Lokal zusammenziehbarer Raum

Ein lokal kontrahierbarer oder lokal zusammenziehbarer Raum wird im mathematischen Teilgebiet der Topologie betrachtet.

Definition

Ein topologischer Raum heißt lokal zusammenziehbar, wenn es zu jeder Umgebung jedes Punktes eine zusammenziehbare Umgebung mit

gibt.[1]

Beispiele

Topologischer Kamm

Mannigfaltigkeiten und CW-Komplexe sind lokal zusammenziehbar.

Zusammenziehbare Räume müssen nicht immer lokal zusammenziehbar sein. Ein Beispiel hierfür ist der topologische Kamm, dieser ist definiert als

mit der von der euklidischen Metrik des induzierten Topologie.

Einzelnachweise

  1. John Gilbert Hocking, Gail S. Young: Topology. Dover Publications, New York 1988, ISBN 0-486-65676-4, S. 191.

Auf dieser Seite verwendete Medien

Comb.svg
Autor/Urheber: Adam majewski, Lizenz: CC BY-SA 3.0
Topologist's comb