Mellin-Transformation

Unter der Mellin-Transformation versteht man in der Analysis, einem Teilgebiet der Mathematik, eine mit der Fourier-Transformation verwandte Integraltransformation. Sie ist benannt nach dem finnischen Mathematiker Hjalmar Mellin.

Geschichte

Im Gegensatz zur Fourier- und zur Laplace-Transformation, die zum Lösen physikalischer Probleme entwickelt wurden, wurde die Mellin-Transformation in einem mathematischen Kontext entwickelt. Ein erstes Auftreten dieser Integraltransformation findet sich in einer Veröffentlichung von Bernhard Riemann, der sie zur Untersuchung seiner Zeta-Funktion einsetzte. Eine erste systematische Formulierung und Untersuchung der Mellin-Transformation und ihrer Rücktransformation geht auf den finnischen Mathematiker R. Hjalmar Mellin zurück. Im Bereich der speziellen Funktionen entwickelte er Methoden, um hypergeometrische Differentialgleichungen zu lösen und asymptotische Entwicklungen herzuleiten.[1]

Definition

Die Mellin-Transformierte einer auf der positiven reellen Achse definierten Funktion ist definiert als die Funktion

für komplexe Zahlen , sofern dieses Integral konvergiert. In der Literatur findet man die Transformierte auch mit einem Normierungsfaktor , also

Dabei ist die Gamma-Funktion.

Rücktransformation

Unter den folgenden Bedingungen ist die Rücktransformation

von zu für jedes reelle mit möglich. Hierbei seien und zwei positive reelle Zahlen.

  • das Integral ist in dem Streifen absolut konvergent
  • ist in dem Streifen analytisch
  • der Ausdruck strebt für und jedem beliebigen Wert zwischen und gleichmäßig gegen 0
  • die Funktion ist auf der positiven reellen Achse stückweise stetig, wobei im Falle unstetiger Sprungstellen jeweils der Mittelwert der beidseitigen Grenzwerte genommen werden soll (Treppenfunktion)

Beziehung zur Fourier-Transformation

Die Mellin-Transformation ist eng verwandt mit der Fourier-Transformation. Substituiert man nämlich im obigen Integral , setzt man und bezeichnet man die inverse Fourier-Transformierte der Funktion mit , so ist für reelle

.

Beispiel zur Dirichletreihe

Mittels der Mellin-Transformation lassen sich eine Dirichletreihe und eine Potenzreihe zueinander in Beziehung setzen. Es seien

und

mit den gleichen . Dann gilt

.

Setzt man hierin zum Beispiel alle , so ist die riemannsche Zetafunktion, und man erhält

.

Literatur

  • M. Koecher, A. Krieg, Elliptische Funktionen und Modulformen, Springer-Verlag Berlin Heidelberg New York 1998, ISBN 3-540-63744-3.
  • E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Chelsea Publishing Company, 3. Auflage 1986, ISBN 978-0-8284-0324-5.
  • D. Zagier, Zetafunktionen und quadratische Körper, Springer-Verlag Berlin Heidelberg New York 1981, ISBN 3-540-10603-0.

Weblinks

Einzelnachweise

  1. Jacqueline Bertrand, Pierre Bertrand, Jean-Philippe Ovarlez: The Transforms and Applications Handbook. Hrsg.: Alexander D. Poularikas. 2. Auflage. CRC Press, 2000, ISBN 978-0-8493-8595-7, Kapitel 11.1.