Pellsche Gleichung

6 ganzzahlige Lösungen der Pellsche Gleichung für

Als Pellsche Gleichung (nach John Pell, 1611–1685) bezeichnet man eine diophantische Gleichung der Form

mit positiv ganzzahligem .

Ist eine Quadratzahl, so besitzt die Gleichung offenbar nur die trivialen Lösungen . Andernfalls gibt es unendlich viele Lösungen, die man mit Hilfe der Kettenbruchentwicklung von bestimmen kann. Die verwandten Gleichungen und werden oft ebenfalls Pellsche Gleichungen genannt.

Die Gleichung wird John Pell fälschlicherweise zugeschrieben. Korrekter wäre die Bezeichnung Fermatsche Gleichung.[1][2]

Die Gleichung war schon Brahmagupta und Bhaskara II. bekannt. Die Lösung dieser Gleichung war als Problem von Pierre de Fermat in einem Brief an Bernard Frénicle de Bessy gestellt worden und 1657 als Problem veröffentlicht. Pell befasste sich nie mit der Lösung der Gleichung. Brouncker fand einige Lösungen (veröffentlicht im Commercium epistolicum of John Wallis 1658). Leonhard Euler stieß auf die Lösung von Brouncker in der lateinischen Ausgabe des Treatise of Algebra von John Wallis und benannte die Gleichung fälschlich nach Pell.[3][4] Euler veröffentlichte zuerst 1732 über die Pell-Gleichung und fand später die Verbindung mit Kettenbrüchen (veröffentlicht 1765), die im Grunde schon hinter der Lösung von Brouncker steckt. Joseph-Louis Lagrange befasste sich nach Euler ausführlich mit der Gleichung und gab als Erster einen Beweis, dass es für jedes eine Lösung gibt, wobei Fermat möglicherweise auch einen Beweis hatte.[5]

Algebraische Zahlentheorie

Das Auffinden aller Lösungen ist für spezielle äquivalent dazu, die Einheiten des Ganzheitsrings des reellquadratischen Zahlkörpers zu finden. Nach dem Dirichletschen Einheitensatz hat die Einheitengruppe den Rang 1, d. h., es gibt eine Fundamentaleinheit (oder auch Grundeinheit) mit der sich alle Lösungen als darstellen lassen.

Beispielsweise ist für die Einheit eine Fundamentaleinheit und man kann die anderen Lösungen

aus ihr erzeugen.

Lösungsmöglichkeiten

Lösung mit Hilfe der Kettenbruchentwicklung

Die Kettenbruchentwicklung einer quadratisch irrationalen Zahl ist unendlich und periodisch. hat die Kettenbruchentwicklung (siehe Periodische Kettenbrüche). Sei

mit ganzzahligen , dann ist die kleinste Lösung der verallgemeinerten Pellschen Gleichung . Die anderen Lösungen lassen sich wie erwähnt daraus konstruieren.[6] Auch alle weiteren

mit lösen .

Zum Beispiel hat die Kettenbruchentwicklung

Bricht man die Entwicklung jeweils an der Stelle ab, so erhält man beginnend mit

und findet an den Stellen und die Lösungen

 von   und
 von  .

Weiter stellt man fest, dass für jedes Element der abgebrochenen Kettenbruchentwicklung der Länge eine Lösung einer Pellschen Gleichung mit rechter Seite ist, die Näherungsbrüche „dazwischen“ lösen die Gleichung mit und .

Generieren weiterer Lösungen auf Basis einer bekannten

Ist eine Lösung bekannt, so lassen sich weitere Lösungen auch mit einer Matrizenmultiplikation bestimmen. Es gilt

Beispiel

Die Pellsche Gleichung für hat die Minimallösung . Die nächsten Lösungen ergeben sich dann zu

usw.

Tabelle der Fundamentaleinheiten für die Pellsche Gleichung

Hier eine Tabelle der kleinsten Lösungen (Fundamentaleinheiten) von mit . Ist ein Quadrat gibt es nur die die trivialen Lösungen .

Die Werte von und bilden die Folgen A002350[7] und A002349[8] in OEIS.

nxy
1keine Lösung
232
321
4keine Lösung
594
652
783
831
9keine Lösung
10196
11103
1272
13649180
14154
1541
16keine Lösung
17338
18174
1917039
2092
215512
2219742
23245
2451
25keine Lösung
265110
27265
2812724
2998011820
30112
311520273
32173
nxy
33234
34356
3561
36keine Lösung
377312
38376
39254
40193
412049320
42132
433482531
4419930
4516124
46243353588
47487
4871
49keine Lösung
509914
51507
5264990
53662499100
5448566
558912
56152
5715120
58196032574
5953069
60314
611766319049226153980
62638
6381
64keine Lösung
nxy
6512916
66658
67488425967
68334
697775936
7025130
713480413
72172
732281249267000
743699430
75263
76577996630
7735140
78536
79809
8091
81keine Lösung
8216318
83829
84556
8528576930996
86104051122
87283
8819721
8950000153000
90192
911574165
921151120
93121511260
942143295221064
95394
96495
nxy
97628096336377352
989910
99101
100keine Lösung
10120120
10210110
10322752822419
104515
105414
106320800513115890
10796293
1081351130
10915807067198624915140424455100
110212
11129528
11212712
1131204353113296
114102596
1151126105
1169801910
11764960
11830691728254
11912011
120111
121keine Lösung
12224322
12312211
1244620799414960
12593024983204
12644940
1274730624419775
12857751

Das Rinderproblem des Archimedes

Bei der Lösung des Rinderproblems des Archimedes stößt man (wenn man geschickt rechnet)[1] auf die Pellsche Gleichung zum Parameter , die als Minimallösung

hat. Für das Rinderproblem braucht man allerdings nicht die Minimallösung, sondern eine (genauer: die kleinste) Lösung, bei der ein Vielfaches von ist.

Alternativ dazu kann man für die Pellsche Gleichung mit Parameter die Minimallösung (jetzt ohne Nebenbedingung) suchen, die von folgender Größenordnung ist (vgl. o. g. Quelle):

Nicht zufällig ist , wodurch numerisch der Zusammenhang zwischen den Minimallösungen der beiden Pellschen Gleichungen hergestellt ist.

Für das Rinderproblem selbst ist als Zwischenergebnis die Zahl von Belang. Das Endergebnis ist das -Fache davon, also ca. .

Literatur

  • H. W. Lenstra Jr.: Solving the Pell Equation, Notices of the American Mathematical Society, Band 49, Heft 2, 2002, S. 182–192, online (PDF; 237 kB).
  • M. J. Jacobson Jr., H. C. Williams: Solving the Pell Equation, CMS Books in Mathematics, Springer 2009, ISBN 978-0-387-84922-5
  • Leonard Dickson: History of the theory of numbers, Washington D.C.: Carnegie Institution, 1920, Kapitel 12 (zur Geschichte der Pellschen Gleichung)

Weblinks

Einzelnachweise

  1. a b Siehe Artikel von H. W. Lenstra Jr.
  2. So auch Dickson, History of the theory of numbers, Band 2, S. 341 (Kapitel 12 zur Geschichte der Pellschen Gleichung)
  3. Noel Malcolm, Jacqueline Steadall: John Pell in his correspondence with Sir Charles Cavendish, Oxford UP, 2005, S. 320
  4. André Weil, Number theory - An approach through history from Hammurapi to Legendre, Birkhäuser 1984, S. 174
  5. Dickson, History of the theory of numbers, Band 2, Carnegie Institution 1920, S. 353. Er benutzte seine Methode des unendlichen Abstiegs
  6. Max Lahn, Jonathan Spiegel: Continued Fractions and Pell’s Equation. In: Mixed Math - Explorations in math and number theory. David Lowry-Duda, Mai 2016, abgerufen am 31. Mai 2020 (englisch).
  7. A002350, auf oeis.org
  8. A002349, auf oeis.org

Auf dieser Seite verwendete Medien

Pell's equation.svg
Autor/Urheber: David Eppstein, Lizenz: CC0
Pell's equation x2 − 2y2 = 1 and its solutions, the integer points on the hyperbola defined by the equation. The of x-coordinates of the solutions, 1, 3, 17, ..., are given by every other term in the sequence of Pell numbers.