Bioraffinerie

Die häufigste Verbindung in Biomasse ist Glucose, die als Monomer, vor allem aber auch als Polymer in Form von Cellulose und Stärke vorkommt.
Bereits heute werden Pflanzenöle, die vor allem aus Triacylglycerinen bestehen, intensiv genutzt. (Die Reste R stehen für die Kohlenwasserstoffketten meist verschiedener Fettsäuren.)

Eine Bioraffinerie ist eine Raffinerie, in der aus Biomasse unter möglichst vollständiger Verwertung aller Rohstoffkomponenten verschiedene Zwischen- und Endprodukte (z. B. Chemikalien, Werkstoffe, Bioenergie) nachhaltig erzeugt werden. Es können als Nebenprodukte auch Lebens- und Futtermittel entstehen. Wichtig für eine Bioraffinerie sind ein zugrunde liegendes ganzheitliches Konzept und die Integration verschiedener Verfahren und Technologien.[1] Das bedeutet, dass bei der Entwicklung aller in einer Bioraffinerie stattfindenden Prozesse, neben dem Produktionsprozess, auch die Herkunft der Rohstoffe sowie die Entsorgungsprozesse, mit berücksichtigt werden.

Das Prinzip der Bioraffinerie weist bis auf die Rohstoffe viele Ähnlichkeiten mit dem der Erdölraffinerie auf, in der der komplex zusammengesetzte Rohstoff Erdöl in einzelne Fraktionen oder Komponenten getrennt wird. Teilweise werden diese durch chemische Verfahren in andere, besser absetzbare Verbindungen umgewandelt.[1]

Ein wichtiges Ziel des Konzepts „Bioraffinerie“ ist es, Erdöl als wichtigen Rohstoff der chemischen Industrie langfristig zu ersetzen und so zu einer biobasierten Industrie hin zu kommen. Das Energieministerium der Vereinigten Staaten bezeichnete Industrielle Bioraffinerien als vielversprechendsten Weg zu diesem Ziel.[2] Eine effiziente und nachhaltige Verwendung von Biomasse steht auch im Fokus der nationalen Forschungsstrategie Bioökonomie 2030 der deutschen Bundesregierung, in welcher Bioraffinerien eine wichtige Rolle spielen.[3][4]

Durch die stoffliche Verwertung der Biomasse kann in Bioraffinerien eine Vielzahl an Produkten gewonnen werden. Besonders Chemie- und Pharmaindustrien können als Abnehmer dieser Produkte profitieren. Die Weiterverarbeitung von biogenen Kohlenstoffquellen in der Industrie kann durchaus als wettbewerbsfähig angesehen werden.[5] Beispielsweise wird Milchsäure fermentativ aus Zucker hergestellt und anschließend chemisch weiterverarbeitet, um den Biokunststoff PLA herzustellen. Ähnliches gilt auch für fermentativ hergestelltes Bioethanol, welches weiterverarbeitet wird zu Bioethylen oder Kraftstoffen.

Rohstoff Biomasse

In der Produktion der technischen und chemischen Industrie werden viele Rohstoffe benötigt, welche kohlenstoffhaltig sind. Das sind, bedingt durch günstige Verfügbarkeit und die Industrialisierung, vor allem Rohstoffe auf der Basis von Erdöl.[6][7] Allein auf die chemische Industrie entfielen 2017 600 Millionen Tonnen Rohöl, rund 14 % der weltweiten Jahresproduktion und weitere 8 % der weltweiten Jahresproduktion von Erdgas. Über 90 % aller hochwertigen Chemikalien (HVC) werden aus den Zwischenprodukten Naphtha (Erdöl) und Ethen (Erdgas) hergestellt. Der Rest wird überwiegend aus Kohle gewonnen. Nur ein geringer Teil wird bereits aus Biomasse als Rohstoff hergestellt.[8] Dieser Anteil liegt bei etwa 5 % und dient in erster Linie zur Herstellung von Produkten wie Wasch- und Reinigungsmitteln und Kosmetika, aber auch von Kunststoffen und Schmiermitteln eingesetzt.[9] Zusätzlich steigt die Nachfrage der hochwertigen Chemikalien um durchschnittlich 3,2 % pro Jahr (Berechnet für den Zeitraum 2010-2020).[5]

Konzepte für Bioraffinerien, welche Holz, Stärkepflanzen, landwirtschaftliche Reststoffe, Energiegräser, Grassilage oder sogar Klärschlamm als kohlenstoffhaltige Rohstoffbasis vorsehen, existieren bereits.[10][11] All diese Arten von Rohstoffen werden unter dem Begriff der Biomasse zusammengefasst, welche im Grunde eine komplexe Zusammensetzung aus organischen Verbindungen ist, die nicht fossilen Ursprungs sind.[12]

Einen großen Anteil an dieser Masse machen Verbindungen aus, die zu den Kohlenhydraten, Proteinen (Eiweiße) und Fettsäuren gehören, sowie auch tierische Fette. Daneben finden sich zahlreiche weitere Verbindungen, die aber meist in geringeren Anteilen vorkommen, wie z. B. die Sekundärmetaboliten (bzw. Sekundäre Pflanzenstoffe). Je nach Biomasse, schwanken diese Anteile. Holz beispielsweise hat eine deutlich andere Zusammensetzung, verglichen mit Stärkepflanzen (z. B. Weizen, Mais), Ölpflanzen (Raps, Gras, Soja) oder Pflanzenabfällen.

Ein Beispiel: Betrachtet man die organischen Verbindungen, welche in Holz enthalten sind, so sieht man zunächst drei Gruppen: die Cellulosen, Hemicellulosen und das Lignin. Diese Verbindungen bilden das Grundgerüst der Struktur „Holz“ und bestehen im Grunde aus einem Komplex an Kohlenhydraten bzw. Polysacchariden (Vielfachzuckern). Holz lässt sich mechanisch zerkleinern oder durch Laugen auflösen, wie es beispielsweise bei der Papierherstellung der Fall ist. Dadurch ist es möglich die einzelnen Zucker freizulegen und als Plattformchemikalien weiter zu verwenden.

In Lignin sind neben Kohlenhydraten diverse Phenole enthalten, welche über verschiedene Verfahren, wie zum Beispiel der thermischen Spaltung des Lignins (Pyrolyse), isoliert werden können und im Anschluss in Gas oder flüssiger Form vorliegen.[13] Viele landwirtschaftliche Reststoffe enthalten Lignin, welches bisher kaum wirtschaftlich genutzt wird. Zum Beispiel enthält Weizenstroh Anteile zwischen 8 und 30 % oder Rückschnitte von Obstbäumen Anteile zwischen 15 % und 40 %.[14] Phenole sind eine Plattformchemikalie zur Herstellung von Kunstharzen, Klebstoffen und Bindemitteln. Auch gibt es Ansätze Lignin stofflich so zu nutzen, dass es für Batterien zur Energiespeicherung oder für Kosmetika und Medizin verwendet werden kann.[13]

Biomasse ohne Konkurrenz zur Nahrungsmittelproduktion hat ein besonders hohes Potenzial als Rohstoff für den Einsatz in Bioraffinerien. Um festzustellen, auf welche Weise diese Biomasse genutzt werden kann, ist es notwendig bei der Erstellung von Konzepten für Bioraffinerien alle Stoffströme der verfügbaren Biomasse zu beachten, um mögliche Zielkonflikte zu vermeiden. Solche würden daraus resultieren, wenn der Humusaufbau oder die Kohlenstoffspeicherung in Böden gefährdet sind.

Produkte aus Biomasse werden daher so entwickelt, dass es möglich ist, diese am Ende der Nutzungsdauer recyceln bzw. kaskadenartig weiter zu nutzen. Dies wird als Teil eines ganzheitlichen, kreislauffähigen Wirtschaftskonzepts angesehen, das darauf ausgelegt ist keine Rohstoffe zu verschwenden und gleichzeitig die natürlichen Stoffströme nicht zu stören.[10]

Grundprinzip

In einer Bioraffinerie wird versucht, bestimmte hochwertige Naturbausteine, die Präkursoren aus der Biomasse zu isolieren. Dabei wird die Synthese-Vorleistung der Natur genutzt, um entweder aufwendige, künstliche Herstellungsprozesse zu ersetzen, oder um komplexe, nicht künstlich herstellbare Verbindungen zu gewinnen. Diese werden weiter zu Plattformchemikalien verarbeitet, welche als Synthesebausteine für eine Vielfalt höherwertiger Verbindungen dienen. In mehreren weiteren Stufen können so nutzbare Endprodukte hergestellt werden.[15]

Aus der zurückbleibenden, nicht nutzbaren Biomasse können wiederum z. B. Nahrungsmittel, Futtermittel, oder weniger hochwertige Chemikalien gewonnen werden. Nachdem diese stofflich nutzbaren Anteile aus der Biomasse gewonnen wurden, kann der verbleibende Anteil noch energetisch genutzt werden. Es können z. B. Strom und Wärme für den Anlagenbetrieb oder zum Verkauf, oder auch Biokraftstoffe bzw. synthetische Kraftstoffe (BtL, Methanol, Biomethan etc.) erzeugt werden.

Neben der Gewinnung von Verbindungen, die in der Biomasse vorhanden sind, ist die Erzeugung neuer Verbindungen aus dem Rohstoff ein weiteres Betätigungsfeld innerhalb einer Bioraffinerie. Hier können chemische Verfahren, wie die bereits genannte Erzeugung von synthetischen Kraftstoffen zum Einsatz kommen, aber insbesondere auch biotechnologische Ansätze zur Herstellung höherwertiger Verbindungen.[16]

Entwicklungsstufen

Bioraffinerien werden je nach Vielfältigkeit der Rohstoffe, Prozesse und Hauptprodukte in drei verschiedene Typen unterteilt:[1]

RaffinerietypVielfältigkeit
Rohstoffe
Vielfältigkeit
Prozesse
Vielfältigkeit
Produkte
Beispiel[17]
Phase-I-BioraffineriegeringgeringgeringAus Rapsöl wird durch Umesterung Biodiesel hergestellt
Phase-II-BioraffineriegeringhochhochAus Getreide werden durch verschiedene Prozesse verschiedene Stärkeprodukte hergestellt
Phase-III-BioraffineriehochhochhochAus lignocellulosehaltigen Rohstoffen werden durch verschiedene Prozesse verschiedene Plattformchemikalien hergestellt

Anders als Phase-I- und Phase-II-Bioraffinerien, sind Phase-III-Bioraffinerien sind bislang noch nicht kommerziell umgesetzt. Die Einführung wird in Europa ab 2020 erwartet.[17]

Die vier gängigsten, diskutierten Anlagenkonzepte dafür sind nach dem jeweiligen Rohstoff benannt:

Phase-III-Raffinerien

Lignocellulose-Bioraffinerie

Eine Lignocellulose-Bioraffinerie verwendet Rohstoffe, die Lignocellulose – eine Struktur, die aus Lignin, Cellulose und Hemicellulose besteht – enthalten. Dazu zählt Holz, aber auch Stroh und Gras, sowie Abfälle aus der Papierindustrie, wie z. B. die in großen Mengen anfallende ligninreiche Schwarzlauge, können eingesetzt werden.[16][18]

Lignin besteht vor allem aus Derivaten der aromatischen Verbindung Phenol, die für die chemische Industrie nützlich sein könnte.

Cellulose ist ein Polysaccharid (Vielfachzucker) aus dem Monomer Glucose (eine Hexose). Diese kann zu verschiedenen Grundchemikalien, wie z. B. Ethanol und Ethen als Ausgangsprodukt zur Herstellung von Polyethylen (PE) und Polyvinylchlorid (PVC) oder zu Hydroxymethylfurfural als Ausgangsprodukt zur Herstellung von Nylon, weiterverarbeitet werden. Daneben ist Glucose ein Substrat für biotechnologische Herstellungsprozesse durch Fermentation.

Hemicellulose ist ebenfalls ein Polysaccharid, allerdings aus verschiedenen Pentosen als Monomer. Daraus können Furfural-Derivate, Nylon und andere Produkte gewonnen werden.[16][19]

Die Lignocellulose-Bioraffinerie gilt als aussichtsreichste Bioraffinerie. Ein wesentlicher Vorteil ist, dass sie nicht in Konkurrenz mit Nahrungsmittelproduktion steht, da nur Rohstoffe benutzt werden, die sich nicht als Nahrungsmittel eignen.[1]

Hauptbestandteile der Stärke – Amylopektin und Amylose
Ausschnitt aus der Polymerstruktur von Amylopektin
Ausschnitt aus der Polymerstruktur von Amylose

Ganzpflanzen-Bioraffinerie

Eine Ganzpflanzen-Bioraffinerie verwendet die vollständige Nutzpflanze, wie z. B. Mais, Weizen, Roggen, Triticale etc. Die Pflanzen bestehen im Wesentlichen aus dem Korn und dem lignocellulosereichen Stroh, die in der Regel bereits bei der Ernte mit einem Mähdrescher getrennt werden.

Das Stroh kann in einer Lignocellulose-Bioraffinerie weiterverarbeitet werden oder durch Pyrolyse in Synthesegas (Syngas) umgewandelt werden. Dieses bildet die Basis für synthetische Kraftstoffe wie Biomass-to-Liquid (BtL) oder Methanol.

Das Korn besteht vor allem aus dem Glucose-Polymer Stärke, die vielfältig weiterverarbeitet werden kann. Sie kann z. B. direkt als Rohstoff der Lebensmittel- oder chemischen Industrie verwendet werden. Auch die Herstellung von bio-basierten Kunststoffen, wie z. B. thermoplastischer Stärke und die Verwendung als Fermentationssubstrat sind möglich.[16]

Grüne Bioraffinerie

Die Grüne Bioraffinerie verwendet Pflanzenmaterial, wie z. B. Gras, Klee, Luzerne oder auch unreifes (grünes) Getreide aus der Landwirtschaft.[16] Ein wesentlicher Unterschied zu den anderen beiden Konzepten ist, dass die frische Pflanze verwendet wird, deren Inhaltsstoffe sich von Holz oder abgereiften Pflanzen deutlich unterscheidet. Der erste Aufbereitungsschritt ist das Abpressen des Pflanzensafts. Der Presskuchen enthält vor allem Fasern (Cellulose), wie auch Stärke, Farbstoffe und Pigmente. Im Presssaft finden sich Proteine, Aminosäuren, organische Säuren etc. Daraus könnten z. B. Produkte wie Milchsäure, Aminosäuren, Ethanol etc. isoliert werden. Der Presskuchen kann als Futtermittel, zur Erzeugung von Syngas und Biogas oder auch zur Gewinnung von chemischen Verbindungen verwendet werden.[16][20][21]

Beispiele

Grüne-Bioraffinerie-Demonstrationsanlage in Utzenaich

Milchsäure kann ein wichtiges Produkt von Grünen Bioraffinerien sein, z. B. zur Verwendung als Plattformchemikalie.

In Österreich wurde im Mai 2009 eine Grüne Bioraffinerie als Demonstrationsanlage eröffnet. Es wird Grassilage verwendet, aus der Aminosäuren und Milchsäure gewonnen werden sollen. Feste Anteile werden in einer Biogasanlage energetisch verwertet. Es können 4 t Grassilage pro Stunde bzw. 100 l Presssaft pro Stunde verarbeitet werden. Pro Tonne Silage-Trockensubstanz können 150 bis 210 kg Milchsäure und 80 bis 120 kg Rohprotein (Aminosäuren) gewonnen werden. Ziel ist das Gewinnen von Erkenntnissen, welche die Konzipierung industrieller Anlagen unterstützen.[21][22]

Lignocellulose-Bioraffinerie-Pilotanlage in Leuna

In einem von der Fachagentur Nachwachsende Rohstoffe e. V. koordinierten Projekt wurden seit 2007 Verfahrenskonzepte für Lignocellulose-Bioraffinerien entwickelt. In einem Nachfolgeprojekt soll in Leuna (Sachsen-Anhalt) eine erste Versuchsanlage aufgebaut werden, die täglich 1,25 t Holz verarbeitet. Langfristig werden Anlagen mit Verarbeitungskapazitäten von 400.000 t/a für möglich gehalten.[23]

Biowert-Anlage Brensbach

Die Biowert-Anlage arbeite mit einem an die Grüne Bioraffinerie angelehnten Prinzip. Als Rohstoff dient Gras bzw. Grassilage. Diese wird gepresst und der flüssige Anteil in einer Biogasanlage, die auch Prozessenergie bzw. Prozesswärme liefert, vergoren. Der Presskuchen enthält einen hohen Faseranteil, aus dem Dämmstoffe oder faserige Zusätze für Kunststoff (Naturfaserverstärkter Kunststoff) erzeugt werden.[24]

Verfahren und Produkte

(siehe auch Artikel Raffination, Stärke als nachwachsender Rohstoff, Zucker als nachwachsender Rohstoff und Nachwachsender Rohstoff)
In Bioreaktoren können aus der Biomasse andere Verbindungen erzeugt werden, wie z. B. auch sehr hochwertige Produkte für die Pharmaindustrie: Anlage zur Herstellung von Vakzinen

In der Bioraffinerie ist eine Vielzahl von Verfahren notwendig, um den Rohstoff aufzubereiten, bestimmte Fraktionen zu isolieren und mit chemischen, chemisch-physikalischen und biotechnologischen Verfahren weitere Verbindungen abzuleiten:[20][22] Damit die Bioraffinerie möglichst nachhaltig arbeitet, sollten Methoden der grünen Chemie genutzt werden und deren Grundsätze eingehalten werden.[25]

Mit diesen Verfahren lassen sich bereits in der Biomasse vorhandene Stoffe und Verbindungen gewinnen. Durch chemische Veränderung lässt sich das Produktspektrum aber noch deutlich erweitern:

  • Verarbeitung mit chemischen und chemisch-physikalischen Verfahren:
  • Chemische Veränderung mit biotechnologischen Verfahren (siehe auch Biotechnologie und Weiße Biotechnologie):
    • Verwendung des Rohstoffs bzw. von Anteilen für Fermentationen, z. B. zur Herstellung von Grund- und Feinchemikalien, Ethanol, Biogas, Rohstoffen zur Herstellung von bio-basierten Kunststoffen, Vitaminen, Aminosäuren etc.
    • Biokatalyse mit isolierten Enzymen zur Modifikation bestimmter Verbindungen, z. B. mit Amylasen zur hydrolytischen Spaltung von Stärke zu Glucose

Gesundheitliche Bedeutung

In sämtlichen raffinierten Pflanzenölen sind 3-MCPD-Fettsäureester zu finden, wobei die Gehalte sich zum Teil stark unterscheiden.[26][27] 3-MCPD wurde 2011 von der International Agency for Research on Cancer (IARC) als „mögliches Humankarzinogen“ eingestuft.

Perspektive

Nach einer Marktstudie von Festel betrug 2001 der Anteil biotechnologisch hergestellter Chemikalien mit 30 Milliarden US-$ rund 2,5 % des Gesamtmarktes.[28] Bis 2010 wurde ein Anstieg auf ca. 20 % (310 Milliarden US-$ bei einem Gesamtumsatz von 1600 Milliarden US-$) prognostiziert.[28] Im Jahr 2007 betrug der Anteil 48 Milliarden US-$, was 3,5 % entsprach.[29] Der Anteil der biotechnologisch produzierten Arzneistoffe betrug 2010 17 %.[30]

Die Entwicklung der Bioraffinerie wurde in den USA in den vergangenen Jahren intensiv vorangetrieben. In die Förderung von Biomasse wurden jedes Jahr rund 360 Mio. US-Dollar investiert (2003: ca. 420 Mio. US-Dollar, 2005: ca. 310 Mio. US-Dollar). Dort erwarten Experten, dass bis 2020 ein Viertel der derzeit fossil-basierten organischen Grundstoffe und 10 % der Öle und Kraftstoffe mittels Bioraffinerie-Technologien produziert werden.

In der EU wurde in die Forschung zur Nutzung von Biomasse im Zuge des 6. Forschungsrahmenprogramms von Mitte 2002 bis 2006 insgesamt 74 Mio. Euro investiert. Im 7. Forschungsrahmenprogramm (2007–2013) wurde der jährliche Gesamtetat um 40 % erhöht, so dass auch bei der Forschung zur Biomassenutzung mit einer Erhöhung zu rechnen ist.[31]

Literatur

  • K. Arnold, D. Maga, U.Fritsche u. a.: BioCouple – Kopplung der stofflich/energetischen Nutzung von Biomasse – Analyse und Bewertung der Konzepte und der Einbindung in bestehende Bereitstellungs- und Nutzungsszenarien, Endbericht von Wuppertal-Institut, Fraunhofer UMSICHT und Öko-Institut zum BMU-geförderten Vorhaben FKZ-Nr. 03 KB 006 A-C, Wuppertal/Oberhausen/Darmstadt pdf-Datei 6,5 MB.
  • B. Kamm, P. Gruber, M. Kamm: Biorefineries – Industrial Processes and Products, Wiley-VCH, 2006, ISBN 978-3-527-31027-2, umfassendes, zweibändiges Werk zum status quo und zur zukünftigen Entwicklung des Konzepts Bioraffinerie.
  • B. Kamm, M. Kamm: Biorefinery-Systems, Chemical and Biochemical Engineering Quarterly 2004, 18 (1), S. 1–6, pdf-Datei.
  • G. Festel et al.: Der Einfluss der Biotechnologie auf Produktionsverfahren in der Chemieindustrie, Chemie Ingenieur Technik 2004, 76, No. 3, S. 307–312
  • A. Demirbas: Biorefineries. For Biomass Upgrading Facilities. Springer-Verlag, London 2010. ISBN 978-1-84882-720-2.
  • Biobased Industrial Products: Research and Commercialization Priorities (2000) Commission on Life Sciences (CLS). Der Text diente als Fachvorlage zur „Präsidentenorder“ Nr.: 13101 zur Auflage eines gleichnamigen FuE-Programms in den USA bis zum Jahre 2010.

Weblinks

Einzelnachweise

  1. a b c d Arno Behr & Thomas Seidensticker: Einführung in die Chemie nachwachsender Rohstoffe – Vorkommen, Konversion, Verwendung Springer Spektrum, 2018, ISBN 978-3-662-55254-4, S. 340–351.
  2. Birgit Kamm: Bioraffinerie – Produktion von Plattformchemikalien und Synthesegas aus Biomasse. In: Angewandte Chemie, 139, 2007, S. 5146–5149.
  3. Bioökonomierat: Bioökonomie nachhaltig umsetzen! (PDF; 2,5 MB). Erste Handlungsempfehlung des Bioökonomierats zur Umsetzung der Nationalen Bioökonomie. biooekonomierat.de, 7. März 2023, abgerufen am 10. März 2024.
  4. Philipp Graf: Bioraffinerien: Nachwachsende Rohstoffe effizient nutzen. In: biooekonomie.de, Themendossiers. 17. November 2015, abgerufen am 11. März 2024.
  5. a b Markus Götz, Andreas Rudi, Raphael Heck, Frank Schultmann & Andrea Kruse: Processing Miscanthus to high-value chemicals: A techno-economic analysis based on process simulation. In: GCB-Bioenergy Volume 14, Issue 14, April 2022, doi:10.1111/gcbb.12923, S. 447–462.
  6. Arno Behr, David W. Agar, Jakob Jörissen & Andreas J. Vorholt: Einführung in die Technische Chemie. Springer Spektrum, Berlin, Heidelberg 2016, ISBN 978-3-662-52855-6.
  7. Gerd Mischler: Erdöl – Schmierstoff der Weltwirtschaft Rohstoff-Steckbrief. In: Technik-Einkauf, Kritische Rohstoffe. 21. Juli 2017, abgerufen am 25. Januar 2024.
  8. Bettina Reckter: Die chemische Industrie kann auf Erdöl verzichten In: vdi-nachrichten, Biotechnologie. 13. Juli 2017, abgerufen am 25. Januar 2024.
  9. Agora Industrie: Chemie im Wandel (PDF; 1,1 MB). Die drei Grundpfeiler für die Transformation chemischer Wertschöpfungsketten, Impuls. In: Agora Energiewende, 2023, abgerufen am 25. Januar 2024.
  10. a b Manfred Kircher: Weg vom Öl. Potenzial und Grenzen der Bioökonomie. Springer Berlin, Heidelberg 27. August 2020, ISBN 978-3-662-61489-1.
  11. Ekaterina Ovsyannikova, Andrea Kruse und Gero C. Becker: Feedstock-Dependent Phosphate Recovery in a Pilot-Scale Hydrothermal Liquefaction Bio-Crude Production. Energies, MDPI, Volume 13, Issue 2 doi:10.3390/en13020379, S. 1–21.
  12. Oliver Türk: Stoffliche Nutzung nachwachsender Rohstoffe. Springer Vieweg, Wiesbaden, 2014, ISBN 978-3-8348-1763-1, S. 169–292.
  13. a b Julia Schuler, Ursel Hornung, et al.: Hydrothermal Liquefaction of Lignin. In: Journal of Biomaterials ans Nanobiotechnology, Volume 8, doi:10.4236/jbnb.2017.81007, S. 96–108.
  14. ReBioBW: Lignin. Potenziale landwirtschaftlicher Reststoffe für die Bioökonomie in Baden-Württemberg. In: rebiobw.uni-hohenheim.de. 31. März 2023, abgerufen am 27. September 2023.
  15. Birgit Kamm: Biomasse-Wirtschaft und Bioraffinerie-Systeme. LIFIS ONLINE, 2008. / PDF; abgerufen am 10. September 2019.
  16. a b c d e f Kamm, B. und Kamm. M.: Biorefinery-Systems (PDF; 200 kB), Chemical and Biochemical Engineering Quarterly 2004, 18 (1), S. 1–6, englisch, abgerufen am 28. Februar 2010.
  17. a b Oliver Türk: Stoffliche Nutzung nachwachsender Rohstoffe. Springer Vieweg, Wiesbaden, 2014, ISBN 978-3-8348-1763-1, S. 24–31.
  18. J. Michels, K. Wagemann: Lignin – Schlüsselkomponente in der Lignocellulose Bioraffinerie, Gülzower Fachgespräche, Band 31: Stoffliche Nutzung von Lignin, S. 170, Konferenz am 10. März 2009, veröffentlicht am 26. Oktober 2009, als pdf.
  19. Fachagentur Nachwachsende Rohstoffe e. V: Bioraffinerie: Rohstoffe aus Holz für die Chemische Industrie (Memento vom 11. Februar 2013 im Webarchiv archive.today), Pressemitteilung vom 5. Juli 2007 zu einem dreijährigen Förderprojekt, abgerufen am 1. März 2010.
  20. a b Brandenburgische Umwelt Berichte (BUB): Grüne BioRaffinerie Brandenburg, B. Kamm et al., BUB 8 (2000) 260-269, als pdf.
  21. a b Weltweit erste Grüne Bioraffinerie für Grassilage eröffnet. In: fabrikderzukunft.at. abgerufen am 1. März 2010.
  22. a b Grüne Bioraffinerie – Aufbereitung und Verwertung der Grasfaserfraktion. In: nachhaltigwirtschaften.at. Berichte aus Energie- und Umweltforschung (2006), abgerufen am 1. März 2010 (PDF; 1,1 MB).
  23. Fachagentur Nachwachsende Rohstoffe e. V.: Neue Bioraffinerie könnte sämtliche Holzbestandteile veredeln (Memento vom 11. Februar 2013 im Webarchiv archive.today), Pressemitteilung vom 4. November 2009, abgerufen am 1. März 2010.
  24. BIOWERT GmbH: Internetpräsenz der BIOWERT GmbH, abgerufen am 2. März 2010.
  25. James H. Clark, Rafael Luque & Avtar S. Matharu: Green Chemistry, Biofuels and Biorefinery. In: Annual Review of Chemical and Biomolecular Engineering. Band 3, 2012, S. 183–207, doi:10.1146/annurev-chembioeng-062011-081014.
  26. 3-MCPD-Ester in raffinierten Speisefetten und Speiseölen – ein neu erkanntes, weltweites Problem. Chemisches und Veterinäruntersuchungsamt, Stuttgart, 18. Dezember 2007.
  27. Bundesinstitut für Risikobewertung (BfR): Fragen und Antworten zur Kontamination von Lebensmitteln mit 3-MCPD-, 2-MCPD- und Glycidyl-Fettsäureestern. 7. Juli 2016, abgerufen am 8. Juli 2016.
  28. a b Gunter Festel et al.: The influence of the biotechnology on production procedures in the chemical industry in: chemistry engineer technology 2004, 76, No. 3, S. 307–312.
  29. ec.europa.eu: Final Evaluation of the Lead Market Initiative –Final Report (Memento vom 22. Februar 2014 im Internet Archive) (PDF; 3,3 MB), Juli 2011, Zugriff am 25. Dezember 2011.
  30. Biotechnologie-Statistik 2010.
  31. EU-Forschungsrahmenprogramm: Das deutsche Portal zum 7. EU-Forschungsrahmenprogramm (Memento vom 1. März 2010 im Internet Archive), Seite des Bundesministeriums für Bildung und Forschung (BMBF), abgerufen am 2. März 2010.

Auf dieser Seite verwendete Medien

Amylose3.svg
Struktur von Amylose
Milchsäure.svg
Struktur von Milchsäure
Fließdiagramm stoffliche Nutzung nachwachsender Rohstoffe.pdf
Autor/Urheber: Ple210, Lizenz: CC BY-SA 4.0
Fließdiagramm, dass die verschiedenen Verabeitungsstufen auf dem Weg von nachwachsenden Rohtoffen zu Endprodukten anhand von Beispielen übersichtsartig darstellt
Jninternational4.jpg
Autor/Urheber: Peter grotzinger, Lizenz: CC BY-SA 3.0
Bioreactors for bacterial fermentation for production of vaccines
Triacylglycerin.svg
Struktur von Triacylglycerin