Ornstein-Uhlenbeck-Prozess

Fünf Pfade von unterschiedlichen Ornstein-Uhlenbeck-Prozessen mit σ=1, θ=1, μ=0.

Der Ornstein-Uhlenbeck-Prozess (oft abgekürzt OU-Prozess oder noch kürzer O-U) ist ein spezieller stochastischer Prozess, welcher nach den beiden niederländischen Physikern George Uhlenbeck (1900–1988) und Leonard Ornstein (1880–1941) benannt ist. Er ist neben der geometrischen Brownschen Bewegung einer der einfachsten und gleichzeitig wichtigsten über eine stochastische Differentialgleichung definierten Prozesse. Im Vasicek-Modell zur Zinssatzmodellierung werden Ornstein-Uhlenbeck-Prozesse verwendet.

Definition und Parameter

Seien und Konstanten. Ein stochastischer Prozess heißt Ornstein-Uhlenbeck-Prozess mit Anfangswert , Gleichgewichtsniveau , Steifigkeit und Diffusion , wenn er das folgende stochastische Anfangswertproblem löst:

,

wobei ein Standard-Wienerprozess ist.

Die Parameter lassen sich einfach interpretieren und somit bei der Modellierung einer stochastischen Zeitreihe einfach als „Stellschrauben“ verwenden:

  • ist das gleichgewichtige Niveau des Prozesses (englisch: mean reversion level). Liegt über diesem Wert, so ist der Driftterm negativ, und die Drift wird den Prozess tendenziell nach unten „ziehen“. Ist kleiner, so ist die Drift positiv und der Prozess wird in Erwartung nach oben gezogen.
  • (englisch mean reversion speed oder mean reversion rate) gibt an, wie stark die oben beschriebene „Anziehungskraft“ von ist. Für kleine Werte von verschwindet dieser Effekt, für große Werte wird sich sehr steif um entwickeln.
  • gibt an, wie stark der Einfluss von (also des Zufalls) auf den Prozess ist. Für wird einfach exponentiell gegen konvergieren, bei starker Diffusion wird diese Konvergenz zufällig gestört.

Der Unterschied zum ebenfalls mit dem mean-reversion-Mechanismus ausgestatteten Wurzel-Diffusionsprozess oder der geometrischen Brownschen Bewegung besteht im Wesentlichen darin, dass beim OU-Prozess der Diffusionsterm konstant, also unabhängig von ist. Dies führt dazu, dass der OU-Prozess im Gegensatz zu den anderen beiden auch negative Werte annehmen kann.

Lösung der Differentialgleichung

Im Gegensatz zum Wurzel-Diffusionsprozess ist die obige Differentialgleichung explizit lösbar, wenn auch nicht (wie bei der geometrischen brownschen Bewegung) integralfrei darstellbar: Mit der Lösung der zugehörigen homogenen Gleichung führt Variation der Konstanten auf den Ansatz , also . Wendet man auf die Funktion einerseits das Lemma von Itō, andererseits die gewöhnliche Kettenregel der Differentialrechnung an, so erhält man

.

Die obige Identität von 0 bis aufintegriert (wobei ) ergibt die Lösung

.

Eigenschaften

Vergleich von Wiener und OU-Prozessen mit gleicher Diffusion σ=1.

Der Ornstein-Uhlenbeck-Prozess ist ein Gauß-Prozess. Dies erkennt man an der obigen Lösung: Der Integrand ist deterministisch, also ist der Wert des Ito-Integrals stets normalverteilt.

Wie jeder Gauß-Prozess ist der Ornstein-Uhlenbeck-Prozess durch seine Erwartungswert- und Kovarianzfunktion in seiner Verteilung eindeutig bestimmt. Diese ergeben sich als

  • und
  • .

Mit anderen Worten ist wie folgt normalverteilt:

  • .

Da sowohl Erwartungswert als auch Varianz für konvergieren, existiert eine stationäre Verteilung für den Markow-Prozess : Es handelt sich dabei um eine Normalverteilung mit Erwartungswert und Varianz . Im Gegensatz zum Wiener-Prozess ist der Ornstein-Uhlenbeck-Prozess also (schwach) stationär. Man sagt dann, dass der Prozess ein „invariantes Maß“ hat: Für jedes gilt dann

.

Der Prozess hat also keine Asymptote bei .

Der Ornstein-Uhlenbeck-Prozess ist – wie auch der Wurzel-Diffusionsprozess – ein affiner Prozess.

Der Ornstein-Uhlenbeck-Prozess entspricht einem Tiefpass-gefilterten weißen Rauschen mit einem linearen IIR-Tiefpassfilter 1. Ordnung mit Grenzfrequenz .[1] Sein Spektrum ist daher für niedrige Frequenzen flach, wie beim weißen Rauschen, und für hohe Frequenzen proportional zu 1/f², wie beim roten Rauschen. Im Gegensatz zum rein weißen und roten Rauschen ist das Spektrum des Ornstein-Uhlenbeck-Prozess damit quadratintegrierbar, und der Prozess besser als ideales weißes oder rotes Rauschen auf physikalische Situationen anwendbar, die grundsätzlich amplituden-, bandbreiten und leistungslimitiert sind.

Ebenso entspricht der Ornstein-Uhlenbeck-Prozess einem Hochpass-gefilterten Wiener-Prozess mit einem linearen IIR-Hochpassfilter 1. Ordnung mit Grenzfrequenz (siehe Abbildung). Dies geht direkt aus der Definition hervor, die zu einem bestehenden Wiener-Prozess den linearen Filterterm addiert, der tiefe Frequenzkomponenten dämpft. Im Gegensatz zum skaleninvarianten Wiener-Prozess besitzt der Ornstein-Uhlenbeck-Prozess damit eine Zeitskala und ist in dieser Hinsicht komplizierter. Für Zeitskalen deutlich kleiner als 1/θ kann der Ornstein-Uhlenbeck-Prozess jedoch durch den Wiener-Prozess approximiert werden. Es gilt im Sinne der Verteilungskonvergenz[2]

Lévy-Prozesse

Pfad eines Cauchy-OU-Prozesses

Wird die definierende Differentialgleichung von einem anderen Lévy-Prozess als der brownschen Bewegung angetrieben, so erhält man auch einen (nicht-gaußschen) Ornstein-Uhlenbeck-Prozess.

Literatur

  • G. E. Uhlenbeck, L. S. Ornstein: On the Theory of the Brownian Motion. In: Physical Review. 36. Jahrgang, Nr. 5, 1. September 1930, ISSN 0031-899X, S. 823–841, doi:10.1103/PhysRev.36.823 (englisch).
  • Daniel T. Gillespie: Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. In: Physical Review E. 54. Jahrgang, Nr. 2, 1. August 1996, ISSN 1063-651X, S. 2084–2091, doi:10.1103/PhysRevE.54.2084, PMID 9965289 (englisch).

Einzelnachweise

  1. Enrico Bibbona, Gianna Panfilo, Patrizia Tavella: The Ornstein–Uhlenbeck process as a model of a low pass filtered white noise. In: Metrologia. 45. Jahrgang, Nr. 6, 5. Dezember 2008, ISSN 0026-1394, S. S117–S126, doi:10.1088/0026-1394/45/6/S17 (englisch).
  2. L. C. G. Rogers and D. Williams: Diffusions, Markov Processes and Martingales. Vol. 1. Cambridge University Press, Cambridge, 2000, S. 54.

Auf dieser Seite verwendete Medien

Wiener-Ornstein-Uhlenbeck-5traces-samedata.svg
Autor/Urheber: Geek3, Lizenz: CC BY-SA 4.0
Five sample traces of a Wiener process and an Ornstein-Uhlenbeck process with identical diffusion σ=1. The underlying random data for both kinds of processes is the same here. The Wiener process diffuses infinitely, while the Ornstein-Uhlenbeck process becomes steady.
Ornstein-Uhlenbeck-5traces.svg
Autor/Urheber: Geek3, Lizenz: CC BY-SA 4.0
Five sampled traces of an Ornstein-Uhlenbeck process with θ=1 and σ=1. ±1σX area in gray.
Cauchy-OU.png
Autor/Urheber: Thomas Steiner, Lizenz: CC BY-SA 2.5
A cauchy-process (levy-process) and an OU process driven by it. and the median of the invariant distribution