Signiertes Maß
Signiertes Maß ist ein Begriff aus dem mathematischen Teilgebiet der Maßtheorie. Es ist wie das Maß eine auf einem Mengensystem, meist einer σ-Algebra, definierte Funktion und unterscheidet sich von diesem nur darin, dass auch negative Werte zugelassen sind. Das signierte Maß stellt somit eine Verallgemeinerung des Maßbegriffs dar. Manchmal werden signierte Maße auch als Ladungsverteilungen bezeichnet, da sie bildlich jedem Teil eines geladenen Körpers die in ihm enthaltene Ladung zuweisen.
Mengen signierter Maße besitzen im Vergleich zu den gewöhnlichen Maßen mehr Struktur. So bildet beispielsweise die Menge aller signierten Maße auf einem gemeinsamen Messraum einen Vektorraum mit einer Norm.
Definition
Sei eine nichtleere Menge und ein Mengensystem auf mit .
Eine Mengenfunktion von nach oder heißt signiertes Maß, wenn gilt:
- Für jede disjunkte Familie mit und gilt
- .
- Diese Eigenschaft wird als σ-Additivität bezeichnet.
- .
Ist das Mengensystem eine σ-Algebra, so wird es im Folgenden mit bezeichnet. Insbesondere ist dann immer in enthalten.
Bemerkungen zur Definition
Die Konvergenz der Reihe ist als unbedingte Konvergenz in zu betrachten, das heißt ihr Grenzwert ist .
Die Einschränkung auf entweder die Bildmenge oder die Bildmenge erfolgt, um die Assoziativität der Addition zu erhalten. Außerdem vermeidet sie das Auftreten von nicht definierten Ausdrücken wie .
Wählt man als Bildraum die Menge , so kann auf die Forderung verzichtet werden. Dies folgt daraus, dass eine reelle Zahl ist und
gilt.
Beispiele
Die beiden hier angegebenen Beispiele sind gleichzeitig die klassischen Methoden, signierte Maße zu konstruieren.
Differenz von Maßen
Sind endliche Maße auf dem Messraum , so sind
signierte Maße auf . Bei einem der beiden Maße kann auf die Endlichkeit verzichtet werden, wenn man zulassen will, dass die signierten Maße die Werte oder annehmen können.
Integralinduzierte signierte Maße
Signierte Maße treten auch in der Integrationstheorie auf, sie werden von einem unbestimmten Integral induziert.
Sei ein Maßraum und eine messbare Funktion. Ist positiv (nimmt Werte in an) oder quasiintegrierbar, so existiert das Integral mit als Indikatorfunktion und immer. Die Abbildung mit
definiert das unbestimmte -Integral.
- Ist positiv, so ist ein Maß.
- Ist integrierbar, so ist ein endliches signiertes Maß, das heißt für .
- Ist quasiintegrierbar, so ist ein signiertes Maß.
Man verwendet für üblicherweise die Kurzschreibweise .
Eigenschaften
Gegeben seien und . Ist , so ist auch stets , denn es gilt . Aus der σ-Additivität folgt dann die Endlichkeit der rechten Seite.
Ist mit disjunkten und ist
- ,
so ist die Reihe absolut konvergent. Denn es ist für jede Bijektion immer
und somit
- .
Also konvergiert die Reihe unbedingt und damit auch absolut.
Stetigkeit von oben
Ist ein Ring so ist stetig von oben, es gilt folglich, dass für jede monoton fallende Folge mit , und
gilt. Ist eine σ-Algebra, so ist die Eigenschaft immer erfüllt.
Stetigkeit von unten
Ein signiertes Maß auf einer σ-Algebra ist stetig von unten, das heißt für eine monoton wachsende Mengenfolge aus gilt
- .
Abgeleitete Begriffe
Positive und negative Mengen
Eine Menge wird eine positive Menge genannt, wenn für jede weitere Menge mit gilt, dass
- .
Ebenso wird eine Menge eine negative Menge genannt, wenn für jede weitere Menge mit gilt, dass
- .
Der Begriff der Nullmenge überträgt sich direkt von Maßen auf signierte Maße.
Signierter Maßraum
Ist eine σ-Algebra über der Grundmenge und ein signiertes Maß, so nennt man das Tripel einen signierten Maßraum.
Endliches signiertes Maß
Ein signiertes Maß heißt endlich, wenn für alle . Dies ist äquivalent zu oder zur Endlichkeit der Variation von .
σ-endliches signiertes Maß
Ein signiertes Maß heißt σ-endlich, wenn es eine Folge von Mengen aus gibt, so dass
und für alle . Dies ist äquivalent dazu, dass die Variation von ein σ-endliches Maß ist.
Reguläres signiertes Maß
Ein endliches signiertes Maß auf einem Hausdorff-Raum, versehen mit der borelschen σ-Algebra heißt regulär, wenn die Variation des signierten Maßes ein reguläres Maß ist.
Wichtige Aussagen
Hahn-Jordan-Zerlegung
Die Hahn-Jordan-Zerlegung liefert eine Aufteilung eines signierten Maßes. Dabei wird entweder die Grundmenge auf eindeutige Weise in eine positive Menge und eine negative Menge zerlegt (Hahnscher Zerlegungssatz), oder das signierte Maß in zwei (gewöhnliche) Maße aufgeteilt, von denen mindestens eines endlich ist und die zusammen das signierte Maß ergeben (Jordanscher Zerlegungssatz).
Zu jedem signierten Maß existieren also eine positive Menge und eine negative Menge , so dass und ist.
Ebenso existieren Maße , (die sogenannte positive Variation und die negative Variation), von denen mindestens eines endlich ist, die singulär zueinander sind und für die gilt.
Es gilt dann
- .
Das Maß nennt man dann die Variation von , die Zahl die Totalvariationsnorm des signierten Maßes.
Satz von Radon-Nikodym
Ist ein σ-endliches Maß auf dem Messraum und ist ein signiertes Maß, das absolut stetig bezüglich ist (), so besitzt eine Dichtefunktion bezüglich , das heißt, es existiert eine messbare Funktion , so dass
- für alle .
Zerlegungssatz von Lebesgue
Ist ein σ-endliches Maß auf dem Messraum und ist ein σ-endliches signiertes Maß, so existiert genau eine Zerlegung , wobei signierte Maße sind, so dass absolut stetig bezüglich ist und singulär bezüglich ist.
Satz von Vitali-Hahn-Saks
Der Satz von Vitali-Hahn-Saks besagt, dass der mengenweise Grenzwert einer Folge von signierten Maßen wieder ein signiertes Maß definiert.
Räume signierter Maß
Im Gegensatz zu den Maßen bilden die signierten Maße auf einem gemeinsamen Messraum einen reellen Vektorraum, wenn sie endlich sind. Insbesondere ist jede reelle Linearkombination signierter Maße ebenfalls ein signiertes Maß. Die Maße bilden dann einen konvexen Kegel in diesem Vektorraum. Wichtige konvexe Teilmengen sind die Wahrscheinlichkeitsmaße und die Sub-Wahrscheinlichkeitsmaße.
Versieht man den Vektorraum der endlichen signierten Maße mit der Totalvariationsnorm als Norm, so erhält man einen normierten Raum. Dieser Raum ist sogar vollständig, es handelt sich also um einen Banachraum.
Dieser Raum kann noch mit einer Ordnungsstruktur versehen werden, diese wird definiert als
- .
Damit werden die endlichen signierten Maße zum Riesz-Raum und sogar zum Banach-Verband. Außerdem ist er ordnungsvollständig.
Reguläre signierte Maße treten beispielsweise auch in der Funktionalanalysis als Dualraum der im unendlichen verschwindenden stetigen Funktionen, der sogenannten C0-Funktionen, auf.
Anwendungen
Mit signierten Maßen lassen sich zum Beispiel Verteilungen von positiven und negativen Ladungen in einem Stoff modellieren.
Literatur
- Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, doi:10.1007/978-3-642-21026-6.
- Jürgen Elstrodt: Maß- und Integrationstheorie. 6., korrigierte Auflage. Springer-Verlag, Berlin Heidelberg 2009, ISBN 978-3-540-89727-9, doi:10.1007/978-3-540-89728-6.
- Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.