PI), in China 24 % (11 % PC, 13 % PI) und in Japan 100 % (69 % PC, 31 % PI).[26] 75 % der bisher insgesamt hergestellten 1,5 Mrd. t Aluminium sind noch heute in Gebrauch.[24] Von der Gesamtmenge des in der EU anfallenden Aluminiumschrotts aus gebrauchten Produkten (4,34 Mio. t) wurden rund 3,0 Mio. t gesammelt und aufbereitet, was einer Recyclingquote von 69 % entspricht.[15]

Glas

Altglas im Schmelzofen

Glas lässt sich beliebig oft einschmelzen und zu neuen Produkten verarbeiten, entscheidend für die Qualität ist der Reinheitsgrad der Scherben aus dem Altglasrecycling. Da sich Hohlglas und Flachglas auch in der chemischen Zusammensetzung unterscheiden, werden beide getrennt voneinander recycelt. Die Recyclingraten unterscheiden sich dabei erheblich: Während 2018 bei Behälterglas geschätzte 32 % der weltweit produzierten Glasmenge aus Altglas bestanden, wurde bei Flachglas eine Recyclingrate von nur 11 % erzielt. Die Gesamtrecyclingrate betrug 21 %.[27]

In Europa werden Einweg-Glasverpackungen seit Jahrzehnten nahezu flächendeckend für das Recycling gesammelt, teils über die haushaltsnahe Straßensammlung, teils über öffentliche Altglascontainer. In Deutschland wird hierbei zwischen Weiß-, Grün- und Braunglas unterschieden, in anderen Ländern wie Österreich und Schweden werden lediglich ungefärbte Glasverpackungen (Weißglas) und gefärbte Glasverpackungen (Buntglas) getrennt gesammelt. Die Farbtrennung ist wichtig für den Recyclingprozess, denn farbige Flaschen führen bei farblosem Glas zu ungewollten Farbstichen. Umgekehrt führt die Zugabe von Weißglas beim Aufbereiten von Buntglas zu Glasfehlern[28] und vermindert die für empfindliche Füllgüter (z. B. Milch, Medikamente, Bier) wichtige Lichtschutzfunktion. Da Grünglas am ehesten Fehlfarben verträgt, sollten andersfarbige Glasbehälter in den Grünglascontainer entsorgt werden.[29]

In der EU-27 wurden 2021 fast 12 Mio. t Glasverpackungen für das Recycling gesammelt. Die durchschnittliche Sammelrate bezogen auf die in Verkehr gebrachte Menge lag bei 80,1 %, wobei die länderspezifischen Raten sehr unterschiedlich ausfallen. In Norwegen, Finnland, Belgien, Luxemburg, Slowenien und der Schweiz wurden Werte von über 90 % erreicht, während die Sammelraten in Ungarn und Griechenland unter 50 % lagen.[30] Da wegen der enthaltenen Verunreinigungen zwischen 3 % und 7 % der gesammelten Menge nicht wieder aufbereitet werden können, liegen die tatsächlichen Recyclingquoten niedriger. Laut einer Studie über die „Leistung des Verpackungsglasrecyclings in Europa“ wurden 2019 92 % der gesammelten Glasverpackungsabfälle recycelt und 91 % der recycelten Menge wieder zur Herstellung von Flaschen und Gläsern eingesetzt.[31] Je nach Farbtrennung können Glashütten unterschiedliche Altglasanteile zur Herstellung neuer Glasverpackungen einsetzen. Der Recyclinganteil bei der Produktion von Grünglas liegt bei 90–95 %, bei der von Braunglas bei 70 %, Weißglas lässt in der Regel nur einen Anteil von 60 % zu.[27]

In Deutschland werden jährlich rund 2 Mio. t Altglas gesammelt, die Recyclingquote lag 2019 bei 84,1 %.[32] In der Schweiz wurden 2022 rund 305.000 t Altglas aus Flaschen und damit 97 % der auf den Markt gebrachten Getränkeflaschen verwertet.[33]

Papier

Geschreddertes Altpapier zur weiteren Aufbereitung

Papierrecycling umfasst die Aufbereitung von Altpapier, Pappe und gebrauchtem Karton zu Sekundärfaserstoff (Altpapierstoff), der wieder zur Herstellung neuer Papiere eingesetzt wird. Papier kann mehrfach, aber nicht beliebig of recycelt werden; nach Schätzungen der Industrie sind drei bis acht Zyklen realisierbar.[34] Da jeder Recyclingzyklus die Fasern verkürzt und schwächt, muss zur Herstellung höherwertiger Papiererzeugnisse neuer Zellstoff in die Produktion eingebracht werden.

Beim Recyclingprozess werden nach einer Sortierung in definierte Qualitäten[35][36][37] die Papierfasern in Wasser gelöst, voneinander getrennt und von Fremdstoffen, Druckfarben und zu kurzen Fasern gereinigt. Zur Herstellung von Recyclingpapier wird nur die Hälfte an Energie und zwischen einem Siebtel bis zu einem Drittel der Wassermenge benötigt, die zur Produktion von Papier aus Primärfasern eingesetzt wird. Die ⁠Treibhausgas⁠emissionen sind bei Recyclingpapieren auf dem deutschen Markt durchschnittlich 15 % geringer als bei Frischfaserpapieren.[38]

2021 wurden weltweit 244 Mio t Papier und Pappe aus Sekundärfaserstoff hergestellt[39], das entspricht 59 % der insgesamt produzierten Menge.[40] Die Recyclingrate als Verhältnis von Altpapierrecycling zu Papierverbrauch betrug weltweit rund 60 %, in der EU (einschließlich Norwegen, Schweiz und UK) 73 %, in Asien 57 %, in Nordamerika 66 %, in Lateinamerika 46 % und in Afrika 38 %.[41] Die angegebenen Raten beziehen Handelsmengen komplett mit ein, so dass sich durch Nettoimporte von Altpapier und/oder durch Nettoexporte von Sekundärfaserstoff oder Recyclingpapier Werte von über 100 % ergeben können. Die netto gehandelten Mengen ausgeschlossen, betrug 2022 der Anteil des in Europa zur Papierproduktion eingesetzten Altpapiers am europäischen Verbrauch 63 % (im Vergleich zu 71 % inklusive Nettohandel).[41] In Deutschland hat sich die Altpapiereinsatzquote, also der Altpapieranteil an der gesamten inländischen Papierproduktion, von knapp 61 % im Jahr 2000 auf rund 79 % im Jahr 2022 erhöht, die Altpapierverwertungsquote (Altpapierverbrauch/Papierverbrauch) hingegen von 58 % auf über 95 %. Die Altpapierrücklaufquote (Altpapieraufkommen/Papierverbrauch) ist im selben Zeitraum nur unwesentlich von 72 % auf 74 % gestiegen.[38]

Ein negativer Aspekt bei der Altpapierverwertung ist, dass sich bei wiederholten Recyclingzyklen wasserlösliche Schadstoffe in den Kreisläufen anreichern. Dazu gehören Mineralölbestandteile aus Druckfarben, per- und polyfluorierte Verbindungen (⁠PFAS⁠), Bisphenol S aus Thermopapier von Kassenbons und Thermoetiketten und Phthalate aus Klebstoffen. Auch Stoffe, die in Deutschland seit Jahren nicht mehr eingesetzt werden, können über Altpapier aus anderen Ländern in das Recyclingpapier eingetragen werden. Diese Verunreinigungen gefährden den Einsatz von Altpapier für Lebensmittelverpackungen, denn sowohl die Bedarfsgegenständeverordnung als auch das Bundesinstitut für Risikobewertung geben Obergrenzen für den Gehalt an gesundheitsbedenklichen Stoffen in Lebensmittelkontaktmaterialien vor.[38]

Recycling gemischter Stoffströme

Kraftfahrzeuge

Gepresste Fahrzeugwracks bereit zum Schreddern

Beim Fahrzeugrecycling liegt das Hauptaugenmerk auf der Rückgewinnung der Metalle (primär Eisen und Stahl), die bei Kraftfahrzeugen in Summe ca. 75 % der Gesamtmasse ausmachen.[42] Die Wiederverwendung noch funktionsfähiger Gebrauchtteile durch „Ausschlachten“ der Fahrzeuge wird in vielen Industrieländern aufgrund des schnellen Modellwechsels, der ständig weiterentwickelten Elektronik und der geringeren Haltbarkeit der Ersatzteile zunehmend unattraktiv. Altfahrzeuge werden in der Regel von einem lokalen Demontagebetrieb angenommen, der zunächst Batterien, Flüssiggastanks und Airbags demontiert bzw. letztere gezielt auslöst und schadstoffbelastete Komponenten wie Ölfilter sowie sämtliche Betriebsflüssigkeiten entnimmt.[43] Nach der Demontage verkaufsfähiger Ersatzteile und separat zu verwertender Komponenten wie Katalysatoren, Reifen, Teile der Fahrzeugelektronik und teilweise auch der Scheiben werden die Fahrzeuge zumeist mithilfe einer Schrottpresse verdichtet, um sie kostengünstiger transportieren zu können. Ein Verwertungsbetrieb übernimmt dann das Schreddern und die Trennung der Materialien (s. Abschnitt Metalle) in Stahlschrott, verschiedene Nichteisenmetalle (Aluminium, Magnesium, Kupfer, Zink, Blei) und eine Kunststoff- bzw. Schredderleichtfraktion. Letztere wird nur ungefähr zur Hälfte werkstofflich verwertet, der Rest wird zwecks Energierückgewinnung verbrannt oder deponiert.[44]

Im Jahr 2021 fielen in der EU insgesamt rund 5,7 Mio. Altfahrzeuge zur Verwertung an (6,5 Mio t), die meisten davon in Frankreich (1,5 Mio t), gefolgt von Italien (1,4 Mio t) und Spanien (0,86 Mio t). Auch in Polen (0,52 Mio t) wurden mehr Altfahrzeuge verwertet als in Deutschland, das mit rund 0,44 Mio t auf Platz 5 lag.[45] Die Richtlinie 2000/53/EG über Altfahrzeuge fordert seit 1. Januar 2015 eine Verwertungsquote (Wiederverwendung + Recycling + Energierückgewinnung) von mindestens 95 % der anfallenden Masse sowie eine Recyclingquote (Wiederverwendung + Recycling) von mindestens 85 %.[43] In Deutschland wird die geforderte Recyclingquote seit 2015 kontinuierlich erfüllt, 2021 lag sie bei 90 %. Die Verwertungsquote verfehlte hingegen 2019 mit 93,6 % und 2020 mit 94,0 % zweimal in Folge das Ziel von 95 %. 2021 wurden die EU-Vorgaben mit 97,5 % wieder eingehalten.[46]

Nur etwa die Hälfte der rund 12 Mio. Automobile, die pro Jahr in der EU aus dem Verkehr genommen werden, wird in zugelassenen Recyclinganlagen behandelt. Jährlich enden rund 4 Mio. Kraftfahrzeuge mit „unbekanntem Verbleib“, d. h. sie werden abgemeldet, ohne dass Nachweise über eine ordnungsgemäße Entsorgung oder den legalen Export vorliegen. Der Großteil der verschwundenen Fahrzeuge wird in Europa, häufig unter Missachtung von Sicherheits- und Umweltvorschriften, illegal demontiert. Dies hat erhebliche Auswirkungen auf die Umwelt, da jedes Jahr bis zu 55 Mio. Liter gefährlicher Flüssigkeiten verloren gehen.[47] Ein Teil der Altfahrzeuge wird in Drittländer exportiert, obwohl sie als gefährliche Abfälle gelten, deren Ausfuhr aus der EU in Nicht-OECD-Länder verboten ist. In der Praxis ist es jedoch schwierig, zwischen einem legal exportierten Gebrauchtwagen und einem Altauto zu unterscheiden. Am 13. Juli 2023 schlug die Europäische Kommission eine neue Verordnung über Altfahrzeuge vor, die unter anderem dem „Verschwinden“ von Fahrzeugen Einhalt gebieten soll.[48]

Elektro- und Elektronikgeräte

Verarbeitung von Elektronikschrott in einem Recyclingbetrieb

Elektro- und Elektronikschrott ist heute der am schnellsten wachsende Abfallstrom der Welt[49][50] – angetrieben durch höhere Verbrauchsraten (insbesondere im Bereich der IT und der Unterhaltungselektronik), kurze Lebenszyklen und mangelnde Reparaturmöglichkeiten. 2019 fielen weltweit 53,6 Mio. t Elektroschrott (ohne Solarmodule) an, das sind durchschnittlich 7,3 kg pro Kopf. Dieser Schrott hat einen Rohstoffwert von etwa 57 Mrd. USD, wozu Eisen, Kupfer und Gold am meisten beitragen. Die Erzeugung von Elektroschrott ist seit 2014 um 9,2 Mio. t gestiegen und wird den Prognosen zufolge bis 2030 auf 74,7 Mio. t anwachsen – fast eine Verdoppelung in nur 16 Jahren.[51]

Elektroschrott ist ein sehr heterogener Stoffstrom, der neben Metallen aller Art, verschiedenen Kunststoffen und Glas häufig gesundheits- und umweltgefährdende Stoffe enthält, darunter Blei, Arsen, Cadmium, Chrom(VI)-Verbindungen, Quecksilber und diverse Halogenverbindungen. Zumeist sind wertvolle Metalle und seltene Erden in kleinen Mengen enthalten, was das stoffliche Recycling lukrativ, aber auch aufwendig macht. In komplexen Elektronikgeräten wie Smartphones finden sich bis zu 60 verschiedene Elemente aus dem Periodensystem, wobei viele davon technisch rückgewinnbar sind.[50] Je nach Komplexität und Schadstoffgehalt muss das Gerät oder die Baugruppe manuell demontiert und von Schadstoffen befreit werden, bevor sie z. B. durch Schreddern maschinell verarbeitet werden kann. Aus Elektroaltgeräten werden neben Edel- und Sondermetallen hauptsächlich Gusseisen, Stahl, Kupfer, Aluminium und Messing gewonnen.[52]

Die Kunststofffraktion besteht aus einer Vielzahl unterschiedlicher Polymere und kann nur zu etwa 20 % wiederverwertet werden.[53] Zum einen bestehen Leiterplatten aus glasfaserverstärkten Duromeren, die nicht recycelbar sind; zum anderen sind viele Kunststoffkomponenten hochgradig schadstoffbelastet, da sie aus Brandschutzgründen flammhemmend ausgerüstet sein müssen und dafür häufig bromierte Flammschutzmittel, teilweise in Kombination mit Antimontrioxid, eingesetzt werden.[54][55] Bei deren Verbrennung entstehen hochtoxische Substanzen (polybromierte Dibenzodioxine und Dibenzofurane), die in Müllverbrennungsanlagen aus dem Rauchgas gefiltert werden müssen.[53]

Weltweites Elektroschrottaufkommen und Sammelquoten 2019[51]
RegionGesamt-
aufkommen
Pro-Kopf-
Menge
Sammel-
quote
Asien24,9 Mio. t5,6 kg11,7 %
Europa12,0 Mio. t16,2 kg42,5 %
Amerika13,1 Mio. t13,3 kg9,4 %
Ozeanien2,9 Mio. t16,1 kg8,8 %
Afrika0,7 Mio. t2,5 kg0,9 %

2019 wurden weltweit nur 17,4 % des angefallenen Elektroschrotts geordnet gesammelt und dem Recycling zugeführt. Damit ist der Verbleib 44,3 Mio. t Elektroschrott ungewiss, und seine Handhabung in Ländern mit mittlerem und niedrigem Einkommen führt zu hohen Umweltbelastungen und schweren gesundheitlichen Schäden bei Arbeitern und Anwohnern in der Umgebung von Entsorgungsanlagen (vgl. Artikel Elektronikschrottverarbeitung in Guiyu“, „Elektronikschrottverarbeitung in Agbogbloshie). Zwar wuchs die formal dokumentierte Sammelrate zwischen 2014 und 2019 um 1,8 Mio. t, doch kann die Zunahme der Recyclingaktivitäten von rund 0,4 Mio. t/a bei weitem nicht mit dem Anstieg des Elektroschrottaufkommens von fast 2 Mio. t/a Schritt halten.[51]

Die WEEE-Richtlinie verpflichtet die Vertreiber von Elektro- und Elektronikgeräten in der EU zur kostenlosen Rücknahme der Altgeräte und die Nutzer zur getrennten Sammlung und ordnungsgemäßen Rückgabe. Die Hersteller müssen Systeme für die Verwertung einrichten, die Mengenströme verschiedener Stoffe dokumentieren und die Sammlung, Behandlung, Verwertung und umweltgerechte Beseitigung der Geräte finanzieren. Ab 2016 galt eine jährliche Mindestsammlequote von 45 % des Durchschnittsgewichts der Elektro- und Elektronikgeräte, die in den drei Vorjahren im betreffenden Mitgliedstaat in Verkehr gebracht wurden; seit 2019 liegt die Vorgabe bei 65 %.[56]

In Deutschland wurden die von 2016 bis 2018 geltende Mindestquote jeweils knapp verfehlt oder knapp erreicht (2016: 44,9 %, 2017: 45,1 %, 2018: 43,1 %). Im Jahr 2021 ist die Sammelmenge gegenüber dem Vorjahr von 1,04 Mio t auf 1,01 Mio t Tonnen gesunken. Aufgrund der kontinuierlich steigenden Mengen an in Verkehr gebrachten Geräten blieb die erreichte Sammelquote von 38,6 % deutlich unter dem Niveau des Vorjahres (2020: 44,1 %) und wiederholt weit unterhalb der neuen EU-Vorgabe von 65 %.[57] Die einzigen EU-Länder, die 2021 das vorgegebene Sammelziel erreichten, waren Bulgarien und die Slowakei; Irland (63,8 %) und Lettland (60,2 %) kamen diesem Ziel zumindest nahe.[58]

Für die Verwertung und das Recycling gelten je nach Gerätekategorie seit dem 15. August 2018 folgende Mindestvorgaben, jeweils bezogen auf die gesammelte Menge:[56]

  • Wärmeüberträger und Großgeräte (eine der äußeren Abmessungen > 50 cm): 85 % Verwertung, 80 % Wiederverwendung + Recycling
  • Bildschirme, Monitore und Geräte, die Bildschirme mit einer Oberfläche von > 100 cm2 enthalten: 80 % Verwertung, 70 % Wiederverwendung + Recycling
  • Kleingeräte und kleine IT- und Telekommunikationsgeräte (keine äußere Abmessung > 50 cm): 75 % Verwertung, 55 % Wiederverwendung + Recycling
  • Lampen: 80 % Recycling

Diese Vorgaben haben Deutschland und Österreich in den Jahren 2019 bis 2021 in allen Gerätekategorien eingehalten.[59]

Batterien und Akkumulatoren

Sammlung

Altbatterien

Für gebrauchte Batterien besteht in Deutschland und in der Schweiz eine gesetzliche Rückgabepflicht für Verbraucher und eine Rücknahmepflicht für Handel, öffentlich-rechtliche Entsorgungsträger, Hersteller und Importeure.[60][61] In Österreich muss jeder Inverkehrbringer Batterien unentgeltlich zurücknehmen und Hersteller müssen deren Behandlung entsprechend dem Stand der Technik sicherstellen; eine gesetzliche Rückgabepflicht besteht nicht. Allerdings verpflichtet § 7 der Batterienverordnung die Hersteller dazu, Verbraucher über Sinn und Zweck der getrennten Sammlung von Altbatterien, Nachteile der Beseitigung gemeinsam mit unsortierten Siedlungsabfällen und die die Sinnhaftigkeit der stofflichen Verwertung aufzuklären. Ein wichtiges Ziel der getrennten Sammlung von Altbatterien und des Recyclings ist neben der Gewinnung von Sekundärrohstoffen die Entlastung der Umwelt von Giftstoffen, konkret Blei, Nickel, Cadmium, Quecksilber und Schwefelsäure. Bei Lithium-Ionen-Akkus spielt zudem die Sicherheit eine wichtige Rolle; durch unsachgemäße Entsorgung kommt es immer wieder zu Bränden in Entsorgungsbetrieben und Müllfahrzeugen.[62]

Gerätebatterien und -akkumulatoren

Je nach Batterietyp kommen unterschiedliche Recyclingverfahren zum Einsatz. In der Regel werden Batterien zunächst händisch vorsortiert und anschließend automatisch nach Größe und, z. B. mittels Röntgenverfahren, nach elektrochemischem System getrennt. Eine klare Kennzeichnung des Materialtyps am Gehäuse ist bisher (Stand 2023) nicht gesetzlich vorgeschrieben. Aus zinkhaltigen Gerätebatterien wird in Schmelzöfen in erster Linie Zink wiedergewonnen, beim Aufschmelzen von Alkali-Mangan-Batterien in Lichtbogenöfen entsteht zusätzlich Ferromangan, das als Vorlegierung in Stahlwerken eingesetzt wird. Aus NiCd- und NiMH-Akkus wird mittels Vakuumdestillation ein Nickel-Eisen-Gemisch erzeugt, das entweder bei der Stahlherstellung verwendet oder in seine Bestandteile getrennt werden kann. Dieses Verfahren erlaubt zudem die Rückgewinnung von Cadmium in hoher Reinheit (> 99,9 %). Auch Lithium-Manganoxid-Primärzellen können mittels Vakuumdestillation teilweise wiederverwertet werden, Lithium und Graphit aus den Elektroden sowie die Elektrolytlösungen gehen dabei jedoch verloren.

Blei-Säure-Akkumulatoren

Stoffliche Wiedergewinnung von Blei aus Bleiakkumulatoren

Bei Bleiakkumulatoren muss, unabhängig vom folgenden Recyclingverfahren, zunächst die Schwefelsäure abgetrennt und neutralisiert werden. Sie wird mittels Filterpressen gereinigt und entweder für den erneuten Einsatz regeneriert oder zu Natriumsulfat oder Ammoniumsulfat zur industriellen Verwendung umgesetzt. Die entleerten Akkus werden anschließend in einem Brecher zerkleinert. Die anfallende Bleipaste und die Gitterelektroden werden in Kurztrommelöfen entschwefelt und zu Rohblei verarbeitet,[63] das durch Seigerung oder Elektrolyse weiter raffiniert und neu legiert wird. Das Kunststoffgehäuse kann größtenteils zu Polypropylen-Rezyklat aufbereitet werden, die verbleibende Restfraktion (Hartgummi, PVC, Zellulose) wird verbrannt. Mit effizienten Verfahren lassen sich 92 % der Batteriekomponenten und 98 % des Bleis zurückgewinnen.[64] Weniger aufwendig als die Trennung in die Einzelbestandteile ist, die säureentleerten Altakkus komplett in Schachtöfen zu verhütten. Dabei werden die organischen Stoffe pyrolisiert und die Bleiverbindungen zu metallischem Blei reduziert. Schlacke, Filterstaub und Raffinationsabfälle müssen aufbereitet und können teilweise ebenfalls weiterverwendet werden.

Blei-Säure-Akkumulatoren sind wegen ihres hohen Bleianteils ein weltweit begehrter Rohstoff. Problematisch ist deren Recycling in vielen afrikanischen Ländern,[65] besonders in Nigeria als wichtigem Bleiexporteur,[66] in Indien[67] und China.[68] Dort werden Fahrzeugbatterien häufig ohne besondere Schutzvorkehrungen von Hand aufgebrochen, wobei Säure und Blei ungefiltert in die Umgebung gelangen und zu massiven Schäden bei Menschen und Umwelt führen. Ein beträchtlicher Teil der auf diese Weise recycelten Starterbatterien stammt aus Deutschland, über Umwege importieren europäische Batteriehersteller wiederum das daraus gewonnene Blei.[66][69]

Lithium-Ionen-Akkumulatoren

Eine bisher nicht umfassend gelöste Herausforderung ist das Recycling von Lithium-Ionen-Akkumulatoren. Sie sind einerseits weitaus komplexer aufgebaut als andere Akkus und unterscheiden sich je nach Anwendung stark in ihrer Zusammensetzung. Andererseits ist die Rücklaufquote bei Fahrzeugbatterien noch so gering, dass sich komplexe Recyclingprozesse mit hohen Rückgewinnungsquoten, auch wenn sie technisch machbar sind,[70] meist nicht wirtschaftlich betreiben lassen. Vor der Behandlung müssen Li-Ionen-Akkus entladen und durch Erhitzen deaktiviert werden. Durch die Kombination von Elektrolytrückgewinnung,[71] mechanischen, hydrometallurgischen und pyrometallurgischen Verfahren können theoretisch über 90 % der Materialien stofflich recycelt werden.[72] Relevant sind dabei die Gewinnung von Kupfer, Aluminium, Mangan, Kobalt, Nickel, Lithium, Graphit und organischen Carbonaten des Elektrolyts. Doch weder hydro- noch pyrometallurgische Verfahren führen zu reinen Materialströmen, die sich einfach in ein Kreislaufsystem für Batterien einspeisen lassen. Zudem bieten sie wegen ihres hohen Energiebedarfs (noch) keine ökologischen Vorteile (Stand 2020).[73]

Sammelquoten und Recyclingeffizienzen

2020 dem Recycling zugeführte Mengen an Altbatterien und Recyclingeffizienzen (RE) bezogen auf die jeweilige Inputmenge[74]
LandPb-AkkusNiCd-Akkussonst. Batterien
InputREInputREInputRE
Belgien Belgien27.400 t81 %359 t85 %2.007 t66 %
Deutschland Deutschland150.943 t82 %969 t80 %29.620 t76 %
Frankreich Frankreich258.163 t86 %-84 %12.852 t60 %
Italien Italien159.724 t92 %474 t-4.384 t-
Niederlande Niederlande22.152 t76 %438 t77 %3.901 t72 %
Polen Polen100.468 t78 %317 t93 %19.512 t73 %
Schweden Schweden53.005 t68 %362 t76 %529 t72 %
Spanien Spanien193.302 t73 %272 t86 %8.952 t91 %

In der Richtlinie 2006/66/EG[75] schreibt die EU ihren Mitgliedstaaten Mindestsammelquoten und Mindesteffizienzen für das Recycling von Altbatterien vor. Demnach war bis zum 26. September 2012 eine Sammelquote von mindestens 25 % zu erreichen, bis zum 26. September 2016 ein Quote von 45 %. Für die Recyclingeffizienz gelten je nach Batterietyp folgende Mindestvorgaben, jeweils bezogen auf das durchschnittliche Gewicht:

  • Blei-Säure-Batterien und -Akkumulatoren: 65 %
  • Nickel-Cadmium-Batterien und -Akkumulatoren: 75 %
  • sonstige Altbatterien und -akkumulatoren: 50 %

Sammel- und Recyclingziele für Lithium-Ionen-Akkus gibt die aktuelle EU-Richtlinie nicht vor (Stand Dezember 2023).

Im Jahr 2012 wurden in der EU 64.000 t Gerätebatterien und -akkumulatoren für das Recycling gesammelt, 2020 waren es 99.000 t. Die Sammelquote, die sich jeweils auf die mittleren Verkaufszahlen der letzten drei Jahre bezieht, ist in diesem Zeitraum von 37 % auf 47 % gestiegen. Europaweit die höchsten Sammelquoten erzielten 2020 Island (77 %), Luxemburg (69 %) und Kroatien (68 %). Hingegen lagen Portugal (16 %), Malta (27 %) und Griechenland (34 %) weit unter den geforderten 45 %.[74] In Österreich lag die Sammelquote 2020 mit 48 % etwas höher als in Deutschland mit knapp 46 %, in der Schweiz mit 55 % deutlich darüber.[76]

Nebenstehende Tabelle listet die Länder, in denen 2020 EU-weit die höchsten Mengen an Altbatterien angefallen sind. Die angegebenen Recyclingeffizienzen beziehen sich nicht auf die produzierten, sondern auf die dem Recycling zugeführten Mengen und schließen jede Art des stofflichen Recyclings ein. Dazu zählen beispielsweise auch bei der pyrometallurgischen Aufbereitung anfallende Schlackerückstände, die im Straßenbau eingesetzt werden.

Geschichte

US-Regierungsplakat aus der Zeit des Zweiten Weltkriegs, das zur Trennung von Essens- und Metallabfällen auffordert
(c) Bundesarchiv, Bild 183-2005-0721-527 / CC-BY-SA 3.0
Vorsortierung von Trümmersteinen an einem Leseband in Frankfurt am Main, 1947

Recycling ist kein Phänomen der Neuzeit, sondern wird seit etlichen Jahrtausenden systematisch praktiziert. Die frühesten Beweise sind zwischen 200.000 und 420.000 Jahre alt und stammen aus der Qesem-Höhle in der Nähe von Tel Aviv. Archäologen fanden dort kleine Feuersteinwerkzeuge, von denen sie annehmen, dass sie bei der Herstellung größerer Werkzeuge entstanden sind. Etwa 10 % der an der Fundstelle entdeckten Werkzeuge wurde auf irgendeine Weise wiederverwertet. Nach Angaben der Forscher war dies kein gelegentliches Verhalten, sondern Teil der damaligen Lebensweise.[77]

Mindestens seit dem Altertum werden pflanzliche und tierische Abfälle, insbesondere Erntereste, Mist und Gülle, aber auch menschliche Exkremente als Düngemittel in der Landwirtschaft genutzt. Diese vollständige Wiederverwertung ist Basis der Subsistenzwirtschaft. Im antiken Rom wurden die Exkremente eingesammelt und den Bauern im Umland verkauft; zur Nutzung durch Gerber, Färber und Walker wurden öffentlich Urinbehälter aufgestellt.[78] Auch Baustoffe werden seit jeher nicht nur wiederverwendet, sondern wurden nach dem Einsturz von Gebäuden, z. B. nach Naturkatastrophen, auch weiterverwertet. Amphorenscherben endeten als Beimischung von Terrazzoböden, als Bodenlage in Kuppelöfen oder wurden als Grundlage für Mörtel oder für die Herstellung neuer Keramik genutzt.[78] Auch ausrangierte Metalle und Glas wurden gesammelt, eingeschmolzen und umgearbeitet. Bereits damals war bekannt, dass die Beimischung von Glasbruch zum Rohglas einerseits die Schmelztemperatur verringert und damit die Verarbeitung erleichtert, andererseits die Glasqualität vermindert.[79]

Auch im Mittelalter wurde systematisch recycelt. Die Wegwerfmentalität der Industriezeit existierte aufgrund des allgemeinen Mangels an Gütern nicht. Es war selbstverständlich, leeren Flaschen, gebrauchte Holz- oder Metallgegenstände und Ähnliches weiter zu verwenden. Schrott- und Lumpensammler kümmerten sich um das Einsammeln, Sortieren und Weiterleiten von wiederverwertbarem Material. Altglas wurde in die Glashütten zurückgebracht, Metallteile wurden eingeschmolzen oder umgeschmiedet und aus Lumpen wurde Papier hergestellt.[80] Holz- und Papierabfälle verheizte man zumeist, die Asche konnte zum Waschen verwendet oder für die Glasherstellung aufbereitet werden.[81] 1774 entwickelte der Jurist Justus Claproth zusammen mit dem Papiermacher Johann Engelhard Schmid das erste Recyclingverfahren für bedrucktes Papier, bei dem die Druckerschwärze während der Aufbereitung im Stampfwerk mit Terpentinöl und Wascherde ausgewaschen wurde.[82]

Mit der Industrialisierung veränderte sich nicht nur die Zusammensetzung, sondern vor allem die Menge des Abfalls, so dass 1874 in Nottingham die erste Müllverbrennungsanlage in Betrieb genommen wurde. Andere englische Städte folgten schnell; 1896 ging in Hamburg die erste MVA auf dem europäischen Festland in den Regelbetrieb.[83] Etwa zur gleichen Zeit wurde in Deutschland mit der Gesellschaft für Hausmüllverwertung München eines der neben vergleichbaren Einrichtungen in Budapest und Chicago weltweit ersten Unternehmen zur industriellen Mülltrennung und Wiederverwertung gegründet. In der Verwertungsanlage in Puchheim wurde zunächst der Feinmüll über Siebtrommeln abgetrennt. Der verbleibende Grobmüll gelangte über ein Förderband in eine Arbeitshalle, in der Arbeiterinnen von Hand alle wiederverwertbaren Bestandteile aus dem Müll klaubten: Knochen für die Leimherstellung, Glas, Papier, Lumpen, Leder, Gummi, Kork, Metalle, Speisereste und Holz. Diese Materialien ließen sich gut vermarkten. Der vorher abgetrennte aschehaltige Feinmüll wurde auf sauren Wiesen und unfruchtbarem Moorgrund im Umland zur Humusbildung ausgebracht. Die angeschlossenen Einrichtungen wie Darre, Düngerfabrik und Waschhaus für Textilabfall und Lumpen wurden wenige Jahre nach dem Bau um eine Leimsiederei und eine Superphosphatfabrik ergänzt. Später kam eine eigene Müllverbrennungsanlage zum Betrieb einer Dampfkesselanlage hinzu, um das Werk mit der benötigten Energie zu versorgen. So wurde eine Verwertungsquote von nahezu 100 % erzielt.[84]

Im Ersten Weltkrieg wurde im Deutschen Kaiserreich mit breit angelegten Propagandaaktionen für die Sammlung diverser Roh- und Altstoffe geworben, zunächst für Öle und Fette, später unter anderem für Abfälle von Nahrungsmitteln, Textilien und Haushaltswaren sowie für Altpapier. Ähnliche Sammelinitiativen gab es in Österreich-Ungarn.[85] Auch im Zweiten Weltkrieg wurden Eisen und Buntmetalle so knapp, dass zur Waffenproduktion auf Metallgegenstände des zivilen Gebrauches zurückgegriffen wurde, unter anderem wurden Zehntausende Kirchenglocken aus Bronze beschlagnahmt und eingeschmolzen (s. Metallspende des deutschen Volkes). Rohstoffsammlungen auf freiwilliger Basis starteten auch in anderen Ländern wie im Vereinigten Königreich und in den USA.[86][87] Der Mangel an frischem Holz führte wiederum vielerorts zu einem Wiederaufleben des Altpapierrecyclings.[88][89]

Nach den Weltkriegen veränderte sich die Wirtschafts- und Lebensweise der Menschen in den höher entwickelten Ländern innerhalb weniger Jahre fundamental (1950er-Syndrom). Als mit dem Wohlstand auch der Konsum kurzlebiger Produkte sowie aufwendig verpackter Lebensmittel und Luxusgüter signifikant anstieg, standen die Industrieländer vor einem akuten Müllnotstand. Ein durchschnittlicher Haushalt, der vor 150 Jahren mit etwa 150 Dingen auskam, verwendete nun mehr als 20.000 Gegenstände – vom Haarfestiger bis zur Heftzwecke – und produzierte beispielsweise in der Bundesrepublik in den 1970er Jahren im Durchschnitt wöchentlich 4,7 kg Hausmüll pro Einwohner, also 244 kg pro Einwohner und Jahr. Im November 1971 berichtete das Nachrichtenmagazin Der Spiegel, aus dem bundesdeutschen Hausmüll ließe sich jährlich ein 3000 Meter hoher Abfallberg über dem Oval des Münchner Olympiastadions auftürmen – und jedes Jahr komme ein neuer Dreitausender dazu.[90] Der Abfall wurde großteils nicht mehr wiederverwertet, sondern – oft zusammen mit schadstoffhaltigen Industrieabfällen – auf zumeist ungeordneten Deponien entsorgt.[91] Weiterverwendung und Wiederverwertung waren in den Industrieländern nur in Notzeiten, besonders während und nach Kriegen, ein Thema.

Erst mit Aufkommen der Umweltbewegung in den 1970/1980er-Jahren begann ein Umdenken. Der Club of Rome publizierte 1972 Die Grenzen des Wachstums, eine Studie zur Zukunft der Weltwirtschaft, die explizit auf begrenzte Rohstoffreserven und die Zerstörung von Lebensraum Bezug nahm.[92] Einerseits verbreitete sich die Einsicht, dass die praktizierte Art der Müllentsorgung einen der Hauptfaktoren der Umweltverschmutzung darstellt. Andererseits wurde das Deponieren in urbanen Ballungsräumen zunehmend problematisch bzw. undurchführbar. Das Bewusstsein um die Endlichkeit natürlicher Ressourcen wurde durch die Ölpreiskrisen 1973 und 1979/1980 geschärft. Erste Anfänge zurück zu einer Wiederverwertung war die anfangs freiwillige Mülltrennung, die zum Sinnbild einer ganzen Generation in der westlichen Welt wurde. Ausgehend vom Altglas- und Altpapierrecycling wurden vermehrt Technologien erarbeitet, die die Wiederaufbereitung vieler Altstoffe wirtschaftlich machen, wodurch Abfall zu einem bedeutenden Wirtschaftsgut wurde.

Zunehmende Bedeutung erlangt das Recycling in neuerer Zeit bei Elementen, deren Vorkommen begrenzt sind oder deren Gewinnung aufwendig ist. Das trifft besonders auf die in der Elektro- und Elektronikindustrie häufig verwendeten seltenen Rohstoffe wie Gold und Palladium zu, die früher mit den entsorgten Geräten auf Deponien endeten. Auch Seltene Erden, die z. B. für Brennstoffzellen, NiMH-Akkumulatoren in Elektro- und Hybridfahrzeugen, Katalysatoren und Dauermagnete (in Elektromotoren, Windkraftanlagen etc.) gebraucht werden, rücken wegen ihrer problematischen Gewinnung verstärkt in den Fokus.

Wirtschaftstheorie

Die neoklassische Wirtschaftstheorie bietet keinen theoretischen Rahmen für das Recycling, weil sie vom Individuum ausgeht, das seinen Nutzen maximieren will. Die Neoklassik modelliert den Wirtschaftsprozess mit einer Produktionsfunktion, wobei das Produkt wesentlich verschieden ist von den eingesetzten Produktionsfaktoren. Um Recycling zu modellieren, braucht es ein zyklisches Wirtschaftsmodell, wie es Piero Sraffa vorgeschlagen hat. In seiner Theorie der Kuppelproduktion können unerwünschte und schädliche Nebenprodukte und Abfälle der Produktion als Kuppelprodukte mit negativen Preisen aufgefasst werden.[93] Erst wenn die Abfälle als Rohstoffe in den zyklischen Produktionsprozess zurückgeführt werden können, werden ihre Preise positiv.[94]

Nationales

Recyclingquote für Siedlungsabfälle in Europa[95]
Land20042020
Deutschland Deutschland56,469,6
Osterreich Österreich57,462,3
Slowenien Slowenien20,459,3
Niederlande Niederlande46,956,9
Luxemburg Luxemburg41,552,8
Belgien Belgien53,552,3
Italien Italien17,651,4
Europa Europa-2731,848,6
Tschechien Tschechien5,545,4
Litauen Litauen1,945,3
Danemark Dänemark41,045,0
Frankreich Frankreich29,042,7
Slowakei Slowakei6,142,2
Finnland Finnland33,641,6
Irland Irland29,540,4
Lettland Lettland4,439,7
Polen Polen4,938,7
Schweden Schweden43,938,3
Spanien Spanien30,936,4
Bulgarien Bulgarien17,234,6
Ungarn Ungarn11,832,0
Kroatien Kroatien3,229,5
Estland Estland24,828,9
Portugal Portugal13,526,5
Griechenland Griechenland10,121,0
Zypern Republik Zypern3,216,6
Rumänien Rumänien1,113,7
Malta Malta6,310,5
Schweiz Schweiz48,752,8
Norwegen Norwegen36,545,0
Albanien Albanien018,1
Serbien Serbien015,4
Montenegro Montenegro04,6

Deutschland

In den 1960er Jahren begann die DDR vermittels Altstoffsammlungsaktionen und dem SERO-System der VEB Kombinat Sekundär-Rohstofferfassung Rohstoffe, unter anderem zwecks Deviseneinsparung, systematisch mehrfach zu nutzen. Dabei gab es festgelegte Rücknahmepreise für verschiedene Altmaterialien.

In den 1970er Jahren wurden Umweltschutz und Abfallvermeidung zum offiziellen Aufgabengebiet der Bundesrepublik erklärt: 1972 wurde das erste Abfallbeseitigungsgesetz der BRD beschlossen, 1975 das Abfallwirtschaftsprogramm '75 der Bundesregierung und 1986 die TA Luft für die Vermeidung von Emissionen durch Abfälle und ihre Behandlung. Hinzu kamen später die Altölverordnung, die Verpackungsverordnung und 1996 das Kreislaufwirtschafts- und Abfallgesetz (KrW-/AbfG).[Anm. 1] Dieses Gesetz und die zugehörigen Verordnungen verzeichnen detaillierte Vorschriften zur Vermeidung, Verwertung und Ablagerung von Abfällen. Prinzipiell ging es nicht mehr vorrangig um Kapazitätsfragen von Deponien, sondern in erster Linie darum, Müll zu vermeiden, wenn nicht möglich, ihn zu verwerten, und erst wenn dies nicht möglich ist, ihn zu deponieren (vgl. § 4 Kreislaufwirtschafts- und Abfallgesetz). Es folgte der Europäische Abfallkatalog und das Duale System Deutschland (Grüner Punkt).

1994 wurde die Direktive des Umweltschutzes im Grundgesetz der Bundesrepublik Deutschland aufgenommen, wo es in Artikel 20a heißt:

„Der Staat schützt auch in Verantwortung für die zukünftigen Generationen die natürlichen Lebensgrundlagen und die Tiere im Rahmen der verfassungsgemäßen Ordnung durch die Gesetzgebung und nach Maßgabe von Gesetz und Recht durch die vollziehende Gewalt und die Rechtsprechung.“

Artikel 20a des Grundgesetz der Bundesrepublik Deutschland 1994

Seit 2005 gilt das Elektro- und Elektronikgerätegesetz (ElektroG). Diese Richtlinie nahm die EU-Mitgliedstaaten in die Pflicht, bis zum 13. August 2005 ein funktionierendes E-Schrott-Recycling-System in Betrieb einzurichten und ab Dezember 2006 mindestens vier Kilogramm pro Person und Jahr zu recyclen. Neben gängigem Elektronikschrott fallen LED- und Energiesparlampen (Kompaktleuchtstofflampen) unter diese Richtlinie, denn sie enthalten neben Quecksilber und weiteren problematischen Stoffen auch elektronische Bauteile. Die Sammlung wird in Deutschland von dem Retourlogistikunternehmen Lightcycle organisiert und erfolgt unter anderem in mehr als 2100 kommunalen Sammelstellen (Wertstoffhöfen, Schadstoffmobile usw.) und 4000 Sammelstellen im Handel und Handwerk (Drogeriemärkte, Baumärkte, Elektrohandwerker usw.). Für gewerbliche Mengen stehen mehr als 400 Großmengensammelstellen zur Verfügung. Mengen ab einer Tonne (etwa 5000 Altlampen) werden von dem Logistikunternehmen abgeholt.

Eine Systematik wurde durch den Recycling-Code eingeführt, den man im Wesentlichen auf Produkten aus Kunststoff, aber auch auf anderen Gegenständen finden kann.

1991 wurde von der Bundesregierung die Verpackungsverordnung erlassen, der zufolge zwecks Müllvermeidung ab einem bestimmten Marktanteil von Einwegverpackungen für Getränke ein Einwegpfand erhoben werden sollte. Dieses Pfand wird seit 2003 auf die meisten Einweg-PET-Flaschen und Getränkedosen erhoben. Die halbautomatische Pfandflaschen-Rücknahme in Supermärkten wurde inzwischen vielerorts entsprechend angepasst durch Rücknahme-Automaten, die Dosen und PET-Einwegflaschen zusammenpressen und separieren von Pfandflaschen, oder ergänzt um entsprechende separate Einwegverpackungs-Rücknahmeautomaten. Für die Getränkedosen wurde dadurch eine Recyclingquote erreicht, die fast dem Ideal der Kreislaufwirtschaft entspricht, während PET-Flaschen teils verbrannt oder zu Polyesterfasern verarbeitet werden.

Wertstoffhöfe werden in der Regel in einer Gemeinde in Ergänzung zu den aufgestellten Mülltonnen und der Sperrmüll-Straßensammlung angeboten. Der Einzugsbereich je Einrichtung liegt in Deutschland in der Regel bei 50.000 Haushalten und einem Anlieferungsradius von 15 km. Diese Sammelstellen für die Entsorgung von Abfällen gibt es deutschlandweit. Allein in Berlin sind über 20 Wertstoffhöfe zu finden, wobei die Berliner Stadtreinigung (BSR) in Deutschland als größter kommunaler Entsorger gilt.

Trotz einer Kunststoffrecyclingquote von mehr als 50 Prozent im Jahr 2019 werden der Kosten wegen lediglich etwa sieben Prozent des Verpackungsmülls in Deutschland tatsächlich wiederverwendet, weil der Anschaffungspreis von Neuplastik günstiger ist als der von recyceltem Kunststoff. Zwar verpflichtet § 21 des Verpackungsgesetzes von 2017 die Systeme, Anreize zu schaffen, um die Verwendung von Recyclaten sowie von nachwachsenden Rohstoffen zu fördern. Eine Verwendung von recyceltem Kunststoff, die sich jedoch über die bestehende Freiwilligkeit hinaus verbindlich auf die Herstellung neuer Kunststoffprodukte erstrecken würde, ist hingegen vom Gesetzgeber nicht vorgeschrieben. Die für die Einhaltung des Verpackungsgesetzes zuständige Zentrale Stelle Verpackungsregister warnte im Jahr 2020 vor einer Ineffizienz des Gesetzes.[96]

Seit 2017 gibt es in Deutschland mit der neuen Klärschlammverordnung für die meisten Kläranlagen eine Recyclingpflicht für Phosphor.[97] Phosphor ist ein kritischer Rohstoff. Er wird vor allem als Düngemittel in der Landwirtschaft eingesetzt, aber auch als Futtermittel und in diversen industriellen Anwendungen[98]. Die nutzbaren Reserven sind jedoch begrenzt. Deutschland und Europa sind nahezu vollständig von Importen abhängig.[99] Durch das Phosphor-Recycling aus Klärschlamm könnten rein rechnerisch etwa 40 % des heute eingesetzten mineralischen Phosphordüngers in Deutschland ersetzt werden.[100] Mist und Gülle enthalten große Mengen an Phosphor, die noch nicht optimal genutzt werden.

Österreich

In Österreich ist Recycling als zentrale Zielsetzung im § 1 des Abfallwirtschaftsgesetzes (AWG 2002) verankert.[Anm. 2] Sammel- und Verwertungssysteme sind genehmigungspflichtig, haben die Maßgaben und Zielsetzungen der Umweltgesetze zu erfüllen und unterliegen der Aufsicht des Umweltministers.[Anm. 3] Sie müssen „für zumindest eine Sammel- und Behandlungskategorie errichtet und betrieben werden“,[Anm. 4] ob der Betreiber selbst recycelt oder einer Spezialfirma zuführt, bleibt der Geschäftsgebarung überlassen. In der Praxis beruht Recycling auf Organisationen wie der Altstoff Recycling Austria (ARA-System im Verpackungsrecycling) oder dem Baustoff-Recycling Verband (BRV), die eine Schnittstelle zwischen den Verursachern, den Abfallsammlern (Gemeinden, gewerbliche Sammler, Altstoffsammelzentrum) und den spezialisierten Recyclingunternehmen darstellt. Dieses System entwickelte sich auf freiwilligen Kooperationen ab den 1960er-Jahren.

Recycling ist in Österreich, das über wenig eigene Massenbodenschätze verfügt und sich schon lange auf Veredelung spezialisiert hat, eine gut entwickelte Branche. Dazu gehört beispielsweise die Spezialstahlindustrie, auch Buntmetall wird vollständig in heimischen Betrieben wiederverwertet, oder die Verarbeitung von Holzabfall zu Werkstoffen (Spanplatten) oder Brennstoffen (Pellets, Pressbriketts) und von Papier und Kartonagen, die zu 100 % recycelt werden, ist gut entwickelt.[Anm. 5] Insgesamt liegt Österreich beim werkstofflichen Recycling mit einer Quote von 30 % (2011) im europäischen Mittelfeld.

In der Gesamtrecyclingquote findet sich Österreich aber seit vielen Jahren an der Spitze aller europäischen Länder. Dies ist insbesondere dem organischen Recycling, also der Wiederaufbereitung biologisch abbaubarer Materialien, zu verdanken. Aus den etwa 4 Millionen Tonnen Bioabfällen (biogene Abfälle ohne Holz und Papier, etwa 8 % des Gesamtabfalls von 52 Millionen Tonnen), davon 700.000 Tonnen Pflanzen- und Speisereste aus Haushalten,[Anm. 6] etwa dieselbe Menge aus Kleingärten und in der Landwirtschaft und 750.000 Tonnen aus öffentlicher Grünflächenpflege,[Anm. 7] werden geschätzt 1,5 Millionen Tonnen privat zu Kompost verarbeitet[Anm. 8] und mindestens 1,3 Millionen Tonnen gewerblich (es gibt etwa 465 technische Kompostierungsanlagen in Österreich),[Anm. 9] weitere 300.000 Tonnen werden in Biogasanlagen verarbeitet (169 Anlagen, Kapazität bis 1 Million Tonnen).[Anm. 10] Zusammen mit der traditionellen Düngemittelnutzung in der Landwirtschaft (Mist, Gülle und Ernteabfälle) ist die Recyclingquote bei Bioabfällen sehr hoch, und erreicht mit 33 % im Bereich der Siedlungsabfälle einen europäischen Spitzenwert mit Ausnahmecharakter (Niederlande als Nummer 2: 24 %, EU-27-Durchschnitt 14 %).[Anm. 11]

Bei den getrennt erfassten Altstoffen aus Haushalten (und ähnlichen Einrichtungen, etwa 1,4 Millionen Tonnen) liegt die Recyclingquote mit 85 % weit über der Gesamtquote,[Anm. 12] während der gemischte Siedlungsabfall (etwa dieselbe Menge) nur zu 2,1 % stofflich und zu 19,6 % biotechnisch verwertet wird, der Rest wird der thermischen Verwertung zugeführt.[Anm. 13] Das zeigt, dass die Entwicklungsfelder zum einen eine noch bessere Mülltrennung im Haushalt sind und zum anderen hauptsächlich die Mülltrennung in Gewerbe und Industrie.

900.000 Tonnen Plastikmüll fallen jährlich in Österreich an. Rund 50.000 Tonnen davon entfallen auf Getränkeverpackungen. Das Abfallwirtschaftsgesetz sieht ab 2025 ein Pfandsystem für Flaschen und Dosen vor, mit dem die Recyclingquote verbessert werden soll.[101] Die Sammelquoten von ca. 1,6 Milliarden Kunststoffverpackungen und 0,8 Milliarden Dosen sollen so von 70 % und 37 % im Jahr 2021 auf 90 % gesteigert werden.[102]

Schweiz

Die Schweiz erreicht sowohl im Investitions- wie im Konsumgüterbereich beachtliche Recycling-Quoten. So gilt das Land beim Rücklauf von Alu-Dosen mit einer Quote von rund 90 % als „Weltmeister“, beim Papier blieb die Sammelmenge trotz rückläufigem Verbrauch von 2007 bis 2011 konstant hoch.[Anm. 14] Möglich macht dies eine optimierte logistische Organisation und die verursachergerechte Volumengebühr durch eine steuerliche Belastung der Abfallsäcke, die sogenannte Sackgebühr. Dennoch liegt die Recyclingrate beim Siedlungsabfall bei nur rund 30 Prozent.[103][104]

Die Verwertung der industriellen Abfallprodukte wurde in der Verfassung verankert:

„Bund und Kantone streben ein auf Dauer ausgewogenes Verhältnis zwischen der Natur und ihrer Erneuerungsfähigkeit einerseits und ihrer Beanspruchung durch den Menschen andererseits an. Der Bund erlässt Vorschriften über den Schutz des Menschen und seiner natürlichen Umwelt vor schädlichen oder lästigen Einwirkungen.“

Schweizer Verfassung

Der Verein PET-Recycling Schweiz ist für die flächendeckende getrennte Sammlung von PET-Einweggetränkeflaschen verantwortlich. Vetrorecycling ist der Geschäftsbereich der Vetropack, der das gesamte Glas-Recycling übernimmt. Für die Sammlung von Aluminium ist die Igora-Genossenschaft zuständig. Die Getränkekartonsammlung ist nicht weit verbreitet und wurde im Detailhandel erst von Aldi Suisse mit entsprechenden Sammelstellen unterstützt.[105]

Recyclist EFZ ist ein schweizerischer Lehrberuf im Recyclingwesen. Recyclisten verarbeiten Altstoffe zu Wertstoffen und sortieren und lagern diese fachgerecht. Nach der Aufbereitung mit Maschinen und Werkzeugen verladen sie die Wertstoffe sicher und stellen sie für die Wiederverwertung bereit. Nebenprodukte entsorgen sie umweltgerecht. Damit leisten sie einen wichtigen Beitrag zur Schonung der natürlichen Ressourcen.

Siehe auch

Literatur

  • Klaus Grefermann, Karin Halk, Klaus-Dieter Knörndel: Die Recycling-Industrie in Deutschland. (Ifo-Studien zur Industriewirtschaft; 58) Ifo-Institut für Wirtschaftsforschung, München 1998, ISBN 3-88512-349-5.
  • Johannes Brandrup, Muna Bittner, Walter Michaeli, Georg Menges: Die Wiederverwertung von Kunststoffen. / Herausgegeben v. Johannes Brandrup. Hanser Verl., München 1995, ISBN 3-446-17412-5.
  • Heike Weber: Müll und Recycling. Der Glaube an das technische Schließen von „Stoffkreisläufen“. In: WerkstattGeschichte 85 (2022), S. 13–34.
  • Jens Lienig, Hans Brümmer: Recyclinggerechtes Entwickeln und Konstruieren in: Elektronische Gerätetechnik, Springer 2014, ISBN 978-3-642-40961-5.
  • Hans Martens, Daniel Goldmann: Recyclingtechnik: Fachbuch für Lehre und Praxis. 2. Aufl., Springer Vieweg, Berlin 2016, ISBN 978-3-658-02785-8.

Weblinks

Weitere Inhalte in den
Schwesterprojekten der Wikipedia:

Commons– Medieninhalte (Kategorie)
Wiktionary– Wörterbucheinträge

Anmerkungen

  1. Kreislaufwirtschaftsgesetz – KrWG.
  2. "§ 1 Ziele und Grundsätze Abs. 2 Z. 3. und Abs. 2a Z. 4. Bundesgesetz über eine nachhaltige Abfallwirtschaft (Abfallwirtschaftsgesetz 2002 – AWG 2002) StF BGBl. I Nr. 102/2002 (ris.bka).
  3. § 29 ff AWG 2002; siehe auch Genehmigung von Sammel- und Verwertungssystemen. usp.gv.at.
  4. § 29 (4) Weiters … AWG 2002.
  5. Die Bestandsaufnahme der Abfallwirtschaft in Österreich – Statusbericht 2013. (Memento vom 9. Januar 2016 im Internet Archive; PDF) Umweltbundesamt, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft – Abteilung VI/3, diverse Abschnitte aus 1.2 Zusammenfassung der Bestandsaufnahme zur Abfallwirtschaft in Österreich, S. 2 ff und Spezialkapitel.
  6. Statusbericht 2012, 2.6 Getrennt gesammelte biogene Abfälle aus Haushalten und ähnlichen Einrichtungen, S. 40 f.
  7. Statusbericht 2012, 2.8 Abfälle aus dem Grünflächenbereich, S. 43 f.
  8. Statusbericht 2012, 2.7 Einzel- und Gemeinschaftskompostierung in Hausgärten, S. 42.
  9. Statusbericht 2012, 3.9. Aerobe biotechnische Behandlungsanlagen (Kompostierungsanlagen), S. 135 f.
  10. Statusbericht 2012, 3.10. Anaerobe biotechnische Behandlungsanlagen (Biogasanlagen), S. 137 f.
  11. Municipal waste management in Austria. (PDF; 1,2 MB) European Environment Agency, eea.europa.eu, Februar 2013, S. 3, sowie Figure 2.1 Recycling of MSW in Austria, S. 7. Vgl. auch Managing municipal solid waste — a review of achievements in 32 European countries. In: EEA Report, No 2/2013, ISSN 1725-9177, Figure 2.5 Municipal waste recycling rates in 32 European countries, 2001 and 2010, S. 13; eea.europa.eu (PDF; 5,3 MB).
  12. Statusbericht 2012, 2.5 Getrennt gesammelte Altstoffe aus Haushalten und ähnlichen Einrichtungen, S. 39.
  13. Statusbericht 2012, 2.2 Gemischter Siedlungsabfall aus Haushalten und ähnlichen Einrichtungen, S. 30.
  14. Zahlen Papier-Recycling für die Schweiz 2011

Einzelnachweise

  1. Gesetz zur Förderung der Kreislaufwirtschaft und Sicherung der umweltverträglichen Bewirtschaftung von Abfällen. In: Kreislaufwirtschaftsgesetz - KrWG. Bundesamt für Justiz, abgerufen am 4. November 2021.
  2. Richtlinie 2008/98/EG des Europäischen Parlaments und des Rates vom 19. November 2008 über Abfälle und zur Aufhebung bestimmter Richtlinien. In: Amtsblatt der Europäischen Union. EUR-Lex, 19. November 2008, abgerufen am 2. November 2023.
  3. René John, Jana Rückert-John: Umweltpolitik für die Transformation fit machen: Neue Grundkonfigurationen für eine angewandte Umweltpolitik. (PDF) Umweltbundesamt, Juni 2016, abgerufen am 2. November 2023.
  4. Dietrich Braun: Chemische Reaktionen während der Verarbeitung thermoplastischer Kunststoffe (= Forschungsberichte des Landes Nordrhein-Westfalen. Band 1755). VS Verlag für Sozialwissenschaften, Wiesbaden 1967, ISBN 3-663-06236-8, S. 12–79.
  5. Wolfgang Weißbach: Werkstoffkunde: Strukturen, Eigenschaften, Prüfung. 16., überarbeitete Auflage. Friedr. Vieweg & Sohn Verlag GWV Fachverlage GmbH, Wiesbaden 2007, ISBN 978-3-8348-0295-8, S. 4.
  6. J. Brandrup; M. Bittner; W. Michaeli; G. Menges (Hrsg.): Die Wiederverwertung von Kunststoffen./ J. Brandrup (Hrsg.), Hanser Verl., München 1995, ISBN 3-446-17412-5.
  7. J. Bertling, C. G. Bannick et al.: Kunststoff in der Umwelt – ein Kompendium. (PDF) Ecologic Institut gemeinnützige GmbH, März 2021, abgerufen am 2. November 2023.
  8. a b Christoph Lindner, Jan Schmitt, Elena Fischer, Julia Hein: Stoffstrombild Kunststoffe in Deutschland 2021: Zahlen und Fakten zum Lebensweg von Kunststoffen (Kurzfassung der Conversio Studie). (PDF) BKV GmbH u. A., Oktober 2022, abgerufen am 3. November 2023.
  9. K. Grefermann, K. Halk, K.-D. Knörndel: Die Recycling-Industrie in Deutschland. (Ifo-Studien zur Industriewirtschaft; 58) Ifo-Institut für Wirtschaftsforschung, München 1998, ISBN 3-88512-349-5.
  10. VDI-Gesellschaft Entwicklung, Konstruktion, Vertrieb (Hrsg.): Recycling - eine Herausforderung für den Konstrukteur. Tagung Bad Soden, 14. und 15. November 1991 (VDI-Berichte; 906), VDI-Verlag, Düsseldorf 1991, ISBN 3-18-090906-4.
  11. H. Kindler, A. Nikles: Energieaufwand zur Herstellung von Werkstoffen – Berechnungsgrundsätze und Energieäquivalenzwerte von Kunststoffen. In: Kunststoffe. Bd. 70, H. 12, 1980, S. 802–807.
  12. Optimiertes Metallrecycling durch Sensorsortiertechnologien. In: umweltbundesamt.de. Umweltbundesamt, 5. August 2022, abgerufen am 4. November 2023.
  13. World Steel Recycling in Figures 2017–2021, 13th Edition. (PDF) In: BIR Global Facts & Figures. Bureau of International Recycling, Ferrous Division, Mai 2022, abgerufen am 4. November 2023.
  14. Manfred Helmus, Anne Randel (Bergische Universität Wuppertal): Sachstandsbericht zum Stahlrecycling im Bauwesen. (PDF) bauforumstahl e.V., 2014, abgerufen am 4. November 2023.
  15. a b c d e f Fakten Metallrecycling. (PDF) In: bvse.de. European Recycling Industries’ Confederation (EuRIC) AISBL, Februar 2020, abgerufen am 4. November 2023.
  16. Volkmar Held: Argumente für Recycling-Weltmeister Stahl. In: voestalpine.com/blog/de/. voestalpine AG, 18. Juli 2018, abgerufen am 4. November 2023.
  17. Benedikt Müller-Arnold: Produzieren, verkaufen, entsorgen. In: sueddeutsche.de. Süddeutsche Zeitung, 22. August 2020, abgerufen am 4. November 2023.
  18. a b Recycling von Kupferwerkstoffen. (PDF; 830 kB) Deutsches Kupferinstitut, Januar 2011, abgerufen am 11. November 2023.
  19. The World Copper Factbook 2023. (PDF; 3,1 MB) In: icsg.org. ICSG – International Copper Study Group, September 2023, abgerufen am 11. November 2023.
  20. Philipp Soest, Josef Tholen, Veronika Katzy, Edwin Büchter: Hochdynamische In-Line Detektion zur legierungsselektiven LIBS basierten Sortierung von Wertstoffen (HILDE). (PDF; 6,8 MB) In: dbu.de. Deutsche Bundesstiftung Umwelt, Januar 2021, abgerufen am 1. Dezember 2023.
  21. Einsatz von LIBS-Elementanalysatoren in der Recyclingindustrie. (PDF; 0,4 MB) In: secopta.de. Secopta analytics GmbH, abgerufen am 1. Dezember 2023.
  22. Höchste Aluminium-Reinheit für die Kreislaufwirtschaft. In: recyclingmagazin.de. Detail Business Information GmbH, 28. März 2023, abgerufen am 1. Dezember 2023.
  23. Britta Bookhagen, Corinna Eicke et al.: Deutschland ‒ Rohstoffsituation 2021. (PDF; 4,3 MB) In: bgr.bund.de. BGR – Bundesanstalt für Geowissenschaften und Rohstoffe, Dezember 2022, abgerufen am 13. November 2023.
  24. a b Aluminium Recycling Factsheet. (PDF; 680 kB) In: world-aluminium.org. The International Aluminium Institute (IAI), Oktober 2020, abgerufen am 13. November 2023 (englisch).
  25. Dierk Raabe, Dirk Ponge et al.: Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. In: Progress in Materials Science. Band 128, Juli 2022, 100947, doi:10.1016/j.pmatsci.2022.100947 (englisch, sciencedirect.com [abgerufen am 13. November 2023]).
  26. Marlen Bertram: Monday Stats Post – 2021 Annual Compiled Posts. (PDF; 2,5 MB) In: international-aluminium.org. International Aluminium Institute, 15. Februar 2021, abgerufen am 13. November 2023 (englisch).
  27. a b Joachim Harder: Aktuelle Markttrends im Glasrecycling. In: recovery-worldwide.com. Bauverlag BV GmbH, Mai 2018, abgerufen am 10. November 2023.
  28. Hans Jebsen-Marwedel: Glastechnische Fabrikationsfehler. 4. Auflage, S. 214, 232 f.
  29. Blau gehört in Grün – Eine kleine Altglas-Farbenkunde. bvse-Fachverband Glasrecycling, 9. November 2017, abgerufen am 8. November 2023.
  30. EU’s glass value chain confirms glass collection rate steady progress at 80.1%. In: feve.org. FFEVE – the European Container Glass Federation, 29. Juni 2023, abgerufen am 10. November 2023 (englisch).
  31. The performance of packaging glass recycling in Europe – Insights from a Close the Glass Loop survey. (PDF; 2,2 MB) In: closetheglassloop.eu. FEVE – the European Container Glass Federation, 2. Mai 2023, abgerufen am 10. November 2023 (englisch).
  32. Richtig Glasrecyceln. In: was-passt-ins-altglas.de. Initiative der Glasrecycler im Aktionsforum Glasverpackung, abgerufen am 10. November 2023.
  33. Faktenblatt Verwertungsquote 2022 – Berechnung der Verwertungsquote von Getränkeverpackungen aus Glas. (PDF; 455 kB) In: vetroswiss.ch. ATAG Wirtschaftsorganisationen AG, 8. August 2023, abgerufen am 10. November 2023.
  34. Paper – Extract BIR Annual Report 2022. In: bir.org. Bureau of International Recycling, 2022, abgerufen am 16. November 2023 (englisch).
  35. CEN - EN 643: Paper and board - European list of standard grades of paper and board for recycling. In: globalspec.com. European Committee for Standardization (CEN), 1. Januar 2014, abgerufen am 14. November 2023 (englisch).
  36. ISRI Specs – Scrap Specifications Circular 2022. (PDF; 4,4 MB) In: isrispecs.org. Institute of Scrap Recycling Industries, Inc., 15. Juli 2022, abgerufen am 14. November 2023 (englisch).
  37. Paper Recycling in Japan. (PDF; 1,2 MB) In: prpc.or.jp. Paper Recycling Promotion Center, Mai 2023, abgerufen am 14. November 2023 (englisch).
  38. a b c Altpapier. In: umweltbundesamt.de. Umweltbundesamt, 17. August 2023, abgerufen am 14. November 2023.
  39. Production of recovered paper worldwide from 1961 to 2021. In: statista.com. Statista GmbH, 24. Mai 2023, abgerufen am 16. November 2023 (englisch).
  40. Production volume of paper and paperboard worldwide from 2010 to 2021, by type. In: statista.com. Statista GmbH, 24. Mai 2023, abgerufen am 16. November 2023 (englisch).
  41. a b Monitoring Report 2022 – European Declaration on Paper Recycling 2021-2030. (PDF; 5,1 MB) In: cepi.org. European Paper Recycling Council (EPRC), 9. September 2022, abgerufen am 16. November 2023 (englisch).
  42. Jahresbericht über die Altfahrzeug-Verwertungsquoten in Deutschland im Jahr 2021. (PDF; 2,4 MB) In: bmuv.de. Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz, 24. Oktober 2023, abgerufen am 5. Dezember 2023.
  43. a b Richtlinie 2000/53/EG des Europäischen Parlaments und des Rates vom 18. September 2000 über Altfahrzeuge in der konsolidierten Fassung vom 30. März 2023, abgerufen am 1. Dezember 2023
  44. End-of-life vehicles by waste management operations – detailed data. In: ec.europa.eu. Eurostat, 23. November 2023, abgerufen am 1. Dezember 2023 (englisch).
  45. End-of-life vehicles by waste management operations – detailed data. In: ec.europa.eu. Eurostat, 23. November 2023, abgerufen am 1. Dezember 2023 (englisch).
  46. End-of-life vehicles – reuse, recycling and recovery, totals. In: ec.europa.eu. Eurostat, 16. November 2023, abgerufen am 5. Dezember 2023 (englisch).
  47. Lisa Tostado: End-Of-Life Vehicles: Final Destination. In: eu.boell.org. Heinrich-Böll-Stiftung European Union, 2. Februar 2021, abgerufen am 30. November 2023 (englisch).
  48. End-of-Life Vehicles. In: environment.ec.europa.eu. Europäische Kommission, 13. Juli 2023, abgerufen am 1. Dezember 2023 (englisch).
  49. Electronic waste (e-waste). In: who.int. Weltgesundheitsorganisation, 18. Oktober 2023, abgerufen am 6. Dezember 2023 (englisch).
  50. a b The Platform for Accelerating the Circular Economy (PACE): A New Circular Vision for Electronics – Time for a Global Reboot. (PDF; 9,2 MB) In: weforum.org. World Economic Forum, Januar 2019, abgerufen am 6. Dezember 2023 (englisch).
  51. a b c Vanessa Forti, Cornelis Peter Baldé, Ruediger Kuehr, Garam Bel: The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential. (PDF; 7,9 MB) In: ewastemonitor.info. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR), 2020, abgerufen am 6. Dezember 2023 (englisch).
  52. Elektroaltgeräte. In: umweltbundesamt.de. Umweltbundesamt, 1. Januar 2022, abgerufen am 6. Dezember 2023.
  53. a b Alexandra Polcher, Alexander Potrykus et al.: Sachstand über die Schadstoffe in Kunststoffen und ihre Auswirkungen auf die Entsorgung. (PDF; 2,1 MB) In: bmuv.de. Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit, April 2020, abgerufen am 7. Dezember 2023.
  54. André Leisewitz, Winfried Schwarz: Erarbeitung von Bewertungsgrundlagen zur Substitution umweltrelevanter Flammschutzmittel. (PDF; 2,6 MB) In: umweltbundesamt.de. Umweltbundesamt, Dezember 2000, abgerufen am 7. Dezember 2023.
  55. B. Müller: Electrical Engineering. In: Jürgen Troitzsch (Hrsg.): Plastics Flammability Handbook: Principles, Regulations, Testing, and Approval. 3. Auflage. Carl Hanser Verlag, 2004, ISBN 978-3-446-21308-1, S. 487–579.
  56. a b Richtlinie 2012/19/EU des Europäischen Parlaments und des Rates vom 4. Juli 2012 über Elektro- und Elektronik-Altgeräte (Neufassung) in der konsolidierten Fassung vom 4. Juli 2018, abgerufen am 6. Dezember 2023
  57. Elektro- und Elektronikaltgeräte. In: umweltbundesamt.de. Umweltbundesamt, 19. September 2023, abgerufen am 6. Dezember 2023.
  58. Waste statistics – electrical and electronic equipment. In: ec.europa.eu. Eurostat, Oktober 2023, abgerufen am 7. Dezember 2023 (englisch).
  59. Waste electrical and electronic equipment (WEEE) by waste management operations – open scope, 6 product categories (from 2018 onwards). In: ec.europa.eu. Eurostat, Oktober 2023, abgerufen am 7. Dezember 2023 (englisch).
  60. §§ 5, 11 BattG
  61. Art. 3 ChemRRV
  62. Anton Rauch: Brandgefährlich: Lithium-Batterien und -Akkus im Müll. In: BR.de. Bayerischer Rundfunk, 13. Oktober 2023, abgerufen am 17. November 2023.
  63. Batterierecycling. In: elektro-ade.at. Elektroaltgeräte Koordinierungsstelle Austria GmbH, 2023, abgerufen am 18. November 2023.
  64. Sammlung und Recycling von gebrauchten Blei-Säure-Batterien. In: recylex.eu. Recylex S.A., 2023, abgerufen am 18. November 2023.
  65. Ralph H. Ahrens: Missstände beim Batterierecycling in Afrika. In: vdi-nachrichten.com. VDI Verlag, 20. Mai 2015, abgerufen am 19. November 2023.
  66. a b Petra Sorge: Blei-Recycling in Nigeria – Tödliches Geschäft mit alten Batterien. In: deutschlandfunkkultur.de. Deutschlandradio, 14. Februar 2019, abgerufen am 19. November 2023.
  67. Hem H. Dholakia, Abhishek Jain: Lead Acid Battery Recycling in India. (PDF; 1,7 MB) In: ceew.in. Council on Energy, Environment and Water, April 2015, abgerufen am 19. November 2023 (englisch).
  68. Fred Pearce: Getting the Lead Out: Why Battery Recycling Is a Global Health Hazard. In: e360.yale.edu. Yale School of the Environment, 2. November 2020, abgerufen am 19. November 2023 (englisch).
  69. Jana Sepehr, Linnéa Kviske: Das Leben für ein bisschen Blei riskieren. In: www.zeit.de. Zeit Online, 15. September 2016, abgerufen am 19. November 2023.
  70. Hellmuth Nordwig: Das mühsame Recycling von Lithium-Ionen-Akkus. In: Forschung aktuell (Rundfunksendung auf DLF). 23. Januar 2019, abgerufen am 10. Oktober 2019.
  71. Larry Weaver: Myth busting: Battery recycling does work. 20. Januar 2019, abgerufen am 14. Juni 2019 (amerikanisches Englisch).
  72. ATZ WORLDWIDE. Abgerufen am 19. November 2023 (englisch).
  73. Christopher Schrader: Die Altlast der Elektromobilität. In: spektrum.de. Spektrum der Wissenschaft Verlagsgesellschaft, 9. Juli 2020, abgerufen am 19. November 2023.
  74. a b Waste statistics – recycling of batteries and accumulators. In: ec.europa.eu. Eurostat, Januar 2023, abgerufen am 20. November 2023 (englisch).
  75. Richtlinie 2006/66/EG des Europäischen Parlaments und des Rates vom 6. September 2006 über Batterien und Akkumulatoren sowie Altbatterien und Altakkumulatoren und zur Aufhebung der Richtlinie 91/157/EWG in der konsolidierten Fassung vom 4. Juli 2018, abgerufen am 20. November 2023
  76. The collection of waste portable batteries in Europe in view of the achievability of the collection targets set by Batteries Directive 2006/66/EC. (PDF; 1,9 MB) In: epbaeurope.net. European Portable Battery Association (EPBA), Februar 2022, abgerufen am 20. November 2023 (englisch).
  77. The History of Recycling: A Timeline Through the Ages to Modern Times. In: texasrecycling.com. Texas Recycling, abgerufen am 5. Dezember 2023 (englisch).
  78. a b Eleni Schindler-Kaudelka: Deponierung und Recycling. Erste Gedanken zur Abfall- und Müllwirtschaft auf dem Magdalensberg. In: Rudolfinum – Jahrbuch des Landesmuseums für Kärnten. Band 2005, 2007, S. 119–129 (zobodat.at [PDF; 4,5 MB; abgerufen am 7. November 2023]).
  79. Sylvia Fünfschilling: Glasrecycling bei den Römern. In: NIKE-Bulletin. Nr. 6, 2011, S. 16–19 (nike-kulturerbe.ch [PDF; 1,4 MB; abgerufen am 7. November 2023]).
  80. Doreen Brumme: Die Geschichte des Recyclings II – das Mittelalter. In: wertstoffblog.de. INTERENA GmbH, 19. Mai 2016, abgerufen am 11. Juli 2023.
  81. Filip Havlíček, Adéla Pokorná, Jakub Zálešák: Waste Management and Attitudes Towards Cleanliness in Medieval Central Europe. In: Journal of Landscape Ecology. Band 10, Nr. 3, 2017, S. 266–287, doi:10.1515/jlecol-2017-0005 (englisch, sciendo.com [PDF; 740 kB; abgerufen am 7. November 2023]).
  82. Das Recyclingpapier. In: daidalos.blog. Cohausz & Florack Patent- und Rechtsanwälte, abgerufen am 30. November 2023.
  83. J. Vehlow: Die Entwicklung der Abfallverbrennung. In: itad.de. ITAD – Interessengemeinschaft der Thermischen Abfallbehandlungsanlagen in Deutschland e.V., abgerufen am 6. November 2023.
  84. Arnulf Grundler: 120 Jahre Abfallwirtschaft in München. Von der Städtischen Hausunratanstalt zum Abfallwirtschaftsbetrieb München. (PDF; 2,6 MB) In: silo.tips. Abfallwirtschaftsbetrieb München, April 2011, abgerufen am 5. November 2023.
  85. Judith Fritz: Im Dienst des Krieges. In: Online-Ausstellung „Erster Weltkrieg und das Ende der Habsburgermonarchie“. Schloß Schönbrunn Kultur- und Betriebsges.m.b.H., 2023, abgerufen am 6. November 2023.
  86. Danielle Walls: Bones Wanted: Home Front Britain’s Use of Propaganda to Promote Civilian Engagement Through the Salvage Campaign During Word War II. In: Liberated Arts: A Journal for Undergraduate Research. Band 10, Nr. 1, 2023 (englisch, uwo.ca).
  87. Megan E. Springate: Material Drives on the World War II Home Front. In: NPS.gov Homepage (U.S. National Park Service). U.S. Department of the Interior, 4. August 2023, abgerufen am 6. November 2023 (englisch).
  88. Harald Ditges: Der Einsatz von Altpapier bei der Herstellung von Papier und Pappe. In: Holz als Roh-und Werkstoff. Band 3, Dezember 1940, S. 407–409, doi:10.1007/BF02718097.
  89. Law Office Paper Recycling Programs – Opprtunities And Choices For The 21st Century. (PDF; 2,4 MB) In: bostonbar.org. Boston Bar Association, April 1994, abgerufen am 4. Dezember 2023 (englisch).
  90. Mehr Freiheit, mehr Konservendosen ... In: Der Spiegel. Nr. 49, 28. November 1971 (spiegel.de [abgerufen am 5. Dezember 2023]).
  91. Graf Lennart Bernadotte: Probleme der Abfallbehandlung (= Deutscher Rat für Landespflege [Hrsg.]: Schriftenreihe des Deutschen Rates für Landespflege. Band 13). Buch- und Verlagsdruckerei Ludw. Leopold KG, Bonn Juli 1970, S. 5–8 (yumpu.com [abgerufen am 5. Dezember 2023]).
  92. Megan Gambino: Is it Too Late for Sustainable Development? Dennis Meadows thinks so. Forty years after his book The Limits to Growth, he explains why. In: Smithsonian Magazine. Smithsonian Enterprises, 15. März 2012, abgerufen am 5. November 2023.
  93. Sraffa, Piero: Production of Commodities by Means of Commodities. (deutsch: Warenproduktion mittels Waren, mit Nachworten von Bertram Schefold, Frankfurt a. M. 1976). Cambridge University Press, Cambridge 1960.
  94. Helmut Knolle: Die Wachstumsgesellschaft. Aufstieg, Niedergang und Veränderung. Papyrossa, Köln 2016, S. 79–81.
  95. European Environment Agency: Municipal waste recycling rates in Europe by country. Abgerufen am 12. Mai 2023
  96. Nils Klawitter: Die neue Müllflut durch Corona. In: Der Spiegel. Nr. 35, 2020 (online).
  97. Der letzte Dreck? Phosphor-Recycling aus Klärschlamm. 9. März 2021, abgerufen am 4. November 2021.
  98. Phosphorverbrauch in Deutschland und Europa. 12. Februar 2021, abgerufen am 4. November 2021.
  99. Phosphor in Zahlen: Marktmacht und Preise. 12. Februar 2021, abgerufen am 4. November 2021.
  100. Elke Örtl: Klärschlammentsorgung in der Bundesrepublik Deutschland. Umweltbundesamt, 3. Mai 2018 (umweltbundesamt.de [abgerufen am 4. November 2021]).
  101. Pfand auf Plastikflaschen und Dosen kommt. In: orf.at. ORF, archiviert vom Original am 13. Oktober 2021; abgerufen am 30. August 2022 (österreichisches Deutsch).
  102. Eva Schrittwieser: 25 Cent Pfand pro Flasche und Dose ab 2025 in Österreich. In: Die Presse. 8. September 2022, abgerufen am 4. Oktober 2022.
  103. Edgar Schuler: Abfall: Ist die Schweiz wirklich Weltmeisterin im Recycling? In: tagesanzeiger.ch. 8. Januar 2024, abgerufen am 8. Januar 2024.
  104. Welt-Abfall-Index 2022: Das sind die größten Müllproduzenten der Welt. In: sensoneo.com. Abgerufen am 8. Januar 2024.
  105. Isabel Strassheim: Kommt die Milchkarton-Rückgabe – samt Gebühr? In: 20 Minuten (Zürich), 25. Oktober 2017.

Auf dieser Seite verwendete Medien

Recycle001.svg

Universal recycling symbol outline version with green (#009900) fill.

The Möbius loop symbol, originally created by 23-year-old student Gary Anderson, is in the public domain, and is not a trademark. The CCA originally applied for a trademark on the design, but the application was challenged, and the corporation decided to abandon the claim. As such, trademark law does not restrict use of the recycling symbol, although local laws may restrict its use in product labeling.
Recycling point Gdansk University of Technology.jpg
Autor/Urheber: LukaszKatlewa, Lizenz: CC BY-SA 4.0
Containers for segregated waste at the Gdańsk University of Technology. Green: glass, blue: waste paper, yellow: plastics and metals, green: batteries, gray: toners and printer inks, brown: biodegradable waste, black: residual waste.
Recycling - eine uralte Idee.webm
Autor/Urheber: ZDF/Terra X/C. Schrader/Moods in Pictures/C. Streckfuss/C. Krüger/M. Heß, Lizenz: CC BY 4.0
Als vor 130 Jahren die Industrialisierung Fahrt aufnahm, dachte keiner an Recycling. Damals wie heute wollte man den Müll einfach nur schnell wieder loswerden. Dabei wurde schon in der Steinzeit Müll recycelt.
Tyre furniture.jpg
Autor/Urheber: David Palazón, Tatoli Ba Kultura, Lizenz: CC BY-SA 3.0
Die Möbel wurden aus alten Felgen gemacht (Osttimor)
Balas de subproductos.JPG
Autor/Urheber: FerranRelea, Lizenz: CC BY-SA 3.0
Bales of plastic containers
Scrap metal.jpg
Autor/Urheber: Paul Goyette, Lizenz: CC BY-SA 2.0
A heap of scrap metal.
Recycling-Code-40.svg
Autor/Urheber: User:Moebius1, Lizenz: CC BY 2.5
Recycle logo FE, steel
Copper Granules.png
Autor/Urheber: Simon Klein, Lizenz: CC BY-SA 4.0
Granules of electrolytic copper
Pressed-cans.jpg
Autor/Urheber: unknown, Lizenz: Copyrighted free use
16. El calcín se funde a menor temperatura que si fuera materia prima original, ahorrando en el consumo energético y en la emisión de CO2.jpg
Autor/Urheber: Ecovidrio, Lizenz: CC BY-SA 4.0
El calcín se funde a menor temperatura que si fuera materia prima original, ahorrando en el consumo energético y en la emisión de CO2.
Recycled Paper Pulp, Post-Consumer Waste Recycling Material (43544030305).jpg
Autor/Urheber: Tony Webster from Minneapolis, Minnesota, United States, Lizenz: CC BY 2.0
Shredded post-consumer waste recycled and ready for recycling and processing as paper pulp. Minnesota State Fair on August 29, 2018.
Auto scrapyard 1.jpg
Crushed cars stacked at an auto scrapyard photographed in Fort Washington, Maryland, USA.
Elektroschrott.jpg
Autor/Urheber: Volker Thies (Asdrubal), Lizenz: CC BY-SA 3.0
Verarbeitung von Elektroschrott in einer Recyclingfirma in Goslar, Deutschland
Electric batteries.jpg
Autor/Urheber: John Seb Barber from Leeds, UK, Lizenz: CC BY 2.0
Electric batteries.
Recycling lead in a lead-acid battery recovery facility.jpg
The worker is ladling molten recycled lead into billets in a lead-acid battery recovery facility. Lead is an extremely toxic substance and workers must be protected from its effects. Any manufacturing operation involving lead has the potential for overexposure, and so the elements of a lead program (including provision of work clothes and PPE) are in place here.
Bundesarchiv Bild 183-2005-0721-527, Frankfurt-Main, Sortierung von Trümmersteinen.jpg
(c) Bundesarchiv, Bild 183-2005-0721-527 / CC-BY-SA 3.0
Es folgt die historische Originalbeschreibung, die das Bundesarchiv aus dokumentarischen Gründen übernommen hat. Diese kann allerdings fehlerhaft, tendenziös, überholt oder politisch extrem sein.
Frankfurt/Main, Sortierung von Trümmersteinen

Trümmerverwertung in Frankfurt/Main Bild zeigt: Arbeiter am Fliessband der Vorsortiermaschine. Foto: EDU-Illus

993-47
Flag of Europe.svg
Die Europaflagge besteht aus einem Kranz aus zwölf goldenen, fünfzackigen, sich nicht berührenden Sternen auf azurblauem Hintergrund.

Sie wurde 1955 vom Europarat als dessen Flagge eingeführt und erst 1986 von der Europäischen Gemeinschaft übernommen.

Die Zahl der Sterne, zwölf, ist traditionell das Symbol der Vollkommenheit, Vollständigkeit und Einheit. Nur rein zufällig stimmte sie zwischen der Adoption der Flagge durch die EG 1986 bis zur Erweiterung 1995 mit der Zahl der Mitgliedstaaten der EG überein und blieb daher auch danach unverändert.
Flag of Ireland.svg
Man sagt, dass der grüne Teil die Mehrheit der katholischen Einwohner des Landes repräsentiert, der orange Teil die Minderheit der protestantischen, und die weiße Mitte den Frieden und die Harmonie zwischen beiden.
Flag of Croatia.svg
Das Bild dieser Flagge lässt sich leicht mit einem Rahmen versehen
Flag of Portugal.svg
Flagge Portugals, entworfen von Columbano Bordalo Pinheiro (1857-1929), offiziell von der portugiesischen Regierung am 30. Juni 1911 als Staatsflagge angenommen (in Verwendung bereits seit ungefähr November 1910).
Flag of Switzerland within 2to3.svg
Die quadratische Nationalfahne der Schweiz, in transparentem rechteckigem (2:3) Feld.