Mie-Streuung
Als Mie-Streuung oder auch Lorenz-Mie-Streuung (nach den Physikern Gustav Mie und Ludvig Lorenz) bezeichnet man die elastische Streuung elektromagnetischer Wellen an sphärischen Objekten, deren Durchmesser in etwa der Wellenlänge der Strahlung entspricht. Mit der Lorenz-Mie-Theorie lässt sich diese Streuung physikalisch beschreiben.
Beschreibung
Die Mie-Streuung erzeugt den Tyndall-Effekt. Dieser entsteht bei Streuung an Objekten, bei welchen der Partikeldurchmesser etwa der Wellenlänge entspricht.
So bezeichnet man die Streuung an den Molekülen der Luft als Rayleigh-Streuung, die an fallenden Regentropfen und schwebenden Nebeltropfen als klassische Streuung und nur die an emulgierten Fetttröpfchen als Mie-Streuung, obwohl alle Fälle durch die Lorenz-Mie-Theorie exakt beschrieben werden. In der Praxis kann man diese Fälle durch den unterschiedlichen Polarisationsgrad und die Streuverteilung gut voneinander trennen:
Art der Streuung | Abhängigkeit von der Wellenlänge | Polarisation | Streuverteilung |
---|---|---|---|
Rayleigh | stark | bei senkrechter Streuung: linear | symmetrisch nach vorn und hinten |
Mie | leicht | bei senkrechter Streuung: leicht bis mittel | leicht asymmetrisch bis komplex |
klassisch (geometrisch) an kleinen Tröpfchen | schwach | ohne | hauptsächlich vorwärts (sichtbar durch Hof-Bildung), aber auch komplex (durch Variation der Tropfengröße nicht mehr nachweisbar) |
klassisch (geometrisch) an großen Tropfen | bei transparentem Material (Tyndall-Effekt): | sehr eng und schwach vorwärts, so dass Hofbildung ausbleibt; zusätzlich bei transparentem Material (Tyndall-Effekt): in großem Winkel | |
schwach | schwach |
Bedeutung in der Funktechnik
Die Mie-Streuung hat auch in der Funktechnik eine Bedeutung. So kann die Reflexion und der Radarquerschnitt metallischer Körper berechnet werden, deren Umfang in der Größenordnung der Wellenlänge der Funkwellen liegt. Die effektive Rückstrahlfläche einer Metallkugel mit einem Durchmesser eines Drittels der Wellenlänge beträgt knapp das Vierfache dessen, was laut klassischer Streuung zu erwarten wäre. Weitere, kleinere Maxima treten bei ganzzahligen Vielfachen des Umfanges zur Wellenlänge auf.
Literatur
- Gustav Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik Folge 4, Bd. 25, 1908, S. 377–445, doi:10.1002/andp.19083300302.
- Julius Adams Stratton: Electromagnetic Theory. McGraw-Hill, New York NY 1941.
- Thomas Wriedt: Mie theory 1908, on the mobile phone 2008. Journal of Quantitative Spectroscopy & Radiative Transfer 109, 2008, S. 1543–1548, doi:10.1016/j.jqsrt.2008.01.009.
- Craig F. Bohren, Donald R. Huffman: Absorption and scattering of light by small particles. Wiley, 1983, ISBN 0-471-29340-7.
- Milton Kerker: The scattering of light and other electromagnetic radiation (= Physical Chemistry. Bd. 16, ISSN 0079-1881). Academic Press, New York NY u. a. 1969.
- Hendrik C. van de Hulst: Light scattering by small particles. Unabridged and corrected republication of the work originally published in 1957. Dover, 1981, ISBN 0-486-64228-3.
- Peter W. Barber, Steven C. Hill: Light scattering by particles. Computational Methods (= Advanced Series in Applied Physics. 2). World Scientific, Singapore 1990, ISBN 9971-5-0832-X.
Weblinks
Auf dieser Seite verwendete Medien
(c) Wladyslaw, CC BY-SA 3.0
Toronto: Blick entlang des Schaftes vom CN Tower. An der Unterseite des Turmkorbs ist der Glasboden sichtbar.
Der sichtbare Halbschatten entsteht durch den Tyndall-Effekt, wobei dieser Schatten genau der Bereich ist, in dem der Effekt nicht wirkt. So erscheint der Himmel außerhalb des Schattenvolumens des Turmes heller, da zusätzlich durch die unreine Luft „reflektiertes“ Licht eingefangen wird.
Autor/Urheber: René Michels, ILM Uni-Ulm,, Lizenz: CC BY-SA 2.5
3 Dimensionale Darstellung der Mie Streuung von Licht mit 633nm an einer 2µm Kugel