Liste der besuchten Körper im Sonnensystem

In dieser Liste sind Körper im Sonnensystem aufgeführt, die von der Erde aus besucht wurden. Für jedes dieser Objekte sind alle bekannten Besuche aufgelistet. Dies schließt Flüge von „stummen“ Raumsonden ein, bei denen durch Bahnbestimmungen von einem Erreichen des Ziels auszugehen ist. Fehlgeschlagene Missionen, die sich keinem astronomischen Objekt näherten, sind nicht enthalten. Mit Ausnahme der Sonne sind Annäherungen von weniger als 5 Millionen Kilometern als „Besuch“ gewertet.

Legende zur Art des Flugs
ArtBedeutung
AAtmosphärensonde
LLander
OOrbiter
PProbenrückführung
QPenetrator
RRover
HHubschrauber/Multicopter
VVorbeiflug

Die Liste ist aufsteigend nach Entfernung der Himmelskörper von der Sonne bzw. ihrem jeweiligen Zentralkörper sortiert (mit Ausnahme der Asteroiden und Kometen), danach chronologisch nach Ankunft (nicht nach Startdatum) der Mission. Tochtersonden sind nach Möglichkeit von ihren Muttersonden getrennt, da sie in der Regel eine unterschiedliche Geschichte haben, aber beide können als eine Mission nummeriert sein. Ein Orbiter wie zum Beispiel Cassini ist bei Saturn nur einmal angegeben, bei dessen Monden dagegen bei jedem Vorbeiflug (mit der Orbit-Nummerierung), solange die Sonde nicht in einen Orbit um einen der Monde selbst eintritt.

  • (Geklammerte) fortlaufende Nummern kennzeichnen stumme Sonden.
  • Der Name bemannter Missionen ist fett wiedergegeben.
  • Die mit einem * markierten Besuche sind ungeplant oder unwissentlich erfolgt.
  • Die †-Markierung bedeutet hier, dass der Körper erst beim Besuch entdeckt wurde.
  • Fett sind in der letzten Spalte die größte Annäherung sowie alle weichen Landungen markiert.

Sonne

Aufgeführt sind alle Besuche innerhalb der Merkurbahn oder mit einem deutlich geringeren mittleren Sonnenabstand als Merkur.

Sonne
Nr.RaumsondeBildLandStartdatumAnkunftArtMissionsdauer – Abstand (km)
1.Helios 1HeliosDeutschland Bundesrepublik
Vereinigte StaatenVereinigte Staaten
10. Dezember 19741975O046.500.000
2.Helios 2HeliosDeutschland Bundesrepublik
Vereinigte StaatenVereinigte Staaten
15. Januar 19761976O043.500.000
3.Parker
Solar
Probe
Parker Solar ProbeVereinigte StaatenVereinigte Staaten12. August 2018
November 2018
(erstes Perihelion)
O21. November 2021: 08.500.000
2025 (geplant): 06.900.000
4.Solar
Orbiter
Solar OrbiterEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation10. Februar 2020März 2022
(erstes Perihelion)
O26. März 2022: 48.000.000
bis 2027 oder 2030:
ca. 42.000.000

Innere Planeten

Merkur
Venus
Erdmond
Mars
Phobos
Deimos

Merkur

Merkur
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
1.Mariner 10Mariner 10Vereinigte StaatenVereinigte Staaten3. November 197329. März 1974V705
21. September 1974V50.000
16. März 1975V375
2.MessengerMessengerVereinigte StaatenVereinigte Staaten3. August 200414. Januar 2008V200
6. Oktober 2008V200
30. September 2009V228
18. März 2011O200
3.BepiColombo
BepiColombo
(c) ESA–C. Carreau, CC BY-SA 3.0 igo
Europaische WeltraumorganisationESA , Europäische Weltraumorganisation
JapanJapan
20. Oktober 20181. Oktober 2021V199
23. Juni 2022Vca. 200
19. Juni 2023V236
September 2024 (geplant)V
Dezember 2024 (geplant)V
Januar 2025 (geplant)V
Dezember 2025 (geplant)O

Venus

Venus
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km) /
Missionsdauer
(1.)Venera 1Sowjetunion 195512. Februar 196120. Mai 1961V100.000
2.Mariner 2Mariner 1/2Vereinigte StaatenVereinigte Staaten27. August 196214. Dezember 1962V34.000
(3.)Zond 1ZondSowjetunion 19552. April 196414. Juli 1964V100.000
4.Venera 2Sowjetunion 195512. November 196527. Februar 1966V24.000
5.Venera 3Venera 3Sowjetunion 195516. November 19651. März 1966V?
Venera 3 LanderLAufschlag
6.Venera 4Venera 4Sowjetunion 195512. Juni 196718. Oktober 1967V?
Venera 4 LanderL96 min. / 24,96
7.Mariner 5Mariner 5Vereinigte StaatenVereinigte Staaten14. Juni 196719. Oktober 1967V3.990
8.Venera 5Venera 5/6Sowjetunion 19555. Januar 196916. Mai 1969V?
Venera 5 LanderL53 min. / 18
9.Venera 6Sowjetunion 195510. Januar 196917. Mai 1969V?
Venera 6 LanderL51 min. / 10
10.Venera 7Sowjetunion 195517. August 197015. Dezember 1970V?
Venera 7 LanderLLandung (23 min)
11.Venera 8Venera 8Sowjetunion 195527. März 197222. Juli 1972V?
Venera 8 LanderLLandung (11 s)
12.Mariner 10Mariner 10Vereinigte StaatenVereinigte Staaten4. November 19735. Februar 1974V5.800
13.Venera 9Venera 9Sowjetunion 19558. Juni 197520. Oktober 1975Obis 22. März 1976
Venera 9 LanderLLandung (53 min)
14.Venera 10Venera 10Sowjetunion 195514. Juni 197525. Oktober 1975O?
Venera 10 LanderLLandung (63 min)
15.Pioneer Venus 1Pioneer Venus 1Vereinigte StaatenVereinigte Staaten20. Mai 19784. Dezember 1978Obis 8. Oktober 1992
16.Pioneer Venus 2Pioneer Venus 2Vereinigte StaatenVereinigte Staaten8. August 19789. Dezember 1978O?
Pioneer Venus 2
Tochtersonde
Pioneer Venus 2 TochtersondeALandung (67 min)
17.Venera 12Venera 11/12Sowjetunion 195514. September 197821. Dezember 1978V?
Venera 12 LanderLLandung (110 min)
18.Venera 11Sowjetunion 19559. September 197825. Dezember 1978V?
Venera 11 LanderLLandung (95 min)
19.Venera 13Venera 13/14Sowjetunion30. Oktober 19811. März 1982V?
Venera 13 LanderLLandung (127 min)
20.Venera 14Sowjetunion4. November 19813. März 1982V?
Venera 14 LanderLLandung (57 min)
21.Venera 15Sowjetunion2. Juni 198310. Oktober 1983Obis 1984
22.Venera 16Sowjetunion7. Juni 198314. Oktober 1983Obis 12. Juli 1984
23.Vega 1Vega 1/2Sowjetunion15. Dezember 198411. Juni 1985V?
Vega 1 LanderLLandung (56 min)
24.Vega 2Sowjetunion15. Dezember 198414. Juni 1985V?
Vega 2 LanderLLandung (57 min)
25.GalileoGalileoVereinigte StaatenVereinigte Staaten18. Oktober 19899. Februar 1990V16.103
26.MagellanMagellanVereinigte StaatenVereinigte Staaten4. Mai 198910. August 1990Obis 12. Oktober 1994
27.Cassini-HuygensCassini-HuygensVereinigte StaatenVereinigte Staaten15. Oktober 199724. April 1998V300
24. Juni 1999V600
28.Venus ExpressVenus ExpressEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation9. November 200511. April 2006Obis Ende 2014
29.MessengerMessengerVereinigte StaatenVereinigte Staaten3. August 200424. Oktober 2006V2.990
5. Juni 2007V337
30.IKAROS
IKAROS
(c) Pavel Hrdlička, Wikipedia, CC BY-SA 3.0
JapanJapan20. Mai 20108. Dezember 2010V80.800
31.Akatsuki
(Planet-C)
8. Dezember 2010V550
6. Dezember 2015O400
32.UNITEC-1ca. Dezember 2010V?
33.Parker Solar ProbeParker Solar Probe – VenuspassageVereinigte StaatenVereinigte Staaten12. August 20183. Oktober 2018V2.548
26. Dezember 2019V3.023
11. Juli 2020V830
20. Februar 2021V2.385
16. Oktober 2021V3.814
21. August 2023V4.003
6. November 2024 (geplant)V317
34.BepiColomboBepiColomboEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation
JapanJapan
20. Oktober 201815. Oktober 2020V10.720
10. August 2021V552
35.Solar OrbiterEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation10. Februar 202027. Dezember 2020Vca. 7.500[1]
9. August 2021V7.995
4. September 2022V12.500
Februar 2025 (geplant)V
Dezember 2026 (geplant)V
März 2028 (geplant)V
Juni 2029 (geplant)V
September 2030 (geplant)V
36.JUICEJUICEEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation14. April 2023[2]≥ 2025 (geplant)V9.500
Zukünftige Missionen (geplant)
Rocket LabVereinigte StaatenVereinigte StaatenJanuar 2025[3]V, A
VeritasVeritasVereinigte StaatenVereinigte Staaten2028–2030[4]O
DAVINCIAtmosphärensonde von DAVINCIVereinigte StaatenVereinigte Staaten2028–2030[4]O, A
EnVisionEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation2031–2033[5]O

Erde

Mond

Mond
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km) /
Missionsdauer
1.Luna 1
Lunik 1
(c) RIA Novosti archive, image #510848 / Alexander Mokletsov / CC-BY-SA 3.0
Sowjetunion 19552. Januar 19594. Januar 1959V6.000
2.Pioneer 4Pioneer 3/4Vereinigte Staaten 484. März 19595. März 1959V60.000
3.Luna 2Sowjetunion 195512. September 195913. September 1959Lharte Landung
4.Luna 3Sowjetunion 19554. Oktober 19596. Oktober 1959V6.200
5.Ranger 3Ranger 3–5Vereinigte StaatenVereinigte Staaten26. Januar 196228. Januar 1962 ?L36.000
(6.)Ranger 4Ranger 4Vereinigte StaatenVereinigte Staaten23. April 196226. April 1962Lharte Landung
7.Ranger 5Vereinigte StaatenVereinigte Staaten18. Oktober 196220. Oktober 1962 ?L700
8.Luna 4Sowjetunion 19552. April 19634. April 1963 ?L8.336,2
9.Ranger 6Ranger 6–9Vereinigte StaatenVereinigte Staaten30. Januar 19642. Februar 1964Lharte Landung
10.Ranger 7Vereinigte StaatenVereinigte Staaten28. Juli 196431. Juli 1964Lharte Landung
11.Ranger 8Vereinigte StaatenVereinigte Staaten17. Februar 196520. Februar 1965Lharte Landung
12.Ranger 9Vereinigte StaatenVereinigte Staaten21. März 196524. März 1965Lharte Landung
13.Luna 5Sowjetunion 19559. Mai 196512. Mai 1965LAufprall
14.Luna 6Sowjetunion 19558. Juni 196511. Juni 1965L159.218
15.Zond 3
(Marssonde)
Sowjetunion 195518. Juli 196521. Juli 1965 ?V9.200
16.Luna 7Sowjetunion 19554. Oktober 19657. Oktober 1965LAufprall
17.Luna 8Sowjetunion 19553. Dezember 19656. Dezember 1965 ?LAufprall
18.Luna 9Sowjetunion 195531. Januar 19663. Februar 1966 ?LLandung
bis 6. Februar 1966
19.Luna 10Sowjetunion 195531. März 19663. April 1966Obis ?
20.Surveyor 1Surveyor-PrototypVereinigte StaatenVereinigte Staaten30. Mai 19662. Juni 1966LLandung
bis 7. Januar 1967
21.Lunar Orbiter 1Lunar OrbiterVereinigte StaatenVereinigte Staaten10. August 196614. August 1966Obis 29. Oktober 1966
22.Luna 11Sowjetunion 195524. August 196627. August 1966Obis 31. Oktober 1966
23.Surveyor 2
(Lander)
Surveyor-PrototypVereinigte StaatenVereinigte Staaten20. September 196622. September 1966LAufschlag
24.Luna 12Sowjetunion 195522. Oktober 196625. Oktober 1966Obis ?
25.Lunar Orbiter 2Lunar OrbiterVereinigte StaatenVereinigte Staaten6. November 196610. November 1966Obis 11. Oktober 1967
26.Luna 13Sowjetunion 195521. Dezember 196624. Dezember 1966LLandung
bis 30. Dezember 1966
27.Lunar Orbiter 3Lunar OrbiterVereinigte StaatenVereinigte Staaten5. Februar 19678. Februar 1967Obis 10. Oktober 1967
28.Surveyor 3Surveyor-PrototypVereinigte StaatenVereinigte Staaten17. April 196720. April 1967LLandung
bis 4. Mai 1967
29.Lunar Orbiter 4Lunar OrbiterVereinigte StaatenVereinigte Staaten4. Mai 19678. Mai 1967Obis 31. Oktober 1967
30.Surveyor 4Surveyor-PrototypVereinigte StaatenVereinigte Staaten14. Juli 196717. Juli 1967LAufprall
31.Explorer 35Explorer 35Vereinigte StaatenVereinigte Staaten19. Juli 196721. Juli 1967Obis Juni 1973
32.Lunar Orbiter 5Lunar OrbiterVereinigte StaatenVereinigte Staaten1. August 19674. August 1967Obis 31. Januar 1968
33.Surveyor 5Surveyor-PrototypVereinigte StaatenVereinigte Staaten8. September 196711. September 1967LLandung
bis 17. Dezember 1967
34.Surveyor 6Vereinigte StaatenVereinigte Staaten7. November 196710. November 1967LLandung
bis 14. Dezember 1967
35.Surveyor 7Vereinigte StaatenVereinigte Staaten7. Januar 196821. Februar 1968LLandung
bis 21. Februar 1968
36.Luna 14Sowjetunion 19557. April 196810. April 1968Obis ?
37.Zond 5ZondSowjetunion 195514. September 196817. September 1968V1.960
38.Zond 6Sowjetunion 195510. November 196813. November 1968?V2.420
39.Apollo 8Apollo 8Vereinigte StaatenVereinigte Staaten21. Dezember 196824. Dezember 1968O112
40.Apollo 10Apollo 10Vereinigte StaatenVereinigte Staaten18. Mai 196921. Mai 1969Obis 24. Mai 1969
22. Mai 1969L14
41.Apollo 11Apollo 11Vereinigte StaatenVereinigte Staaten16. Juli 196919. Juli 1969Obis 22. Juli 1969
20. Juli 1969L, PLandung & Rückführung
bis 21. Juli 1969
42.Luna 15Sowjetunion 195513. Juli 196921. Juli 1969LAufschlag
43.Zond 7ZondSowjetunion 19557. August 196911. August 1969V1.984,6
44.Apollo 12Apollo 12Vereinigte StaatenVereinigte Staaten14. November 196918. November 1969Obis 21. November 1969
19. November 1969L, PLandung & Rückführung
bis 20. November 1969
45.Apollo 13Apollo 13Vereinigte StaatenVereinigte Staaten11. April 197015. April 1970O, L254,3
46.Luna 16Sowjetunion 195512. September 197018. September 1970 ?PLandung & Rückführung
47.Zond 8ZondSowjetunion 195520. Oktober 197024. Oktober 1970V1110,4
48.Luna 17
(Lunochod 1)
Luna 17 RoverSowjetunion 195510. November 197017. November 1970L, Rbis 4. Oktober 1971
49.Apollo 14Apollo 14Vereinigte StaatenVereinigte Staaten31. Januar 19715. Februar 1971Obis 7. Februar 1971
5. Februar 1971L, PLandung & Rückführung
bis 6. Februar 1971
50.Apollo 15Apollo 15Vereinigte StaatenVereinigte Staaten26. Juli 197130. Juli 1971Obis 4. August 1971
30. Juli 1971L, R,
P
Landung & Rückführung
bis 2. August 1971
51.Luna 18Sowjetunion 19552. September 19716. September 1971 ?LAufprall
52.Luna 19Sowjetunion 195528. September 19712. Oktober 1971Obis 20. Oktober 1972
53.Luna 20
(Rückführung)
LunaSowjetunion 195514. Februar 197219. Februar 1972 ?PLandung & Rückführung
54.Apollo 16Apollo 16Vereinigte StaatenVereinigte Staaten16. April 197219. April 1972Obis 25. April 1972
21. April 1972L, R,
P
Landung & Rückführung
bis 24. April 1972
55.Apollo 17Apollo 17Vereinigte StaatenVereinigte Staaten7. Dezember 197210. Dezember 1972O16. Dezember 1972
11. Dezember 1972L, R,
P
Landung & Rückführung
bis 15. Dezember 1972
56.Luna 21
(Lunochod 2)
Luna 21 RoverSowjetunion 19558. Januar 197315. Januar 1973L, Rbis 3. Mai 1973
57.Explorer 49
(RAE-B)
Explorer 49Vereinigte StaatenVereinigte Staaten10. Juni 197315. Juni 1973O1.053
bis August 1977
58.Luna 22Sowjetunion 195529. Mai 19742. Juni 1974Obis 2. September 1975
59.Luna 23Sowjetunion 195528. Oktober 19742. November 1974 ?PLandung
60.Luna 24Luna 24Sowjetunion 19559. August 197613. August 1976 ?PLandung & Rückführung
61.ISEE-3/ICEISEE-3/ICEVereinigte StaatenVereinigte Staaten12. August 197816. Oktober 1982V?
30. März 1983V?
23. April 1983V?
27. September 1983V?
22. Dezember 1983V?
62.HitenHitenJapanJapan24. Januar 199015. Februar 1992Obis 10. April 1993
HagoromoO(kein Kontakt)
63.ClementineClementineVereinigte StaatenVereinigte Staaten25. Januar 199419. Februar 1994Obis 14. Mai 1994
64.Lunar
Prospector
Lunar ProspectorVereinigte StaatenVereinigte Staaten6. Januar 199811. Januar 1998Obis 31. Juli 1999
65.AsiaSat 3
(HGS-1)
Vereinigte StaatenVereinigte Staaten24. Dezember 199713. Mai 1998V?
7. Juni 1998V?
66.Nozomi
(Planet-B)
NozomiJapanJapan3. Juli 199824. September 1998V?
18. Dezember 1998V?
67.SMART-1SMART-1Europaische WeltraumorganisationESA , Europäische Weltraumorganisation28. September 200315. November 2004Obis 3. September 2006
68.STEREO-ASTEREO-AVereinigte StaatenVereinigte Staaten26. Oktober 200615. Dezember 2006V7.322
STEREO-B15. Dezember 2006V11.750
21. Januar 2007V8.800
69.KaguyaKaguyaJapanJapan14. September 20073. Oktober 2007Oharte Landung
bis 10. Juni 2009
70.Chang’e 1Chang’e-1China Volksrepublik24. Oktober 20075. November 2007Oharte Landung
bis 1. März 2009
71.Chandrayaan-1Chandrayaan-1Indien22. Oktober 200827. Oktober 2008O100
bis 29. August 2009
72.Lunar
Reconnaissance
Orbiter
Lunar Reconnaissance OrbiterVereinigte StaatenVereinigte Staaten18. Juni 200923. Juni 2009Oaktiv
LCROSSLCROSSLharte Landung
73.Chang’e 2Chang’e-1China Volksrepublik1. Oktober 20106. Oktober 2010O15
bis 8. Juni 2011
74.Artemis P1
(Themis B)
ThemisVereinigte StaatenVereinigte Staaten17. Februar 20072. Juli 2011O
Artemis P2
(Themis C)
17. Juli 2011O
75.GRAIL-AGRAILVereinigte StaatenVereinigte Staaten10. September 201131. Dezember 2011O
GRAIL-B1. Januar 2012O
76.LADEELADEEVereinigte StaatenVereinigte Staaten7. September 20136. Oktober 2013Obis 8. April 2014
77.Chang’e 3China Volksrepublik1. Dezember 201314. Dezember 2013O, LLandung
bis 3. August 2016
78.Chang’e 5-T1China Volksrepublik23. Oktober 201427. Oktober 2014V13.000
bis 31. Oktober 2014
4M-MissionDeutschland
Luxemburg
28. Oktober 2014V13.000
bis 11. November 2014
79.Longjiang-2China Volksrepublik20. Mai 20185. Mai 2018OAbsturz
am 31. Juli 2019
80.Chang’e 4Chang’e-4China Volksrepublik7. Dezember 20183. Januar 2019L, RLandung
aktiv
81.BeresheetBeresheet-ModellIsrael22. Februar 20194. April 2019LAufprall
am 11. April 2019
82.Chandrayaan-2Indien22. Juli 201920. August 2019[6]Oaktiv
Vikram, Pragyaan6. September 2019L, RAufprall
am 6. September 2019
83.Chang’e 5China Volksrepublik23. November 202028. November 2020O, L, PLandung
aktiv
84.CapstoneCapstoneVereinigte StaatenVereinigte Staaten28. Juni 202213. November 2022[7]Oaktiv
Photon7. Juli 2022[8]V390.000
aktiv
85.DanuriKorea Sud4. August 202216. Dezember 2022O
86.Artemis 1Orion-RaumschiffVereinigte StaatenVereinigte Staatengemeinsamer Start
erfolgte am
16. November 2022

 

21. November 2022O130

bis 11. Dezember 2022

ArgoMoon[9]ItalienItalienV
BioSentinelVereinigte StaatenVereinigte StaatenV
CuSPVereinigte StaatenVereinigte StaatenO
EquuleusJapanJapan22. November 2022O
LunaH-Map[10]Vereinigte StaatenVereinigte Staaten(O)V1300

Vorbeiflug nach Triebwerksfehler

Lunar IceCube[10]Lunar IceCubeVereinigte StaatenVereinigte StaatenO
LunIR[10]LunIR (vormals SkyFire)Vereinigte StaatenVereinigte StaatenV
87.Hakuto-R M1Modell des Hakuto-Landers und -Rovers (2019), der Rover wird bei dieser Mission noch nicht dabei seinJapanJapan11. Dezember 202226. April 2023L
RaschidVereinigte Arabische EmirateR
Lunar Flashlight[10][11]Lunar FlashlightVereinigte StaatenVereinigte Staaten(März 2023)

Juni 2023

(O)VFehler an den Triebwerken,

geplant sind monatliche Vorbeiflüge[12]

88.JUICEJUICEEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation14. April 2023[2]ca. 2024 (geplant)V
89.Chandrayaan-3Indien14. Juli 20235. August 2023L, R
90.Luna 25Luna-25-Modell auf einer Ausstellung (2015)RusslandRussland10. August 202319. August 2023LUngeplanter Absturz
Zukünftige Missionen (geplant)
SLIMJapanJapan2023[13]L
IM-1Vereinigte StaatenVereinigte StaatenAugust/September 2023[14]L, R
Griffin Mission OneVereinigte StaatenVereinigte Staaten4. Quartal 2023[15]L, R
Hakuto-R M2Modell des Hakuto-Landers und -Rovers (2019), der Rover wird bei dieser Mission noch nicht dabei seinJapanJapan2023L, R
IM-2Vereinigte StaatenVereinigte Staaten2023[16]L
Dear MoonJapanJapan
Vereinigte StaatenVereinigte Staaten
2023V
Chang’e-6China Volksrepublik2024L, P
Blue GhostVereinigte StaatenVereinigte Staaten2024[17]L
IM-3Vereinigte StaatenVereinigte Staaten2024L
Destiny+JapanJapan
Deutschland
2024V
Artemis 2Orion-Raumschiff im MondorbitVereinigte StaatenVereinigte Staaten2024[18]2024O
Luna 26Luna-26-Modell auf einer Ausstellung (2015)RusslandRussland2024[19]O
Beresheet 2Israel2024L
Starship-TestflugVereinigte StaatenVereinigte Staaten2024[20][21]L
LOP-G-AufbauAnfängliche LOP-G-Konfigruation mit angekoppeltem FrachtraumschiffVereinigte StaatenVereinigte Staaten2024–2025[22][23]O
Lunar TrailblazerVereinigte StaatenVereinigte Staaten2024–2025[24][25]O
Peregrine
Mission One
Vereinigte StaatenVereinigte StaatenJanuar 2025[3]L, R
LSASDeutschland
Israel
2025[26]L
Luna 27Luna-27-Modell auf einer Ausstellung (2017)RusslandRussland2025[19]L
Chang’e 7China Volksrepublik2026L, R
HelioSwarmVereinigte StaatenVereinigte Staatenca. 2026[27][28]V
Artemis 3Vereinigte StaatenVereinigte Staatenfrühestens 2026O, L, Pbemannte Landung
Artemis 4Vereinigte StaatenVereinigte Staatenca. 2027O
Chang’e 8China Volksrepublik2027–2030L, R

Mars

Mars
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km) /
Missionsdauer
(1.)Mars 1Mars 1Sowjetunion 19551. November 196219. Juni 1963V?
2.Mariner 4Mariner 3/4Vereinigte StaatenVereinigte Staaten28. November 196415. Juli 1965V9.844
(3.)Zond 2Zond 2Sowjetunion 195530. November 19646. August 1965V1.500
4.Mariner 6Mariner 6/7Vereinigte StaatenVereinigte Staaten25. Februar 196931. Juli 1969V3.431
5.Mariner 7Vereinigte StaatenVereinigte Staaten27. März 19695. August 1969V3.430 ?
6.Mariner 9Mariner 9Vereinigte StaatenVereinigte Staaten30. Mai 197114. November 1971Obis ?
7.Mars 2Mars 2Sowjetunion 195519. Mai 197127. November 1971O?
Mars 2 LanderLAusfall
8.Mars 3Mars3Sowjetunion 195529. Mai 19712. Dezember 1971O?
Mars 3 LanderMars 3 LanderLLandung (110 s)
(9.)Mars 4Mars 4Sowjetunion 195521. Juli 197310. Februar 1974O2.200
10.Mars 5Sowjetunion 195525. Juli 197312. Februar 1974O(16 Tage)
11.Mars 7Sowjetunion 19559. August 19739. März 1974O?
Mars 7 LanderL1.300
(12.)Mars 6Sowjetunion 19555. August 197312. März 1974O?
Mars 6 LanderLLandung (0 s)
13.Viking 1Viking 1/2 Orbiter

Viking 1/2 Lander
Vereinigte StaatenVereinigte Staaten20. August 197519. Juni 1976Obis 7. August 1980
Viking 1 Lander
(Thomas A. Mutch
Memorial Station)
20. Juli 1976LLandung
bis 11. November 1982
14.Viking 2Vereinigte StaatenVereinigte Staaten9. September 19757. August 1976Obis 25. September 1978
Viking 2 Lander
(Gerald Soffen
Memorial Station)
3. September 1976LLandung
bis 11. April 1980
(15.)Phobos (Raumsonde) 1Phobos (Raumsonde) 1/2Sowjetunion7. Juli 198823. Januar 1989V?
16.Phobos (Raumsonde) 2Sowjetunion 195512. Juli 198828. Januar 1989Obis 27. März 1989
(17.)Mars ObserverMars ObserverVereinigte StaatenVereinigte Staaten25. September 199224. August 1993O?
18.Mars Pathfinder
(Carl Sagan
Memorial Station)
Mars Pathfinder LanderVereinigte StaatenVereinigte Staaten4. Dezember 19964. Juli 1997LLandung
bis 7. Oktober 1997
SojournerMars Pathfinder Rover (Sojourner)Rbis 7. Oktober 1997
19.Mars Global
Surveyor
Vereinigte StaatenVereinigte Staaten7. November 199611. September 1997Obis 2. November 2006
(20.)Mars Climate
Orbiter
Mars Climate OrbiterVereinigte StaatenVereinigte Staaten11. Dezember 199823. September 1999OAufprall
(21.)Mars Polar LanderMars Polar LanderVereinigte StaatenVereinigte Staaten3. Januar 19993. Dezember 1999LAufprall
Deep Space 2Deep Space 2QAufprall
22.Mars Odyssey2001 Mars OdysseyVereinigte StaatenVereinigte Staaten7. April 200124. Oktober 2001Oaktiv
23.Nozomi (Planet-B)JapanJapan3. Juli 199814. Dezember 2003V870
24.Mars ExpressMars ExpressEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation2. Juni 200325. Dezember 2003Oaktiv
Beagle 2Beagle 2LLandung
(Lander blieb stumm)
25.MER-A (Spirit)SpiritVereinigte StaatenVereinigte Staaten10. Juni 20034. Januar 2004Rbis 22. März 2010
26.MER-B
(Opportunity)
OpportunityVereinigte StaatenVereinigte Staaten8. Juli 200325. Januar 2004Rbis 10. Juni 2018
27.Mars
Reconnaissance
Orbiter
Mars Reconnaissance OrbiterVereinigte StaatenVereinigte Staaten12. August 200510. März 2006Oaktiv
28.RosettaRosettaEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation2. März 200425. Februar 2007V250
29.PhoenixMars Reconnaissance OrbiterVereinigte StaatenVereinigte Staaten4. August 200725. Mai 2008LLandung
bis 2. November 2008
30.DawnDawnVereinigte StaatenVereinigte Staaten27. September 200717. Februar 2009V543
31.MSL
(Curiosity)
Mars Science LaboratoryVereinigte StaatenVereinigte Staaten26. November 20116. August 2012Raktiv
32.MAVENMAVENVereinigte StaatenVereinigte Staaten18. November 201322. September 2014Oaktiv – 144
33.Mars Orbiter
Mission
MAVENIndien5. November 201324. September 2014O366
34.ExoMars Trace
Gas Orbiter
ExoMars Trace Gas OrbiterEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation14. März 201619. Oktober 2016Oaktiv – 400
SchiaparelliSchiaparelliLAufprall
35.InSightInSightVereinigte StaatenVereinigte Staaten5. Mai 2018
26. November 2018LLandung
aktiv
Mars Cube One AMars Cube OneVca. 3.500
Mars Cube One BVca. 3.500
36.al-AmalVereinigte Arabische Emirate19. Juli 20209. Februar 2021O
37.Tianwen-1Mock-up des Rovers auf einer Ausstellung (2018)China Volksrepublik23. Juli 202010. Februar 2021O, LRLandung
aktiv
38.Mars 2020
& Helikopter
Mars 2020 Rover (künstlerische Darstellung)Vereinigte StaatenVereinigte Staaten30. Juli 202018. Februar 2021LR,
H
Landung
aktiv
Zukünftige Missionen (geplant)
Martian Moons
Exploration
(MMX)
MMX-Orbiter mit Lander (künstlerische Darstellung)JapanJapanSeptember 2024[29]August 2025O

Phobos

Phobos
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km) /
Missionsdauer
1.Viking 1
(Marsorbiter)
Viking-OrbiterVereinigte StaatenVereinigte Staaten20. August 197519. Juni 1976V< 100[30]
17. August 1980
(2.)Phobos (Raumsonde) 1Phobos (Raumsonde) 1/2Sowjetunion7. Juli 198823. Januar 1989V
3.Phobos (Raumsonde) 2
(Orbiter & Lander)
Sowjetunion12. Juli 198829. Januar 1989V191
4.Mars Global
Surveyor
(Marsorbiter)
Vereinigte StaatenVereinigte Staaten7. November 199611. September 1997V9.670
5.Mars ExpressEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation2. Juni 200330. August 2004V149
6.Mars
Reconnaissance
Orbiter
Vereinigte StaatenVereinigte Staaten12. August 200510. März 2006V5.800
5.Mars ExpressEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation2. Juni 20032. Oktober 2007V130
6.Mars
Reconnaissance
Orbiter
Vereinigte StaatenVereinigte Staaten12. August 200523. März 2008V6.800
5.Mars ExpressMars ExpressEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation2. Juni 200323. Juli 2008V92
3. März 2010V67
7. März 2010V112
9. Januar 2011V100
28. Dezember 2013V45
14. Januar 2016V53
16. November 2016V127
Zukünftige Missionen (geplant)
Martian Moons
Exploration
(MMX)
MMX-Orbiter mit Lander (künstlerische Darstellung)JapanJapanSeptember 2024[29]2026–2027LPRückführung bis 2029

Deimos

Deimos
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
1.Viking 2
(Mars Orbiter)
Viking-OrbiterVereinigte StaatenVereinigte Staaten9. September 19757. August 1976V30
Zukünftige Missionen (geplant)
Martian Moons
Exploration
(MMX)
MMX-Orbiter mit Lander (künstlerische Darstellung)JapanJapanSeptember 2024[29]?VVorbeiflug des Phobos-Landers

Asteroiden

Asteroiden
ObjektNr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
Missionsdauer
(951) Gaspra1.GalileoGalileoVereinigte StaatenVereinigte Staaten18. Oktober 198929. Oktober 1991V1.610
(243) Ida1.Galileo20. August 1993V2.393
(243) I Dactyl1.Galileo20. August 1993V2.393
(253) Mathilde1.NEAR ShoemakerNear ShoemakerVereinigte StaatenVereinigte Staaten17. Februar 199627. Oktober 1997V1.212
(9969) Braille1.Deep Space 1Deep Space 1Vereinigte StaatenVereinigte Staaten24. Oktober 199829. Juli 1999V26
(2685) Masursky1.Cassini-HuygensCassini-HuygensVereinigte StaatenVereinigte Staaten15. Oktober 199723. Januar 2000V1.496.000
(433) Eros1.NEAR ShoemakerNear ShoemakerVereinigte StaatenVereinigte Staaten17. Februar 199614. Februar 2000LLandung (17 Tage)
(5535) Annefrank1.StardustStardustVereinigte StaatenVereinigte Staaten7. Februar 19992. November 2002P3.079
(25143) Itokawa1.HayabusaHayabusaJapanJapan9. Mai 200312. September 2005L, PLandung &
Rückführung
(132524) APL1.New HorizonsVereinigte StaatenVereinigte Staaten10. Januar 200613. Juni 2006V101.867
(2867) Šteins1.RosettaRosettaEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation2. März 20045. September 2008V800
(21) Lutetia1.10. Juli 2010V3.162
(4) Vesta1.DawnDawnVereinigte StaatenVereinigte Staaten27. September 200716. Juli 2011O15
Verlassen des Orbits: 5. September 2012
(4179) Toutatis1.Chang’e-2Chang'e-1China Volksrepublik1. Oktober 201013. Dezember 2012V3,2
(1) Ceres1.DawnDawnVereinigte StaatenVereinigte Staaten27. September 20076. März 2015O49
Orbit bis 1. November 2018
(162173) Ryugu1.Hayabusa 2Hayabusa 2JapanJapan3. Dezember 20142018O, L,
P
Landung &
Rückführung
2020
2001 CC211.Juli 2027 (geplant)V
1998 KY261.Juli 2031 (geplant)V
(101955) Bennu1.OSIRIS-RExOSIRIS-RExVereinigte StaatenVereinigte Staaten8. September 20162018O, L,
P
Landung &
Rückführung 2023
(52246) Donaldjohanson1.LucyLucyVereinigte StaatenVereinigte Staaten16. Oktober 202120. April 2025 (geplant)V922
(3548) Eurybates1.12. August 2027 (geplant)V1000
Queta1.12. August 2027 (geplant)V
(15094) Polymele1.15. September 2027 (geplant)V425
(11351) Leucus1.18. April 2028 (geplant)V1000
(21900) Orus1.11. November 2028 (geplant)V1000
(617) Patroclus1.2. März 2033 (geplant)V1000
Menoetius1.2. März 2033 (geplant)V1000
(65803) Didymos1.DARTDouble Asteroid Redirection Test (DART)Vereinigte StaatenVereinigte Staaten24. November 202126. September 2022QEinschlag
(65803) Didymos2.LICIACubeItalienItalien24. November 202126. September 2022VCubesat, wird von DART mitgeführt
Zukünftige Missionen (geplant)
(65803) Didymos3.HeraEuropaische WeltraumorganisationESA , Europäische WeltraumorganisationOktober 2024[31]2026[32]O
Milani[33]Europaische WeltraumorganisationESA , Europäische WeltraumorganisationO
Juventas[33]Europaische WeltraumorganisationESA , Europäische WeltraumorganisationO
(3200) Phaethon1.Destiny+JapanJapan
Deutschland
20242028V500
(99942) Apophis1.OSIRIS-RExVereinigte StaatenVereinigte Staaten8. September 20162029[34]O

Für die Asteroiden des Kuiper-Gürtels siehe unten im Abschnitt Transneptunische Objekte.

Kometen

Kometen
ObjektBildNr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
Missionsdauer
21P/
Giacobini-
Zinner
21P/Giacobini-Zinner1.ISEE-3/ICEISEE3-ICEVereinigte StaatenVereinigte Staaten12. August 197811. September 1985V7.800
1P/Halley1P/Halley1.Vega 1Sowjetunion15. Dezember 19846. März 1986V8.890
2.SuiseiSuiseiJapanJapan18. August 19858. März 1986V151.000
3.Vega 2Sowjetunion21. Dezember 19849. März 1986V8.030
4.GiottoGiottoEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation2. Juli 198514. März 1986V596
26P/
Grigg-
Skjellerup
1.GiottoGiottoEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation2. Juli 198510. Juli 1992V200
19P/Borrelly19P/Borrelly1.Deep Space 1Deep Space 1Vereinigte StaatenVereinigte Staaten24. Oktober 199822. September 2001V2.200
81P/Wild 281P/Wild 21.StardustStardustVereinigte StaatenVereinigte Staaten7. Februar 19992. Januar 2004V240
9P/Tempel 11.Deep ImpactDeep ImpactVereinigte StaatenVereinigte Staaten12. Januar 20052. Juli 2005V
Q
500
Einschlag
2.StardustStardustVereinigte StaatenVereinigte Staaten7. Februar 199914. Februar 2011V181
103P/Hartley103P/Hartley1.Deep ImpactDeep ImpactVereinigte StaatenVereinigte Staaten12. Januar 200511. Oktober 2010V700
67P/
Tschurjumow-
Gerassimenko
67P/Tschurjumow-Gerassimenko
(c) ESA/Rosetta/NAVCAM, CC BY-SA IGO 3.0
1.RosettaRosettaEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation2. März 20046. August 2014O, LLandung Philae
12. November 2014

Jupiter

Jupiter und die vier galileischen Monde
Jupiter
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
Missionsdauer
1.Pioneer 10Pioneer 10Vereinigte StaatenVereinigte Staaten2. März 19723. Dezember 1973V130.254
2.Pioneer 11Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19732. Dezember 1974V42.760
3.Voyager 1VoyagerVereinigte StaatenVereinigte Staaten5. September 19775. März 1979V278.000
4.Voyager 2VoyagerVereinigte StaatenVereinigte Staaten20. August 19779. Juli 1979V650.000
5.UlyssesUlyssesVereinigte StaatenVereinigte Staaten
Europaische WeltraumorganisationESA , Europäische Weltraumorganisation
6. Oktober 19908. Februar 1992V378.400
6.Galileo-
Tochtersonde
GalileoVereinigte StaatenVereinigte Staaten18. Oktober 19897. Dezember 1995Abis 7. Dezember 1995
geplanter Absturz
GalileoGalileoVereinigte StaatenVereinigte Staaten18. Oktober 19898. Dezember 1995Obis 21. September 2003
geplanter Absturz
7.New HorizonsVereinigte StaatenVereinigte Staaten19. Januar 200628. Februar 2007V2.300.000
8.JunoJunoVereinigte StaatenVereinigte Staaten5. August 20114. Juli 2016Obis September 2025
9.JUICEJUICEEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation14. April 2023[2]ca. 2031 (geplant)[35]Obis ca. 2033
Zukünftige Missionen (geplant)
Europa ClipperEuropa ClipperVereinigte StaatenVereinigte StaatenOktober 2024Frühjahr 2031O

Galileische Monde

Io

Io
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
1.Pioneer 11Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19732. Dezember 1974V756.000
2.Voyager 1VoyagerVereinigte StaatenVereinigte Staaten5. September 19775. März 1979V18.640
3.Voyager 2Voyager 2Vereinigte StaatenVereinigte Staaten20. August 19779. Juli 1979V582.000
4.Galileo I00GalileoVereinigte StaatenVereinigte Staaten18. Oktober 19897. Dezember 1995V897
Galileo I2411. Oktober 1999V611
Galileo I2526. November 1999V301
Galileo I2722. Februar 2000V198
Galileo I316. August 2001V194
Galileo I3216. Oktober 2001V184
Galileo I3317. Januar 2002V102
5.New HorizonsVereinigte StaatenVereinigte Staaten19. Januar 200628. Februar 2007V2.260.221
6.JunoJunoVereinigte StaatenVereinigte Staaten5. August 20112023 (geplant)Vca. 1500
7.2024 (geplant)Vca. 1500

Europa

Europa
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
1.Pioneer 10Pioneer 10Vereinigte StaatenVereinigte Staaten2. März 19723. Dezember 1973V324.000
2.Voyager 1VoyagerVereinigte StaatenVereinigte Staaten5. September 19775. März 1979V732.270
3.Voyager 2VoyagerVereinigte StaatenVereinigte Staaten20. August 19779. Juli 1979V204.030
4.Galileo E04GalileoVereinigte StaatenVereinigte Staaten18. Oktober 198919. Dezember 1996V692
Galileo E0620. Februar 1997V586
Galileo E116. November 1997V2.043
Galileo E1216. Dezember 1997V201
Galileo E1429. März 1998V1.644
Galileo E1531. Mai 1998V2.515
Galileo E1621. Juli 1998V1.834
Galileo E1726. September 1998V3.582
Galileo E1822. November 1998V2.271
Galileo E191. Februar 1999V1.439
Galileo E263. Januar 2000V351
5.New HorizonsVereinigte StaatenVereinigte Staaten19. Januar 200628. Februar 2007V2.957.815
6.JunoJunoVereinigte StaatenVereinigte Staaten5. August 201129. September 2022V352
7.JUICEJUICEEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation14. April 2023[2]> 2030 (geplant)Vmehrere Vorbeiflüge
Zukünftige Missionen (geplant)
Europa ClipperEuropa ClipperVereinigte StaatenVereinigte StaatenOktober 2024Frühjahr 2031Vmin. 45 Vorbeiflüge

Ganymed

Ganymed
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
Missionsdauer
1.Pioneer 11Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19732. Dezember 1974V739.000
2.Voyager 1VoyagerVereinigte StaatenVereinigte Staaten5. September 19775. März 1979V112.030
3.Voyager 2VoyagerVereinigte StaatenVereinigte Staaten20. August 19779. Juli 1979V59.530
4.Galileo G01GalileoVereinigte StaatenVereinigte Staaten18. Oktober 198927. Juni 1996V835
Galileo G026. September 1996V261
Galileo G075. April 1997V3.102
Galileo G087. Mai 1997V1.603
Galileo G2820. Mai 2000V809
Galileo G2928. Dezember 2000V2.338
5.New HorizonsVereinigte StaatenVereinigte Staaten19. Januar 200628. Februar 2007V3.029.556
6.JunoJunoVereinigte StaatenVereinigte Staaten5. August 20117. Juni 2021Vca. 1000
7.JUICEJUICEEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation14. April 2023[2]ca. 2033 (geplant)Vmehrere Vorbeiflüge
Zukünftige Missionen (geplant)

Kallisto

Kallisto
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
1.Pioneer 11Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19732. Dezember 1974V787.000
2.Voyager 1VoyagerVereinigte StaatenVereinigte Staaten5. September 19776. März 1979V113.950
3.Voyager 2VoyagerVereinigte StaatenVereinigte Staaten20. August 19778. Juli 1979V212.050
4.Galileo C03GalileoVereinigte StaatenVereinigte Staaten18. Oktober 19894. November 1996V1.196
Galileo C0925. Juni 1997V418
Galileo C1017. September 1997V535
Galileo C205. Mai 1999V1.321
Galileo C2130. Juni 1999V1.048
Galileo C2214. August 1999V2.299
Galileo C2316. September 1999V1.052
Galileo C3025. Mai 2001V138
5.New HorizonsVereinigte StaatenVereinigte Staaten19. Januar 200628. Februar 2007V4.153.289
6.JUICEJUICEEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation14. April 2023[2]≥ 2030 (geplant)Vmehrere Vorbeiflüge

Kleine Jupitermonde

Metis

Metis
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
1.Voyager 1VoyagerVereinigte StaatenVereinigte Staaten5. September 19775. März 1979V637.000
2.Voyager 2 *VoyagerVereinigte StaatenVereinigte Staaten20. August 19779. Juli 1979V?
3.GalileoGalileoVereinigte StaatenVereinigte Staaten18. Oktober 19894. Januar 2000V293.000

Adrastea

Adrastea
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
1.Voyager 1Voyager 1Vereinigte StaatenVereinigte Staaten5. September 19775. März 1979V?
2.Voyager 2VoyagerVereinigte StaatenVereinigte Staaten20. August 19779. Juli 1979V?
3.GalileoGalileoVereinigte StaatenVereinigte Staaten18. Oktober 1989November 1996
– Juni 1997
V?

Amalthea

Amalthea
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
1.Voyager 1VoyagerVereinigte StaatenVereinigte Staaten5. September 19775. März 1979V420.100
2.Voyager 2VoyagerVereinigte StaatenVereinigte Staaten20. August 19779. Juli 1979V558.270
3.Galileo A34GalileoVereinigte StaatenVereinigte Staaten18. Oktober 19895. November 2002V160

Thebe

Thebe
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
1.Voyager 1VoyagerVereinigte StaatenVereinigte Staaten5. September 19775. März 1979V?
2.Voyager 2 *VoyagerVereinigte StaatenVereinigte Staaten20. August 19779. Juli 1979V?
3.GalileoGalileoVereinigte StaatenVereinigte Staaten18. Oktober 19894. Januar 2000V193.000

Himalia

Himalia
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
1.Cassini-HuygensCassini-HuygensVereinigte StaatenVereinigte Staaten15. Oktober 199719. Dezember 2000V4.420.000

Saturn

Saturn

Saturn
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
Missionsdauer
1.Pioneer 11Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19731. September 1979V20.200
2.Voyager 1VoyagerVereinigte StaatenVereinigte Staaten5. September 197712. November 1980V101.300
3.Voyager 2VoyagerVereinigte StaatenVereinigte Staaten20. August 197725. August 1981V124.420
4.Cassini-HuygensCassiniVereinigte StaatenVereinigte Staaten15. Oktober 19971. Juli 2004OCassini:
bis 15. September 2017
geplanter Absturz

Saturnmond Titan

Titan

Titan
Nr.RaumsondeBildLandStartdatumAnkunftArtAbstand (km)
1.Pioneer 11Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19731. September 1979V500.000
2.Voyager 1VoyagerVereinigte StaatenVereinigte Staaten5. September 197712. November 1980V6.490
3.Voyager 2VoyagerVereinigte StaatenVereinigte Staaten20. August 197725. August 1981V665.960
4.Cassini-HuygensCassiniVereinigte StaatenVereinigte Staaten15. Oktober 199726. Oktober 2004V1.174
Cassini-Huygens13. Dezember 2004V1.192
Cassini14. Januar 2005V60.003
HuygensHuygensEuropaische WeltraumorganisationESA , Europäische Weltraumorganisation14. Januar 2005LLandung
Zukünftige Missionen (geplant)
5.DragonflyDragonflyVereinigte StaatenVereinigte Staaten2027 (geplant)Mitte 2030erL

Die folgende Tabelle enthält alle Cassini-Vorbeiflüge an Titan in Entfernungen < 100.000 km nach der Landung von Huygens. Die Cassini-Orbits um den Saturn sind ab diesem Zeitpunkt beginnend mit 1 durchnummeriert.[36][37]

Orbit
Nr.
ZeitpunktAbstand
(km)
315. Februar 20051.579
531. März 20052.404
616. April 20051.027
1322. August 20053.660
147. September 20051.075
1728. Oktober 20051.353
1925. Dezember 200510.410
2015. Januar 20062.043
2127. Februar 20061.812
2219. März 20061.949
2329. April 20061.856
2419. Mai 20061.879
252. Juli 20061.906
2622. Juli 2006950
287. September 20061.000
2923. September 2006960
309. Oktober 2006980
3125. Oktober 20061.030
3512. Dezember 20061.000
3628. Dezember 20061.297
3713. Januar 20071.000
3829. Januar 20072.631
3922. Februar 20071.000
4010. März 2007981
4126. März 20071.010
429. April 2007991
4325. April 2007981
4411. Mai 2007959
4527. Mai 20072.229
4612. Juni 2007965
4728. Juni 20071.933
4818. Juli 20071.332
4931. August 20073.324
502. Oktober 2007973
5219. November 2007999
535. Dezember 20071.298
5420. Dezember 2007970
555. Januar 20081.014
5922. Februar 20081.000
6226. März 2008999
6713. Mai 20081.001
6929. Mai 20081.400
Orbit
Nr.
ZeitpunktAbstand
(km)
781. August 20081.614
913. November 20081.105
9319. November 20081.023
955. Dezember 2008961
9721. Dezember 2008971
1027. Februar 2009967
10627. März 2009963
1084. April 20094.147
10920. April 20093.599
1105. Mai 20093.242
11121. Mai 2009966
1126. Juni 2009968
11322. Juni 2009955
1148. Juli 2009966
11524. Juli 2009956
1169. August 2009971
11725. August 2009961
11912. Oktober 20091.300
12212. Dezember 20094.848
12328. Dezember 2009951
12412. Januar 20101.074
12528. Januar 20107.486
1295. April 20107.438
13119. Mai 20101.398
1324. Juni 20102.042
13320. Juni 2010878
1346. Juli 20101.004
13824. September 20108.178
14011. November 20107.926
14518. Februar 20113.651
14719. April 201110.053
1487. Mai 20111.873
14920. Juni 20111.359
15312. September 20115.821
15813. Dezember 20113.586
1592. Januar 201229.415
16030. Januar 201231.131
16119. Februar 20123.803
16623. Mai 2012955
1678. Juni 2012959
16925. Juli 20121.012
17227. September 2012956
Orbit
Nr.
ZeitpunktAbstand
(km)
17414. November 2012973
17530. November 20121.014
18117. Februar 20131-978
1855. April 20131.400
19023. Mai 2013970
19410. Juli 2013964
19526. Juli 20131.400
19712. September 20131.400
19814. Oktober 2013961
1991. Dezember 20131.400
2001. Januar 20141.400
2012. Februar 20141.236
2026. März 20141.500
2037. April 2014963
20417. Mai 20142.994
20518. Juni 20143.659
20620. Juli 20145.103
20721. August 2014964
20822. September 20141.400
20924. Oktober 20141.013
2109. Dezember 2014980
21111. Januar 2015970
21212. Februar 20151.200
21316. März 20152.275
2157. Mai 20152.722
2186. Juli 201510.953
22228. September 20151.036
22513. November 201511.920
23016. Januar 20163.817
2311. Februar 20161.400
23216. Februar 20161.018
2345. April 2016990
2357. Mai 2016971
2368. Juni 2016975
23826. Juli 2016976
23911. August 20161.599
24328. September 20161.737
24815. November 20161.582
25030. November 20163.223
27021. April 2017979

Kleine Saturnmonde

Die folgenden Fotos wurden alle von Cassini aufgenommen:

Für Cassini sind bei jedem Mond der nahste Vorbeiflug und alle weiteren in < 10.000 km Abstand angegeben. Dabei steht zum Beispiel „Cassini (120)“ für den 120. Saturnumlauf von Cassini seit der Huygens-Landung.[37]

kleine Saturn-Monde
ObjektNr.RaumsondeLandStartdatumAnkunftArtAbstand (km)
Pan1.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V?
2.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V?
3.Cassini (264)Vereinigte StaatenVereinigte Staaten15. Oktober 19977. März 2017V22.226
Daphnis1.Voyager 1 *Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V?
2.Voyager 2 *Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V?
3. †Cassini (230)Vereinigte StaatenVereinigte Staaten15. Oktober 199714. Januar 2016V20.418
Atlas1. †Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V219.000
2.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V287.170
3.Cassini (227)Vereinigte StaatenVereinigte Staaten5. Oktober 199712. April 2017V10.825
Prometheus1. †Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V270.000
2.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V107.000
3.Cassini (227)Vereinigte StaatenVereinigte Staaten15. Oktober 19975. Dezember 2015V23.274
Pandora1. †Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V300.000
2.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V246.590
3.Cassini (253)Vereinigte StaatenVereinigte Staaten15. Oktober 199719. Dezember 2016V22.117
Epimetheus1.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V121.000
2.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V147.010
3.Cassini (53)Vereinigte StaatenVereinigte Staaten15. Oktober 19973. Dezember 2007V9.181
Cassini (227)5. Dezember 2015V2.641
Cassini (259)30. Januar 2017V3.566
Cassini (262)21. Februar 2017V8.025
Janus1.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V297.000
2.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V222.760
3.Cassini (74)Vereinigte StaatenVereinigte Staaten15. Oktober 19971. Juli 2008V29.620
Aegaeon1. †Cassini (228)Vereinigte StaatenVereinigte Staaten15. Oktober 199719. Dezember 2015V2.527
Mimas1.Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19731. September 1979V103.000
2.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V88.440
3.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V309.900
4.Cassini (126)Vereinigte StaatenVereinigte Staaten15. Oktober 199713. Februar 2010V9.544
Methone1.Voyager 1 *Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V?
2.Voyager 2 *Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V?
3. †Cassini (166)Vereinigte StaatenVereinigte Staaten15. Oktober 199721. Mai 2012V1.870
Anthe1.Voyager 1 *Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V?
2.Voyager 2 *Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V?
3 †Cassini (231)Vereinigte StaatenVereinigte Staaten15. Oktober 199730. Januar 2016V118.713
Pallene1.Voyager 1 *Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V?
2.Voyager 2 *Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V?
3. †Cassini (153)Vereinigte StaatenVereinigte Staaten15. Oktober 199714. September 2011V25.937
Enceladus1.Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19731. September 1979V225.000
2.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V202.040
3.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V87.140
4.Cassini (3)Vereinigte StaatenVereinigte Staaten15. Oktober 199717. Februar 2005V1.265
Cassini (4)8. März 2005V498
Cassini (11)14. Juli 2005V166
Cassini (61)12. März 2008V47
Cassini (80)11. August 2008V50
Cassini (88)10. Oktober 2008V25
Cassini (91)1. November 2008V170
Cassini (120)2. November 2009V100
Cassini (121)21. November 2009V1.598
Cassini (130)28. April 2010V101
Cassini (131)18. Mai 2010V437
Cassini (136)13. August 2010V2555
Cassini (141)30. November 2010V46
Cassini (142)21. Dezember 2010V48
Cassini (154)1. Oktober 2011V98
Cassini (155)18. Oktober 2011V1.230
Cassini (156)6. November 2011V497
Cassini (162)10. März 2012V9.072
Cassini (163)28. März 2012V73
Cassini (164)15. April 2012V74
Cassini (165)3. Mai 2012V73
Cassini (224)28. Oktober 2015V49
Cassini (228)19. Dezember 2015V4.998
Tethys1.Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19731. September 1979V332.000
2.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V415.670
3.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V93.000
4.Cassini (15)Vereinigte StaatenVereinigte Staaten15. Oktober 199724. September 2005V1.493
Cassini (164)15. April 2012V9.059
Cassini (225)11. November 2015V8.407
Telesto1.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V?
2.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V?
3.Cassini (16)Vereinigte StaatenVereinigte Staaten15. Oktober 199710. Oktober 2005V9.518
Calypso1.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V?
2.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V?
3.Cassini (126)Vereinigte StaatenVereinigte Staaten15. Oktober 199713. Februar 2010V21.304
Dione1.Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19731. September 1979V291.000
2.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V161.520
3.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V502.250
4.Cassini (16)Vereinigte StaatenVereinigte Staaten10. Oktober 200510. Oktober 2005V498
Cassini (129)7. April 2010V506
Cassini (158)12. Dezember 2011V101
Cassini (217)16. Juni 2015V517
Cassini (220)17. August 2015V479
Helene1.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V?
2.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V?
3.Cassini (127)Vereinigte StaatenVereinigte Staaten15. Oktober 19973. März 2010V1.852
Cassini (149)18. Juni 2011V6.953
Polydeuces1.Voyager 1 *Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V?
2.Voyager 2 *Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V?
3. †Cassini (215)Vereinigte StaatenVereinigte Staaten15. Oktober 199710. Mai 2015V33.996
Rhea1.Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19731. September 1979V342.000
2.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V73.980
3.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V645.280
4.Cassini (18)Vereinigte StaatenVereinigte Staaten15. Oktober 199726. November 2005V504
Cassini (49)30. August 2007V5.728
Cassini (101)2. März 2010V101
Cassini (143)11. Januar 2011V71
Cassini (151)1. August 2011V5.887
Cassini (183)8. März 2013V997
Hyperion1.Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19731. September 1979V674.000
2.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V880.440
3.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197725. August 1981V470.840
4.Cassini (15)Vereinigte StaatenVereinigte Staaten15. Oktober 199726. September 2005V466
Japetus1.Pioneer 11Vereinigte StaatenVereinigte Staaten6. April 19731. September 1979V1.000.000
2.Voyager 1Vereinigte StaatenVereinigte Staaten5. September 197712. November 1980V2.470.000
3.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 197722. August 1981V908.680
4.Cassini (49)Vereinigte StaatenVereinigte Staaten15. Oktober 199710. September 2007V1.618
Phoebe1.Voyager 2Vereinigte StaatenVereinigte Staaten20. August 1977September 1981V2.075.600
2.Cassini-Huygens (0)Vereinigte StaatenVereinigte Staaten15. Oktober 199712. Juni 2004V2.068

Uranus

Der Uranus wurde bisher nur von der Raumsonde Voyager 2 besucht. Diese amerikanische Sonde startete am 20. August 1977 und passierte 1986 das Uranus-System, wobei mehrere Monde entdeckt wurden.

Uranus und seine Monde
ObjektAnkunftArtAbstand (km)
Uranus24. Januar 1986V81.422
Cordelia24. Januar 1986V?
Ophelia24. Januar 1986V?
Bianca24. Januar 1986V?
Cressida24. Januar 1986V?
Desdemona24. Januar 1986V?
Juliet24. Januar 1986V?
Portia24. Januar 1986V?
Rosalind24. Januar 1986V?
Cupid *24. Januar 1986V?
Belinda23. Januar 1986V?
Perdita23. Januar 1986V?
Puck24. Januar 1986V492.616
Mab *23. Januar 1986V?
Miranda24. Januar 1986V29.000
Ariel24. Januar 1986V127.000
Umbriel24. Januar 1986V325.000
Titania24. Januar 1986V365.000
Oberon24. Januar 1986V470.000

Neptun

Der Neptun wurde bisher nur von der Raumsonde Voyager 2 besucht. Diese amerikanische Sonde startete am 20. August 1977 und passierte 1989 das Neptun-System, wobei mehrere Monde entdeckt wurden.

Neptun und seine Monde
ObjektAnkunftArtAbstand (km)
Neptun24. August 1989V4.824
Naiad24. August 1989V?
Thalassa24. August 1989V?
Despina24. August 1989V?
Galatea24. August 1989V?
Larissa24. August 1989V60.180
Proteus24. August 1989V97.860
Triton24. August 1989V39.790
Nereid24. August 1989V4.652.880

Transneptunische Objekte

Die bislang einzige Raumsonde, die transneptunische Objekte besuchte, ist die am 19. Januar 2006 gestartete US-amerikanische Vorbeiflugsonde New Horizons. Sie passierte am 14. Juli 2015 den Zwergplaneten Pluto und am 1. Januar 2019 (486958) Arrokoth.

Pluto und Charon
ObjektAnkunftArtAbstand (km)
(134340) Pluto14. Juli 2015V12.500
Charon14. Juli 2015V28.800
Styx14. Juli 2015V391.000
Nix14. Juli 2015V21.000
Kerberos14. Juli 2015V396.100
Hydra14. Juli 2015V75.000
Arrokoth
ObjektAnkunftArtAbstand (km)
(486958) Arrokoth1. Januar 2019V3.536

Siehe auch

Einzelnachweise

  1. Hello, Venus! Solar Orbiter spacecraft makes first swing past planet. Space.com, 27. Dezember 2020.
  2. a b c d e f Tanja Banner: „Juice“-Raumsonde ist auf dem Weg zu Jupiter und seinen Eismonden. In: Frankfurter Rundschau. 15. April 2023, abgerufen am 19. Juni 2023.
  3. a b Aria Alamalhodaei: Rocket Lab’s private mission to Venus slips to 2025. In: TechCrunch. 1. Juni 2023, abgerufen am 19. Juni 2023 (englisch).
  4. a b NASA Selects 2 Missions to Study ‘Lost Habitable’ World of Venus. NASA-Pressemeldung vom 2. Juni 2021.
  5. ESA selects revolutionary Venus mission EnVision. ESA-Pressemeldung vom 10. Juni 2021.
  6. ISRO: Chandrayaan-2 update: Lunar Orbit Insertion. 20. August 2019, abgerufen am 22. Juli 2023 (englisch).
  7. Jeff Foust: CAPSTONE enters lunar orbit. In: Space News. 14. November 2022, abgerufen am 17. November 2022 (englisch).
  8. Twitter-Nachricht von Peter Beck, 7. Juli 2022.
  9. International Partners Provide Science Satellites for America’s Space Launch System Maiden Flight. NASA, 26. Mai 2016, abgerufen am 30. April 2019.
  10. a b c d Lunar IceCube. In: eoPortal. NASA, abgerufen am 30. April 2019.
  11. NASA: NASA’s Lunar Flashlight Ready to Search for the Moon’s Water Ice. 28. Oktober 2022, abgerufen am 1. November 2022 (englisch).
  12. NASA Eyes New Lunar CubeSat Orbit, Propulsion Challenges Continue – Small Satellite Missions. Abgerufen am 15. April 2023 (amerikanisches Englisch).
  13. Mitsubishi Heavy Industries: Launch Schedule Update of the H-IIA Launch Vehicle No.47 (H-IIA F47) which carries aboard XRISM and SLIM. 1. September 2023, abgerufen am 1. September 2023 (englisch).
  14. Aria Alamalhodaei: Intuitive Machines prepares for first lunar mission, faces challenge to NASA contract win. In: TechCrunch. 12. Mai 2023, abgerufen am 3. Juli 2023 (amerikanisches Englisch).
  15. Jeff Foust: Astrobotic selects Falcon Heavy to launch NASA’s VIPER lunar rover. Spacenews, 13. April 2021.
  16. Lonestar emerges from stealth with plans for lunar data centers. Spacenews, 19. April 2022.
  17. Firefly completes integration readiness review of Blue Ghost lunar lander. Spacewatch Global, 28. April 2022.
  18. NASA administrator Bill Nelson says the Artemis II mission, the first to carry astronauts, is targeting May 2024. Abgerufen am 15. November 2021.
  19. a b Рогозин сообщил о переносе запусков станций "Луна-26" и "Луна-27". In: RIA Novosti. 11. April 2019, abgerufen am 13. April 2019 (russisch).
  20. Twitter-Nachricht von Stephen Clark, 18. Januar 2022.
  21. Source Selection Statement – Source Selection StatementAppendix H: Human Landing System, Option ANext Space Technologies for ExplorationPartnerships-2 (NextSTEP-2) (PDF; 354 kB). NASA, 16. April 2021.
  22. Anatoly Zak: New details emerge on Gateway's construction and work. Russian Space Web, 8. Februar 2021 (kostenpflichtiger Inhalt).
  23. Twitter-Nachricht von Jeff Foust, 25. Mai 2021.
  24. NASA Fisical Year 2023 Budget Request. S. 7, abgerufen am 29. April 2022 (englisch).
  25. Twitter-Nachricht von Jeff Foust, 30. November 2020.
  26. To the Moon and back: Mit LSAS bietet OHB ab 2025 einen kommerziellen Mond-Shuttle an. Abgerufen am 15. November 2021.
  27. NASA selects two heliophysics missions. Spacenews, 10. Februar 2022.
  28. Helioswarm: Swarm mission design in high altitude orbit for heliophysics (PDF; 1,5 MB). NASA, 2019.
  29. a b c MMX. In: NASA – Solar System Exploration. Abgerufen am 21. August 2019.
  30. M.V. Kudryashove, P. Rosenblatt, J.-C. Marty: Phobos mass estimation from MEX and Viking 1 data: Influence of different noise sources and estimation strategies. (PDF) Abgerufen am 30. April 2019.
  31. ESA: Industry starts work on Europe’s Hera planetary defence mission. 15. September 2020, abgerufen am 14. Juli 2023 (englisch).
  32. ESA: Hera-Team gratuliert NASA zur Asteroiden-Mission. 27. September 2022, abgerufen am 14. Juli 2023: „Die ESA-Sonde Hera wird ihrer Vorgängerin im Jahr 2024 ins All folgen und zwei Jahre später bei Dimorphos ankommen“
  33. a b ESA: Die unglaublichen Abenteuer der Hera-Mission - Hera stellt sich vor. 29. Juni 2023, abgerufen am 14. Juli 2023.
  34. NASA to repurpose OSIRIS-REx for second asteroid encounter. Spacenews, 26. April 2022.
  35. Olivier Witasse, Nicolas Altobelli, Rafael Andres, Alessandro Atzei, Arnaud Boutonnet, Frank Budnik, Angela Dietz, Christian Erd, Ry Evill, Rosario Lorente, Claudio Munoz, Giulio Pinzan, Carsten Scharmberg, Ander Suarez, Ignacio Tanco, Felice Torelli, Ben Torn, Claire Vallat und das JUICE Science Working Team (Juli 2021). JUICE (Jupiter Icy Moon Explorer): Plans for the cruise phase. Europlanet Science Congress (EPSC) 2021. doi:10.5194/epsc2021-358
  36. Titan Events Table. In: Cassini Mission Archive. NASA, abgerufen am 7. Mai 2019.
  37. a b Cassini Event Calendar. In: pds-atmospheres.nmsu.edu. Abgerufen am 7. Mai 2019.

Auf dieser Seite verwendete Medien

Flag of the Soviet Union (1955-1980).svg
(c) I, Cmapm, CC BY-SA 3.0
The flag of the Soviet Union (1955-1991) using a darker shade of red.
Schematic of the flag as adopted in 1955.
Flag of the Soviet Union (dark version).svg
(c) I, Cmapm, CC BY-SA 3.0
The flag of the Soviet Union (1955-1991) using a darker shade of red.
Schematic of the flag as adopted in 1955.
Flag of the United States (1912-1959).svg
US Flag with 48 stars. In use for 47 years from July 4, 1912, to July 3, 1959.
Chang e 1.jpg
Darstellung von Chang’e-1, die erste chinesische Mondsonde.
Comet Borrelly Nucleus.jpg
In this high resolution view of the icy, rocky nucleus of comet Borrelly, (about 45 meters or 150 feet per pixel) a variety of terrains and surface textures, mountains and fault structures, and darkened material are visible over the nucleus's surface. This was the final image of the nucleus of comet Borrelly, taken just 160 seconds before Deep Space 1's closest approach to it. This image shows the 8-km (5-mile) long nucleus about 3417 kilometers (over 2,000 miles) away.
Rosetta.jpg
A 3D model of the Rosetta Spacecraft. This is not a true representation of Rosetta as the actual spacecraft is protected by black multi layer insulation blankets, the High Gain is also black. Also the individual scientific payloads are highlighted in different colours on this model. The image was created using Celestia.
DAVINCI Venus mission atmospheric probe.jpg
Artist's conception of DAVINCI probe. DAVINCI: Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging. During its 63-minute descent, DAVINCI would collect and return measurements of Venus.
MSL concept February 2007 - PIA09201.jpg

NASA's Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development for a launch opportunity in 2009. This picture is an artist's concept portraying what the advanced rover would look like in Martian terrain, from a side aft angle.

The arm extending from the front of the rover is designed both to position some of the rover's instruments onto selected rocks or soil targets and also to collect samples for analysis by other instruments. Near the base of the arm is a sample preparation and handling system designed to grind samples, such as rock cores or small pebbles, and distribute the material to analytical instruments.

The mast, rising to about 2.1 meters (6.9 feet) above ground level, supports two remote-sensing instruments: the Mast Camera for stereo color viewing of surrounding terrain and material collected by the arm, and the ChemCam for analyzing the types of atoms in material that laser pulses have vaporized from rocks or soil targets up to about 9 meters (30 feet) away.
Cubesat-lunar flashlight.jpg
The Lunar Flashlight, one of the secondary payloads on the first flight of NASA’s Space Launch System, will examine the moon’s surface for ice deposits and identify locations where resources may be extracted.
Ganymede g1 true.jpg
True color image of Ganymede, obtained by the Galileo spacecraft, with enhanced contrast.

Here is the description from JPL's web entry for PIA00716:

Natural color view of Ganymede from the Galileo spacecraft during its first encounter with the satellite. North is to the top of the picture and the sun illuminates the surface from the right. The dark areas are the older, more heavily cratered regions and the light areas are younger, tectonically deformed regions. The brownish-gray color is due to mixtures of rocky materials and ice. Bright spots are geologically recent impact craters and their ejecta. The finest details that can be discerned in this picture are about 13.4 kilometers across. The images which combine for this color image were taken beginning at Universal Time 8:46:04 UT on June 26, 1996.

The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo.
Mars-express-volcanoes-sm.jpg
Illustration of ESA's Mars Express spacecraft
PIA21056cropsharpen.jpg
Saturn's inner moon Daphnis on a detailed photograph by Cassini.
Mars Orbiter Mission - India - ArtistsConcept.jpg
Autor/Urheber: Nesnad, Lizenz: CC BY-SA 4.0
The Mars Orbiter Mission (MOM), informally called Mangalyaan (Sanskrit: मङ्गलयान, English: Mars-craft) is a Mars orbiter that was successfully launched on 5th November 2013 by the Indian Space Research Organisation (ISRO). This is a less than perfect artist's concept of the orbiter in orbit. I'm aware that the image is not 100% accurate, but I did attempt to emulate what the craft looks like. I thought a free-use image would be valuable to Wikipedia projects. If there is interest, I might come back and fine-tune this image to be more correct.
Comet 21P Giacobini-Zinner.jpg
Comet 21P/Giacobini-Zinner
Iapetus as seen by the Cassini probe - 20071008.jpg

Iapetus as seen by the Cassini probe.
Original NASA caption: Cassini captures the first high-resolution glimpse of the bright trailing hemisphere of Saturn's moon Iapetus.
This false-color mosaic shows the entire hemisphere of Iapetus (1,468 kilometers, or 912 miles across) visible from Cassini on the outbound leg of its encounter with the two-toned moon in Sept. 2007. The central longitude of the trailing hemisphere is 24 degrees to the left of the mosaic's center.
Also shown here is the complicated transition region between the dark leading and bright trailing hemispheres. This region, visible along the right side of the image, was observed in many of the images acquired by Cassini near closest approach during the encounter.
Revealed here for the first time in detail are the geologic structures that mark the trailing hemisphere. The region appears heavily cratered, particularly in the north and south polar regions. Near the top of the mosaic, numerous impact features visible in NASA Voyager 2 spacecraft images (acquired in 1981) are visible, including the craters Ogier and Charlemagne.
The most prominent topographic feature in this view, in the bottom half of the mosaic, is a 450-kilometer (280-mile) wide impact basin, one of at least nine such large basins on Iapetus. In fact, the basin overlaps an older, similar-sized impact basin to its southeast.
In many places, the dark material--thought to be composed of nitrogen-bearing organic compounds called cyanides, hydrated minerals and other carbonaceous minerals--appears to coat equator-facing slopes and crater floors. The distribution of this material and variations in the color of the bright material across the trailing hemisphere will be crucial clues to understanding the origin of Iapetus' peculiar bright-dark dual personality.
The view was acquired with the Cassini spacecraft narrow-angle camera on Sept. 10, 2007, at a distance of about 73,000 kilometers (45,000 miles) from Iapetus.
The color seen in this view represents an expansion of the wavelengths of the electromagnetic spectrum visible to human eyes. The intense reddish-brown hue of the dark material is far less pronounced in true color images. The use of enhanced color makes the reddish character of the dark material more visible than it would be to the naked eye.
This mosaic consists of 60 images covering 15 footprints across the surface of Iapetus. The view is an orthographic projection centered on 10.8 degrees south latitude, 246.5 degrees west longitude and has a resolution of 426 meters (0.26 miles) per pixel. An orthographic view is most like the view seen by a distant observer looking through a telescope.
At each footprint, a full resolution clear filter image was combined with half-resolution images taken with infrared, green and ultraviolet spectral filters (centered at 752, 568 and 338 nanometers, respectively) to create this full-resolution false color mosaic.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.
STEREO fly by at moon.jpg
Ein STEREO Observatorium führt einen Fly by am Mond aus.
Mariner09.jpg
Внешний вид АМС "Маринер-9".
Lspn comet halley.jpg
Comet 1P/Halley as taken March 8, 1986 by W. Liller, Easter Island, part of the International Halley Watch (IHW) Large Scale Phenomena Network.
Maven spacecraft full.jpg
Artist's Concept of MAVEN, set to launch in 2013.
Venus 12.jpg
USSR stamp dedicated to Venera-11 and Venera-12 space exploration mission
1984 CPA 5560.jpg
Stamp of the Soviet Union, Venera 9 (a USSR unmanned space mission to Venus), 1984.
Capstone graphic 13feb20 0.jpg
The Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) is expected to be the first spacecraft to operate in a near rectilinear halo orbit around the Moon. In this unique orbit, the CubeSat will rotate together with the Moon as it orbits Earth and will pass as close as 1,000 miles and as far as 43,500 miles from the lunar surface.
GRAIL.jpg
GRAIL lunar probes
Thebe.jpg
This image of Thebe was taken by NASA's Galileo spacecraft on January 4, 2000, at a range of 193,000 kilometers.
Mars 1M.jpg
This picture shows a Marsnik spacecraft. Both were identical. It was originally found on http://nssdc.gsfc.nasa.gov/database/MasterCatalog?sc=MARSNK1
LCROSS Centaur 1.jpg
LCROSS spacecraft with Centaur Stage.
Comet 67P on 19 September 2014 NavCam mosaic.jpg
(c) ESA/Rosetta/NAVCAM, CC BY-SA IGO 3.0
Zusammengesetztes Bild des Kometen 67P/Churyumov-Gerasimenko, fotografiert am 19. September 2014 mit der Navigationskamera (NAVCAM) der Raumsonde Rosetta aus 28.6 km Entfernung.
JUICE spacecraft model 2.png
Autor/Urheber: Dnepr740, Lizenz: CC BY-SA 4.0
Scheme of ESA's JUICE spacecraft
Zond 2.jpg
Autor/Urheber: NASA on The Commons, Lizenz: No restrictions

(1965) Zond 2 was an automatic interplanetary station launched from a Tyazheliy Sputnik (64-078A) in Earth parking orbit towards Mars to test space-borne systems and to carry out scientific investigations. The probe carried a descent craft and the same instruments as the Mars 1 flyby spacecraft: a magnetometer probe, television photographic equipment, a spectroreflectometer , radiation sensors (gas-discharge and scintillation counters), a spectrograph to study ozone absorption bands, and a micrometeoroid instrument. The spacecraft had six experimental low-thrust electrojet plasma ion engines that served as actuators of the attitude control system and could be used instead of the gas engines to maintain orientation. Power was provided by two solar panels.

Zond 2 took a long curving trajectory towards Mars to minimize the relative velocity. The electronic ion engines were successfully tested shortly after launch under real space environment conditions over the period December 8-18, 1964. One of the two solar panels failed so only half the anticipated power was available to the spacecraft. After a mid-course maneuver, communications with the spacecraft were lost in early May, 1965. The spacecraft flew by Mars on 6 August 1965 at a distance of 1500 km and a relative speed of 5.62 km/s.

nasaimages.org/luna/servlet/detail/nasaNAS~20~20~120437~2...
RIAN archive 510848 Interplanetary station Luna 1 - blacked.jpg
(c) RIA Novosti archive, image #510848 / Alexander Mokletsov / CC-BY-SA 3.0
“Interplanetary station Luna 1”. Interplanetary station Luna 1 exhibited in the "Kosmos" pavilion of the Exhibition of Achievements of National Economy of the USSR (VDNKh).
Near Eros.jpg
Grafik der NASA-Raumsonde NEAR, die den Asteroiden Eros besuchte und am Ende ihrer Mission auf ihm landete.
Enceladusstripes cassini.jpg
Bild von Enceladus, das blaue Rillen oder Spalten auf der Oberfläche zeigt, aufgenommen von der Raumsonde Cassini.
S1986U10 zoom.png
Portion de l'image S1986U10.jpg avec quatre lunes uraniennes identifiées, dont fr:S/1986 U 10

Image de la lune uranienne S/1986 U 10 saise par le télescope spatial Hubble le 25 août 2003

Source : NASA

http://www.solarviews.com/cap/uranus/1986u10.htm
Kerberos (moon).jpg
Four combined images of Kerberos taken by the Long Range Reconnaissance Imager (LORRI) instrument on 14 July, approximately 7 hours before New Horizons’ closest approach to Pluto and at a distance of 396 100 km from Kerberos.
Mars Valles Marineris.jpeg
Global mosaic of 102 Viking 1 Orbiter images of Mars taken on orbit 1,334, 22 February 1980. The images are projected into point perspective, representing what a viewer would see from a spacecraft at an altitude of 2,500 km. At center is Valles Marineris, over 3000 km long and up to 8 km deep. Note the channels running up (north) from the central and eastern portions of Valles Marineris to the area at upper right, Chryse Planitia. At left are the three Tharsis Montes and to the south is ancient, heavily impacted terrain. (Viking 1 Orbiter, MG07S078-334SP)
Some of the features in this mosaic are annotated in Wikimedia Commons.
Apollo 15 flag, rover, LM, Irwin.jpg
James Irwin, Pilot der Mondlandefähre von Apollo 15, salutiert vor der amerikanischen Flagge.
Der Astronaut James B. Irwin, Pilot des Mondlandemoduls, salutiert militärisch neben der aufgestellten US-Fahne stehend, während eines Apollo 15 Außeneinsatzes an der Hadley-Apennin Landestelle. Die Fahne wurde gegen Ende des zweiten Außeneinsatzes aufgestellt. Das Mondlandemodul „Falcon“ steht in der Bildmitte. Das Mondauto (LRV) ist rechts am Bildrand zu sehen. Der Blick richtet sich fast genau nach Süden. Mons Hadley Delta erhebt sich im Hintergrund rund 4000 Meter hoch über die Ebene. Der Fuß des Berges ist ungefähr fünf Kilometer entfernt. Dieses Foto wurde von Astronaut David R. Scott, dem Kommandanten von Apollo 15, aufgenommen.
Janus 2006 closeup by Cassini.jpg
Janus, Saturn's moon (Saturn in background). Image taken by Cassini. NASA PD
Hydra Enhanced Color.jpg
Color image of Hydra, image create using high resolution LORRI image and MVIC color data.
Thalassa.jpg
Naiad from Voyager 2
Metis.jpg
Jovian satellite Metis, imaged by the Galileo spacecraft
Bennu 330km 181029.jpg
This “super-resolution” view of asteroid Bennu was created using eight images obtained by NASA’s OSIRIS-REx spacecraft on Oct. 29, 2018 from a distance of about 205 miles (330 km). The spacecraft was moving as it captured the images with the PolyCam camera, and Bennu rotated 1.2 degrees during the nearly one minute that elapsed between the first and the last snapshot. The team used a super-resolution algorithm to combine the eight images and produce a higher resolution view of the asteroid. Bennu occupies about 100 pixels and is oriented with its north pole at the top of the image.
Io highest resolution true color.jpg
Original Caption Released with Image:

NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera and approximates what the human eye would see. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A false color version of the mosaic has been created to enhance the contrast of the color variations.

The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout A of false color image). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B of false color image). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C of false color image). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D of false color image). In this region bright, white material can also be seen to emanate from linear rifts and cliffs.

Comparison of this image to previous Galileo images reveals many changes due to the ongoing volcanic activity.

Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here.

North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit.

The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo.
Ceres RC1 single frame by Dawn, 12 February 2015.jpg
Ceres photographed by Dawn from about 80 000 km.
Ranger 4 Sonde.jpg
Ranger 4 Sonde
PIA18185 Miranda's Icy Face.jpg
Uranus' icy moon Miranda is seen in this image from Voyager 2 on January 24, 1986. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Voyager.jpg
NASA photograph of one of the two identical Voyager space probes Voyager 1 and Voyager 2 launched in 1977.

The 3.7 metre diameter high-gain antenna (HGA) is attached to the hollow ten-sided polygonal body housing the electronics, here seen in profile. The Voyager Golden Record is attached to one of the bus sides.

The angled square panel below is the optical calibration target and excess heat radiator.

The three radioisotope thermoelectric generators (RTGs) are mounted end-to-end on the left-extending boom. One of the two planetary radio and plasma wave antenna extends diagonally left and down, the other extends to the rear, mostly hidden here. The compact structure between the RTGs and the HGA are the high-field and low-field magnetometers (MAG) in their stowed state; after launch an Astromast boom extended to 13 metres to distance the low-field magnetometers.

The instrument boom extending to the right holds, from left to right: the cosmic ray subsystem (CRS) above and Low-Energy Charged Particle (LECP) detector below; the Plasma Spectrometer (PLS) above; and the scan platform that rotates about a vertical axis.

The scan platform comprises: the Infrared Interferometer Spectrometer (IRIS) (largest camera at right); the Ultraviolet Spectrometer (UVS) to the right of the UVS; the two Imaging Science Subsystem (ISS) vidicon cameras to the left of the UVS; and the Photopolarimeter System (PPS) barely visible under the ISS.

Suggested for English Wikipedia:alternative text for images: A space probe with squat cylindrical body topped by a large parabolic radio antenna dish pointing upwards, a three-element radioisotope thermoelectric generator on a boom extending left, and scientific instruments on a boom extending right. A golden disk is fixed to the body.
Zond L1 drawing.svg
L1 (Zond) circumlunar spacecraft.
Mars 4-5.jpg
Foto della sonda spaziale sovietica Mars 4 (uguale a Mars 5).
PIA21436.jpg
Saturn's moon Pan on a cropped image from March 7th.
Lunokhod 1 moon rover (MMA 2011) (2).JPG
Autor/Urheber: Armael, Lizenz: CC0
Mockup (1:1) of the moon rover Lunokhod 1 at Memorial Museum of Astronautics (Moscow).
Clementine final checks.jpg
The Clementine satellite undergoes final checks in this 1993 photograph. The satellite was built by the staff of the Naval Research Laboratory, Washington, D.C. The recent interpretation of data from the Clementine spacecraft mission, a joint Ballistic Missile Defense Organization/NASA venture, has revealed that deposits of ice could exist in permanently dark regions near the South Pole of the Moon. Initial estimates suggest that the ice deposit area is the size of small lake (60 to 120 thousand cubic meters), and that the lunar crater containing the ice deposit has a depth greater than the height of Mount Everest, and a rim circumference twice the size of Puerto Rico. The discovery of ice on the Moon has enormous implications for the potential return of humans to the Moon's surface and the establishment of a permanent lunar station. The lunar ice could be mined and dissociated into hydrogen and oxygen by electric power provided by solar panels or a nuclear generator, providing both breathable oxygen and potable water for the permanent station on the Moon. Hydrogen and oxygen are also prime components of rocket motor fuel and could potentially result in the establishment of a lunar filling station making transport to or from the Moon more economical by at least a factor of ten. The Clementine spacecraft was launched aboard a Titan II missile from Vandenberg Air Force Base, Calif., on Jan. 25, 1994. Its primary military mission was to qualify lightweight sensor and camera technology for possible application for ballistic missile defense programs, but it also demonstrated a capability for low-cost, high-value space exploration missions.
Sun920607.jpg
Die Sonne mit Sonnenflecken. Die zwei kleinen Sonnenflecken in der Mitte haben ungefähr den gleichen Durchmesser wie unser Planet Erde.
PIA02127.jpg

This image shows comet Tempel 1 approximately 5 minutes before Deep Impact's probe smashed into its surface. It was taken by the probe's impactor targeting sensor. The Sun is to the right of the image and reveals terrain varying in brightness by a factor of two. Shadows and bright areas indicate surface topography. Smooth regions with no features (lower left and upper right) are probably younger than rougher areas with circular features, which are probably impact craters. The probe crashed between the two dark-rimmed craters near the center and bottom of the comet.

The nucleus is estimated to be about 5 kilometers (3.1 miles) across and 7 (4.3 miles) kilometers tall.
Inset-ura bianca-large.gif
Bianca - moon of Uranus
1972. Венера-8.jpg
Почтовая марка СССР. 1972. Венера-8
PIA19388-Mars-InSight-MarCO-CubeSats-20150612.jpg
PIA19388: Interplanetary CubeSat for Technology Demonstration at Mars (Artist's Concept)

http://photojournal.jpl.nasa.gov/catalog/PIA19388

NASA's two MarCO CubeSats will be flying past Mars in September 2016 just as NASA's next Mars lander, InSight, is descending through the Martian atmosphere and landing on the surface. MarCO, for Mars Cube One, will provide an experimental communications relay to inform Earth quickly about the landing.

This illustration depicts a moment during the lander's descent when it is transmitting data in the UHF radio band, and the twin MarCO craft are receiving those transmissions while simultaneously relaying the data to Earth in a different radio band. Each of the MarCO twins carries two solar panels for power, and both UHF-band and X-band radio antennas. As a technology demonstration, MarCO could lead to other "bring-your-own-relay" mission designs and also to use of miniature spacecraft for a wide diversity of interplanetary missions.

MarCO is the first interplanetary use of CubeSat technologies for small spacecraft. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies to streamline development. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft.

The two briefcase-size MarCO CubeSats will ride along with InSight on an Atlas V launch vehicle lifting off in March 2016 from Vandenberg Air Force Base, California. MarCO is a technology demonstration aspect of the InSight mission and not needed for that mission's success. InSight, an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, will investigate the deep interior of Mars to advance understanding of how rocky planets, including Earth, formed and evolved.

After launch, the MarCO twins and InSight will be navigated separately to Mars.

The MarCO and InSight projects are managed for NASA's Science Mission Directorate, Washington, by JPL, a division of the California Institute of Technology, Pasadena.
Callisto.jpg
Bright scars on a darker surface testify to a long history of impacts on Jupiter's moon Callisto in this image of Callisto from NASA's Galileo spacecraft. The picture, taken in May 2001, is the only complete global color image of Callisto obtained by Galileo, which has been orbiting Jupiter since December 1995. Of Jupiter's four largest moons, Callisto orbits farthest from the giant planet. Callisto's surface is uniformly cratered but is not uniform in color or brightness. Scientists believe the brighter areas are mainly ice and the darker areas are highly eroded, ice-poor material.
(253) mathilde.jpg
Asteroid (253) Mathilde von der Raumsonde NEAR Shoemaker am 27. Juni 1997 aus einer Entferung von 2400 km aufgenommen. Er wird von oben rechts von der Sonne beleuchtet. Der auf dem Bild sichtbare Teil des Asteroiden hat eine Ausdehnung von 59 km x 47 km, wobei die Bildauflösung 380 m/Bildpunkt beträgt. Auf der Oberfläche sind viele große Krater sichtbar, wie der vermutlich mehr als 10 km tiefe mit langen Schatten versehene Krater in der Bildmitte.
Asteroid 2002 JF56.jpg
The two "spots" in this image are a composite of two images of asteroid 2002 JF56 taken on June 11 and June 12, 2006, with the Multispectral Visible Imaging Camera (MVIC) component of the New Horizons Ralph imager. In the bottom image, taken when the asteroid was about 3.36 million kilometers (2.1 million miles) away from the spacecraft, 2002 JF56 appears like a dim star. At top, taken at a distance of about 1.34 million kilometers (833,000 miles), the object is more than a factor of six brighter. The best current, estimated diameter of the asteroid is approximately 2.5 kilometers.
Nozomi-spacecraft-1998-artistconcept.png
Autor/Urheber: Nesnad, Lizenz: CC BY-SA 3.0
Nozomi (のぞみ) (Japanese for "Wish" or "Hope," and known before launch as Planet-B) was planned as a Mars-orbiting aeronomy probe, but was unable to achieve Mars orbit due to electrical failures. Operation was terminated on December 31, 2003. I couldn't find a free use image of this spacecraft, so to the best of my limited ability I handcrafted an obj file and rendered it in a 3D graphics program in order to represent what this spacecraft might have looked like in space.
Cassini Helene N00086698 CL.jpg
Raw Narrow Angle Camera image of Helene. Taken by Cassini-Huygens on July 20, 2007 from 40,211 km with clear filters. Adapted from source image (cropped and contrast adjusted).
Orion with ATV SM.jpg
NASA’s Orion spacecraft will carry astronauts further into space than ever before using a module based on Europe’s Automated Transfer Vehicles (ATV).

The ATV-derived service module, sitting directly below Orion’s crew capsule, will provide propulsion, power, thermal control, as well as supplying water and gas to the astronauts in the habitable module.

The first Orion mission will be an uncrewed lunar flyby in 2017, returning to Earth’s atmosphere at 11 km/s ­– the fastest reentry ever.
Rosetta spacecraft (black bg).png
Autor/Urheber: ESA/ATG medialab, Lizenz: CC BY-SA 2.0
Artist's impression of the Rosetta orbiter, on a black background.
Chang'e 4.png
Autor/Urheber: Loren Roberts for The Planetary Society, Lizenz: CC BY-SA 3.0
Chang’e-4, Lander and Rover,
derived work of File:20180912 6258TPS-TPR-2018Q3-18-09-04-p14legacy.png
Titan Visible.jpg
Saturn's large, smog-enshrouded moon Titan greets Cassini in full natural color as the spacecraft makes its third close pass on Feb. 15, 2005. This view has been rotated so that north on Titan is up. There is a slight difference in brightness from north to south, a seasonal effect that was noted in NASA's Voyager spacecraft images, and is clearly visible in some infrared images from Cassini. The northern polar region is largely in darkness at this time. This image was taken with the Cassini spacecraft wide angle camera through using red, green and blue spectral filters were combined to create this natural color view. The image was acquired at a distance of approximately 229,000 kilometers (142,000 miles) from Titan and at a Sun-Titan-spacecraft, or phase, angle of 20 degrees. Resolution in the image is about 14 kilometers (9 miles) per pixel.
Vesta from Dawn, July 17.jpg
Asteroid 4 Vesta from Dawn on July 17, 2011. The image was taken from a distance of 9,500 miles (15,000 km) away from Vesta.
Triton moon mosaic Voyager 2 (large).jpg
Globales Farbmosaik von Triton, 1989 aufgenommen durch Voyager 2
Lunar Orbiter.jpg
Lunar Orbiter
Venus-real color.jpg
Venus in real colors, processed from clear and blue filtered Mariner 10 images.

Source images are in the public domain (NASA)

Images processed by Ricardo Nunes, downloaded from http://www.astrosurf.com/nunes/explor/explor_m10.htm
LADEE.jpg
LADEE Mondorbiter
Pluto-01 Stern 03 Pluto Color TXT.jpg
Pluto in der besten Auflösung, kontrastverbessert, farbverstärkt und um Infrarot erweitert Pluto, aufgenommen von der Raumsonde New Horizons.
Maquette EDM salon du Bourget 2013 DSC 0192.JPG
Autor/Urheber: Pline, Lizenz: CC BY-SA 3.0
Schiaparelli EDM lander concept Paris Air Show 2013
Voyager 2 picture of Oberon.jpg
Original Caption Released with Image: This Voyager 2 picture of Oberon is the best the spacecraft acquired of Uranus' outermost moon. The picture was taken shortly after 3:30 a.m. PST on Jan. 24, 1986, from a distance of 660,000 kilometers (410,000 miles). The color was reconstructed from images taken through the narrow-angle camera's violet, clear and green filters. The picture shows features as small as 12 km (7 mi) on the moon's surface. Clearly visible are several large impact craters in Oberon's icy surface surrounded by bright rays similar to those seen on Jupiter's moon Callisto. Quite prominent near the center of Oberon's disk is a large crater with a bright central peak and a floor partially covered with very dark material. This may be icy, carbon-rich material erupted onto the crater floor sometime after the crater formed. Another striking topographic feature is a large mountain, about 6 km (4 mi) high, peeking out on the lower left limb. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Tethys PIA07738.jpg
With this full-disk mosaic, Cassini presents the best view yet of the south pole of Saturn's moon Tethys. The giant rift Ithaca Chasma cuts across the disk. Much of the topography seen here, including that of Ithaca Chasma, has a soft, muted appearance. It is clearly very old and has been heavily bombarded by impacts over time. Many of the fresh-appearing craters (ones with crisp relief) exhibit unusually bright crater floors. The origin of the apparent brightness (or "albedo") contrast is not known. It is possible that impacts punched through to a brighter layer underneath, or perhaps it is brighter because of different grain sizes or textures of the crater floor material in comparison to material along the crater walls and surrounding surface. The moon's high southern latitudes, seen here at the bottom, were not imaged by NASA's Voyager spacecraft during their flybys of Tethys 25 years ago. The mosaic is composed of nine images taken during Cassini's close flyby of Tethys (1,071 kilometers, or 665 miles across) on Sept. 24, 2005, during which the spacecraft passed approximately 1,500 kilometers (930 miles) above the moon's surface. This view is centered on terrain at approximately 1.2 degrees south latitude and 342 degrees west longitude on Tethys. It has been rotated so that north is up. The clear filter images in this mosaic were taken with the Cassini spacecraft narrow-angle camera at distances ranging from 71,600 kilometers (44,500 miles) to 62,400 kilometers (38,800 miles) from Tethys and at a Sun-Tethys-spacecraft, or phase, angle of 21 degrees. The image scale is 370 meters (1,200 feet) per pixel.
Despina.jpg
Despina as seen by Voyager 2. There is significant horizontal smearing due to the combination of long exposure needed at this distance from the Sun, and the rapid relative motion of the moon and Voyager.
Lunar IceCube Moon Southern Region.png
Autor/Urheber: Recentcontributor2000, Lizenz: CC BY-SA 4.0
Artist's rendering of the Lunar IceCube spacecraft
Opportunity PIA03240.jpg
This synthetic image of NASA's Opportunity Mars Exploration Rover inside Endurance Crater was produced using "Virtual Presence in Space" technology. Developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif., this technology combines visualization and image-processing tools with Hollywood-style special effects. The image was created using a photorealistic model of the rover and a false-color mosaic taken on sol 134 (June 9, 2004) by Opportunity's panoramic camera with the 750-, 530- and 430-nanometer filters. The size of the rover in the image is approximately correct and was based on the size of other features in the image. Because this synthesis provides viewers with a sense of their own "virtual presence" (as if they were there themselves), such views can be useful to mission teams by enhancing perspective and a sense of scale.
Lunokhod 2 (DSC 0031).JPG
Autor/Urheber: Hayk, Lizenz: CC BY-SA 3.0
Automatic laboratory Lunokhod-2, the mockup on a scale of 1:1 (The third navigational TV-camera and magnetometer rod are absent).
Ion Engine Test Firing - GPN-2000-000482.jpg
This image of a xenon ion engine, photographed through a port of the vacuum chamber where it was being tested at NASA's Jet Propulsion Laboratory, shows the faint blue glow of charged atoms being emitted from the engine.

The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Ion propulsion was first proposed in the 1950s and NASA performed experiments on this highly efficient propulsion system in the 1960s, but it was not used aboard an American spacecraft until the 1990s.

Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, DC. The California Institute of Technology in Pasadena manages JPL for NASA.

The almost imperceptible thrust from the ion propulsion system is equivalent to the pressure exerted by a sheet of paper held in the palm of your hand. The ion engine is very slow to pick up speed, but over the long haul it can deliver 10 times as much thrust per pound of fuel as more traditional rockets.

Unlike the fireworks of most chemical rockets using solid or liquid fuels, the ion drive emits only an eerie blue glow as ionized (electrically charged) atoms of xenon are pushed out of the engine. Xenon is the same gas found in photo flash tubes and many lighthouse bulbs.
SkyFire lunar CubeSat.jpg
SkyFire is a small spacecraft of the 6U CubeSat format, Lockheed Martin, mass of ≈14 kg (31 lb) that is proposed to be launched in 2018 on the SLS Exploratory Mission1 to the Moon. It will do a Moon flyby and will collect surface spectroscopy and thermography of the surface of the Moon. It was selected in April 2015 by NASA's NextSTEP program ('Next Space Technologies for Exploration Partnerships').
Deimos2.jpg
This computer mosaic of Deimos was made with images acquired from Viking Orbiter during one of its close approaches to the moon. The 15-km (9-mi) diameter Deimos circles Mars every 30 hours. Scientists speculate that Deimos and its companion moon Phobos were once passing asteroids that were pulled in by the gravity of Mars.
Umbriel (moon).jpg
Original Caption Released with Image: The southern hemisphere of Umbriel displays heavy cratering in this Voyager 2 image, taken Jan. 24, 1986, from a distance of 557,000 kilometers (346,000 miles). This frame, taken through the clear-filter of Voyager's narrow-angle camera, is the most detailed image of Umbriel, with a resolution of about 10 km (6 mi). Umbriel is the darkest of Uranus' larger moons and the one that appears to have experienced the lowest level of geological activity. It has a diameter of about 1,200 km (750 mi) and reflects only 16 percent of the light striking its surface; in the latter respect, Umbriel is similar to lunar highland areas. Umbriel is heavily cratered but lacks the numerous bright ray craters seen on the other large Uranian satellites; this results in a relatively uniform surface albedo (reflectivity). The prominent crater on the terminator (upper right) is about 110 km (70 mi) across and has a bright central peak. The strangest feature in this image (at top) is a curious bright ring, the most reflective area seen on Umbriel. The ring is about 140 km (90 miles) in diameter and lies near the satellite's equator. The nature of the ring is not known, although it might be a frost deposit, perhaps associated with an impact crater. Spots against the black background are due to 'noise' in the data. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Mars6.gif
Foto della sonda spaziale sovietica Mars 6 (uguale a Mars 7).
Pioneer-3-4.gif
Pioneer 3 & 4
Mariner6.jpg
Mariner 6 and 7 spacecraft
Pallene N1665945513 1.jpg
Saturn's moon Pallene on an image from a distance of 36144.8 kilometres, taken on 16th October 2010.
Pathfinder01.jpg
Sojourner rover taking an Alpha Proton X-ray Spectrometer measurement of Yogi.
Pathfinder mission - Mars exploration - NASA
Moons of Pluto.png
Hubble image showing the moons of Pluto, adding orbits, names and scale. The black stripe is because the exposure for pluto itself was much shorter than for the moons.
Nereid-Voyager2.jpg
衛星ネレイド、ボイジャー2号の撮影
Rosetta triumphs at asteroid Lutetia.jpg
Autor/Urheber: ESA 2010 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA, Lizenz: CC BY-SA 2.0
Asteroid 21 Lutetia has been revealed as a battered world of many craters. ESA's Rosetta mission has returned the first close-up images of the asteroid showing it is most probably a primitive survivor from the violent birth of the Solar System.
Deep Impact.jpg
Computer rendering of the Deep Impact space probe after separation of the impactor.
PIA09813 Epimetheus S. polar region.jpg

The Cassini spacecraft's close flyby of Epimetheus in December 2007 returned detailed images of the moon's south polar region.

The view shows what might be the remains of a large impact crater covering most of this face, and which could be responsible for the somewhat flattened shape of the southern part of Epimetheus (116 kilometers, or 72 miles across) seen previously at much lower resolution.

The image also shows two terrain types: darker, smoother areas, and brighter, slightly more yellowish, fractured terrain. One interpretation of this image is that the darker material evidently moves down slopes, and probably has a lower ice content than the brighter material, which appears more like "bedrock." Nonetheless, materials in both terrains are likely to be rich in water ice.

The images that were used to create this enhanced color view were taken with the Cassini spacecraft narrow-angle camera on Dec. 3, 2007. The views were obtained at a distance of approximately 37,400 kilometers (23,000 miles) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 65 degrees. Image scale is 224 meters (735 feet) per pixel.

The Cassini–Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini–Huygens mission visit http://saturn.jpl.nasa.gov/home/index.cfm. The Cassini imaging team homepage is at http://ciclops.org.

The NASA image has been cropped.
Rosalind.jpg
Rosalind - moon of Uranus
Rhea hi-res PIA07763.jpg
original description: This giant mosaic reveals Saturn's icy moon Rhea in her full, crater-scarred glory. This view consists of 21 clear-filter images and is centered at 0.4 degrees south latitude, 171 degrees west longitude.
Parker Solar Probe.jpg
Parker Solar Probe artist rendering
  • Artist’s concept of the Parker Solar Probe spacecraft approaching the sun. Launching in 2018, Parker Solar Probe will provide new data on solar activity and make critical contributions to our ability to forecast major space-weather events that impact life on Earth.
Mmxspacecraft 0.jpg
Artist’s concept of Japan’s Mars Moons eXploration (MMX) spacecraft, carrying a NASA instrument to study the Martian moons Phobos and Deimos.
Jupiter.jpg
Original Caption Released with Image: This processed color image of Jupiter was produced in 1990 by the U.S. Geological Survey from a Voyager image captured in 1979. The colors have been enhanced to bring out detail. Zones of light-colored, ascending clouds alternate with bands of dark, descending clouds. The clouds travel around the planet in alternating eastward and westward belts at speeds of up to 540 kilometers per hour. Tremendous storms as big as Earthly continents surge around the planet. The Great Red Spot (oval shape toward the lower-left) is an enormous anticyclonic storm that drifts along its belt, eventually circling the entire planet.
GPN-2000-001979.jpg
The Ranger fleet of spacecraft launched in the mid-sixties provided for the first time live television transmissions of the Moon from lunar orbit. These transmissions resolved surface features as small as 10 inches across and provided over 17,000 images of the lunar surface. These detailed photographs allowed scientists and engineers to study the Moon in greater detail than ever before thus allowing for the design of a spacecraft that would one day land men of Earth on its surface.
中国火星探测器(1:3).jpg
Autor/Urheber: Sprt98, Lizenz: CC BY-SA 4.0
在于青岛市黄岛区举行的2018东亚海洋合作平台青岛论坛东亚商品展中展出的中国火星探测器1:3模型
243 ida.jpg
Asteroid Ida mit Mond Dactyl
Viking spacecraft.jpg
Viking 1 launched aboard a Titan IIIE rocket August 20, 1975 and arrived at Mars on June 19, 1976. The first month was spent in orbit around the martian planet and on July 20, 1976 Viking Lander 1 separated from the Orbiter and touched down at Chryse Planitia.
Mars Polar Lander.jpg
Mars Polar Lander will use an articulated robotic arm to dig trenches to collect soil samples. This terrain near the south pole is believed to consist of layers of soil and ice built up over many years (similar to tree growth rings). The composition of the layers may reveal clues to past climatic conditions.
Pioneer 10 images the sun.jpg
Artist's impression of the Pioneer 10 space probe (1972—) imaging the Sun from the orbit of Neptune. Artist's description: "On ABC's 'Nightline' I heard a report Pioneer 10 would try to image the Sun among the stars as it crossed the orbit of Neptune. This turned out to be not true, and I resolved to create such a view. The sky is accurately portrayed and the Sun with its brighter planets are placed where they would be in relation to the background. The spacecraft is based on hardware photographs. Acrylic on board for NASA Ames."
IKAROS IAC 2010.jpg
(c) Pavel Hrdlička, Wikipedia, CC BY-SA 3.0
Model of the Japanese interplanetary unmanned spacecraft IKAROS at the 61st International Astronautical Congress in Prague, Czech Republic
Comet Hartley 2.jpg
Image of Comet Hartley 2. This image was captured by NASA's EPOXI mission between Nov. 3 and 4, 2010, during the spacecraft's flyby of comet Hartley 2. It was captured using the spacecraft's Medium-Resolution Instrument.
Nix best view.jpg
Processed image of Nix
Uranus2.jpg
This is an image of the planet Uranus taken by the spacecraft Voyager 2 in 1986. See Uranus.jpg for how Uranus would appear in visible light.
Adrastée FDS 20630.png
Jupitermond Adrastea, aufgenommen von de:Voyager 2. Die feine Linie oberhalb des Mondes ist ein Teil von Jupiters Ringsystem
Voyager spacecraft.jpg
Artist's concept of Voyager in flight
Mars Observer.jpg
Mars Observer in Mars Orbit showing the solar pannel.
ESA logo.svg
Logotype of the European Space Agency (ESA). Intended for use at small sizes only, but the official, more detailed one seems eligible for copyright.
Polydeuces.jpg
Polydeuces, moon of Saturn
2014MU69 MVIC.png
This image, obtained with the wide-angle Multicolor Visible Imaging Camera (MVIC) component of New Horizons's RALPH instrument, was taken on 1 January 2019 5:26, 7 minutes before closest approach, from a distance of 6,700 km. The image has an original resolution of 440 feet (135 meters) per pixel.
Dionean Linea PIA08256.jpg

Cassini image of Dione, highlighting wispy terrain
This splendid view showcases Dione's tortured complex of bright cliffs. At lower right is the feature called Cassandra, exhibiting linear rays extending in multiple directions.

The trailing hemisphere of Dione (1,126 kilometers, or 700 miles across) is seen here. North is up.

The image was taken in polarized green light with the Cassini spacecraft narrow-angle camera on July 24, 2006 at a distance of approximately 263,000 kilometers (163,000 miles) from Dione. Image scale is 2 kilometers (1 mile) per pixel.
NASA Dragonfly mission to Titan.jpg
NASA graphic showing Dragonfly mission arriving on Saturn's moon Titan, and flying in its atmosphere.
OSIRIS-REx.jpg
Conceptual image of OSIRIS-REx spaceprobe
Phoenix Lander small.jpg
Artist's concept of the Phoenix Mars lander.
Naiad.jpg
Naiad as seen by Voyager 2. The image is smeared due to the combination of long exposure needed at this distance from the Sun, and the rapid relative motion of the moon and Voyager. Hence, the moon appears more elongated than in reality.
ISEE-3.gif
International Cometary Explorer (ICE), davor als International Sun Earth Explorer 3 (ISEE 3) bezeichnet, im Anflug auf den Kometen Giacobini-Zinner.
The Soviet Union 1969 CPA 3821 stamp (Space Probe, Space Capsule and Orbits).jpg
USSR stampː Space Probe, Space Capsule and Orbits. Seriesː Space Exploration
Proteus (Voyager 2).jpg
Proteus ist hinter dem geheimnisvollen Triton der zweitgrößte Mond des Neptuns. Proteus wurde erst 1989 durch das Voyager 2 Raumschiff entdeckt. Das ist ungewöhnlich, da Neptun einen kleineren Mond - Nereid - hat, der schon 33 Jahre früher von der Erde aus entdeckt wurde. Der Grund für Proteus' späte Entdeckung war seine sehr dunkle Oberfläche. Auch seine Umlaufbahn ist viel näher bei Neptun als die von Nereid. Proteus hat eine ungewöhnliche kastenartige Form und wäre er nur wenig masserreicher, würde ihn seine eigene Schwerkraft in eine Kugel umformen.
Styx (moon).jpg
Image(s) of Styx taken by the Long Range Reconnaissance Imager (LORRI) on 13 July, approximately 12.5 hours before New Horizons’ closest approach to Pluto.
Hyperion PIA07740.jpg
original description: This stunning false-color view of Saturn's moon Hyperion reveals crisp details across the strange, tumbling moon's surface. Differences in color could represent differences in the composition of surface materials. The view was obtained during Cassini's close flyby on Sept. 26, 2005. Hyperion has a notably reddish tint when viewed in natural color. The red color was toned down in this false-color view, and the other hues were enhanced, in order to make more subtle color variations across Hyperion's surface more apparent. Images taken using infrared, green and ultraviolet spectral filters were combined to create this view. The images were taken with the Cassini spacecraft's narrow-angle camera at a distance of approximately 62,000 kilometers (38,500 miles) from Hyperion and at a Sun-Hyperion-spacecraft, or phase, angle of 52 degrees. The image scale is 362 meters (1,200 feet) per pixel. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.
BepiColombo stack ESA380728.jpg
(c) ESA–C. Carreau, CC BY-SA 3.0 igo
The complete BepiColombo spacecraft stack on 5 July 2017.

From bottom to top: the Mercury Transfer Module (sitting on top of a cone-shaped adapter, and with one folded solar array visible to the right); the Mercury Planetary Orbiter (with the folded solar array seen towards the left, with red protective cover), and the Mercury Magnetospheric Orbiter (MMO).

The Mercury Magnetospheric Orbiter’s Sunshield and Interface Structure (MOSIF) that will protect the MMO during the cruise to Mercury is sitting on the floor to the right.
1966 CPA 3379.jpg
1966 Soviet Union 6 kopeks stamp. Venera 3 Pendant and Medal.
PIA12593 Prometheus2.jpg
Cassini spacecraft image of Prometheus, one of Saturn's small inner moons. Appearing like eyes on a potato, craters cover the dimly lit surface of the moon Prometheus in this high-resolution image from Cassini's early 2010 flyby.

The Jan. 27 encounter represented the closest imaging sequence yet of that moon for Cassini. This view looks toward the trailing hemisphere of Prometheus (86 kilometers, 53 miles across). North on Prometheus is up and rotated 8 degrees to the right.

The moon is lit by sunlight on the right and Saturnshine on the left.

The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 27, 2010. The view was obtained at a distance of approximately 34,000 kilometers (21,000 miles) from Prometheus and at a Sun-Prometheus-spacecraft, or phase, angle of 126 degrees. Image scale is 200 meters (658 feet) per pixel.

The Cassini Equinox Mission is a joint United States and European endeavor. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The imaging team consists of scientists from the US, England, France, and Germany. The imaging operations center and team lead (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini Equinox Mission visit http://ciclops.org, http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.

The original NASA image has been modified by cropping and brightening shadows. A version in which shadows are brightened less is here.
Amalthea Mond.jpg
Amalthea Moon
Vega model - Udvar-Hazy Center.JPG
Vega solar system probe bus and landing apparatus (model) - Udvar-Hazy Center, Dulles International Airport, Chantilly, Virginia, USA.
N00151485 Calypso crop.jpg
Cassini narrow-angle camera raw image N00151485.jpg was taken on February 13, 2010 and received on Earth February 14, 2010. The camera was pointing toward CALYPSO, and the image was taken using the CL1 and GRN filters. This image has not been validated or calibrated. A validated/calibrated image will be archived with the NASA Planetary Data System in 2011.

The original NASA image has been modified by cropping, doubling the linear pixel density and sharpening.
Asteroid 5535 Annefrank.jpg
Asteroid 5535 Annefrank
Juno in front of Jupiter.jpg
Die Raumsonde Juno vor dem Planeten Jupiter.
Larissa 1.jpg

Image:Larissa.jpg cropped and cut down to show only one image.

The photojournal caption for the original image:

These Voyager 2 images of satellite 1989N2 at a resolution of 4.2 kilometers (2.6 miles) per pixel reveal it to be and irregularly shaped, dark object. The satellite appears to have several craters 30 to 50 kilometers (18.5 to 31 miles) across. The irregular outline suggests that this moon has remained cold and rigid throughout much of its history. It is about 210 by 190 kilometers (130 by 118 miles), about half the size of 1989N1. It has a low albedo surface reflecting about 5 percent of the incident light. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.
Mariner10.jpg
Mariner 10 Diagram

On November 3, 1973, the Mariner Venus/Mercury 1973 spacecraft - also known as Mariner 10 - was launched from Kennedy Space Center. It was the first spacecraft designed to use gravity assist. Three months after launch it flew by Venus, changed speed and trajectory, then crossed Mercury's orbit in March 1974.

This photo identifies various parts of the spacecraft and the science instruments, which were used to study the atmospheric, surface, and physical characteristics of Venus and Mercury. This was the sixth in the series of Mariner spacecraft that explored the inner planets beginning in 1962.
Maquette-Luna-Resurs-Orbiter-DSC 0076.jpg
Autor/Urheber: Pline, Lizenz: CC BY-SA 4.0
Modell von Luna 26 (Luna-Resurs-Orbiter) auf der Pariser Luftfahrtschau 2015.
ZOND.jpg
Autor/Urheber: Ebs08, Lizenz: CC BY-SA 3.0
Darstellung der sowjetischen ZOND Sonde
Luna24-model-01.jpg
Autor/Urheber: Svobodat, Lizenz: CC BY-SA 4.0
Model of soviet unmanned spacecraft Luna 24 exhibited in Prague around 1980
Lucy--mission-13--v3.png
An artist’s conception of the Lucy spacecraft flying by the Trojan Eurybates – one of the six diverse and scientifically important Trojans to be studied. Trojans are fossils of planet formation and so will supply important clues to the earliest history of the solar system.
Neptune.jpg
Der Planet Neptun, aufgenommen von der Raumsonde Voyager 2 im August 1989
Mariner 3 and 4.jpg
Picture of Mariner 3 or 4.
2024 Lunar Gateway concept art, March 2020.jpg
Concept art of the Lunar Gateway space station as it is intended to appear in 2024, with the Power and Propulsion Element (left), Habitation and Logistics Outpost (center foreground), and cargo spacecraft (center background) depicted.
Solar Orbiter STM (16303726264).jpg
Autor/Urheber: UCL Mathematical and Physical Sciences from London, UK, Lizenz: CC BY 2.0
Solar Orbiter's heat shield. This is part of a set of photos showing the Solar Orbiter Structural Thermal Model (a full scale model of the spacecraft, which will be used for testing), taken at the Airbus Defence & Space facility in Stevenage in March 2015. Photo credit: O. Usher (UCL MAPS)
Galatea moon.jpg
Galatea as seen by Voyager 2. The image is smeared due to the combination of long exposure needed at this distance from the Sun, and the rapid relative motion of Galatea and Voyager. Hence, Galatea appears more elongated than in reality.
Apollo 10 command module.jpg
Apollo 10 command module "Charlie Brown"
Ariel (moon).jpg
This mosaic of the four highest-resolution images of Ariel represents the most detailed Voyager 2 picture of this satellite of Uranus. The images were taken through the clear filter of Voyager's narrow-angle camera on Jan. 24, 1986, at a distance of about 130,000 kilometers (80,000 miles). Ariel is about 1,200 km (750 mi) in diameter; the resolution here is 2.4 km (1.5 mi). Much of Ariel's surface is densely pitted with craters 5 to 10 km (3 to 6 mi) across. These craters are close to the threshold of detection in this picture. Numerous valleys and fault scarps crisscross the highly pitted terrain. Voyager scientists believe the valleys have formed over down-dropped fault blocks (graben); apparently, extensive faulting has occurred as a result of expansion and stretching of Ariel's crust. The largest fault valleys, near the terminator at right, as well as a smooth region near the center of this image, have been partly filled with deposits that are younger and less heavily cratered than the pitted terrain. Narrow, somewhat sinuous scarps and valleys have been formed, in turn, in these young deposits. It is not yet clear whether these sinuous features have been formed by faulting or by the flow of fluids.
Lunar Prospector in Clean Room - GPN-2000-001543.jpg
The fully assembled Lunar Prospector spacecraft is shown mated atop the Star 37 Trans Lunar Injection module. Lunar Prospector represented the first NASA spacecraft to revisit the Moon in 25 years. In December of 1972 Apollo 17 astronauts Gene Cernan and Harrison Schmitt were the last humans to set foot upon the Moon and the last NASA mission to visit the lunar frontier.

On January 6, 1998 at 9:28 p.m., Lunar Prospector was launched from Cape Canaveral, Florida aboard a Lockheed Martin Athena II rocket. Also onboard were the ash remains of astrogeologist Eugene M. Shoemaker. A scientist from the U.S. Geological Survey, he was detailed to NASA and helped train Apollo astronauts in lunar geology. However, as co- founder of a "rogue string" of comet fragments, his name will forever be linked to the much heralded Shoemaker-Levy 9 cometary impact of the planet Jupiter in 1995. Lunar Prospector mapped the Moon's elemental composition, gravity fields, magnetic fields and resources. Prospector provided insights into the origin and evolution of the Moon.

One of the most significant finds by Lunar Prospector was confirmation that there could be as much as 10 billion tons of subsurface frozen water near the Moon's polar region. The Lunar Prospector mission came to a creative and daring conclusion when on July 31, 1999 at 2:52:00.8 a.m. PDT Mission Control Ames directed the spacecraft to a crash landing into a deep crater near the Moon's South pole.

The hope was that the impact might release trapped water vapor. However no visible debris plume was detected by numerous observatories monitoring the event. This lack of direct evidence has not diminished the hope or belief that subsurface frozen water does exist.
Stardust - Concepcao artistica.jpg
Stardust-Sonde / Artist Rendering der Annäherung an Wild 2.
Pandora PIA07632.jpg
NASA description:
Cassini acquired infrared, green and ultraviolet images on Sept. 5, 2005, which were combined to create this false-color view. The image was taken with the Cassini spacecraft narrow-angle camera at a distance of approximately 52,000 kilometers (32,000 miles) from Pandora and at a Sun-Pandora-spacecraft, or phase, angle of 54 degrees. Resolution in the original image was about 300 meters (1,000 feet) per pixel. The image has been magnified by a factor of two to aid visibility.
Eros southern hemisphere overview.jpg
This mosaic of NEAR Shoemaker images, taken on December 3, 2000, from an orbital altitude of 200 kilometers (124 miles), provides an overview of the eastern part of the asteroid's southern hemisphere. In this view, south is to the top and the terminator (the imaginary line dividing day from night) lies near the equator. The conspicuous depression just above the center of the frame is the saddle-shaped feature Himeros.
1982 CPA 5278.jpg
Почтовая марка СССР. 1982. Венера-13, Венера-14
Europa Mission Spacecraft - Artist's Rendering.jpg
This artist's rendering shows NASA's Europa mission spacecraft, which is being developed for a launch sometime in the 2020s. This view shows the spacecraft configuration, which could change before launch, as of early 2016.

The concept image shows two large solar arrays extending from the sides of the spacecraft, to which the mission's ice-penetrating radar antennas are attached. A saucer-shaped high-gain antenna is also side mounted, with a magnetometer boom placed next to it. On the forward end of the spacecraft (at left in this view) is a remote-sensing palette, which houses the rest of the science instrument payload.

The nominal mission would perform at least 45 flybys of Europa at altitudes varying from 1,700 miles to 16 miles (2,700 kilometers to 25 kilometers) above the surface.

This view takes artistic liberty with Jupiter's position in the sky relative to Europa and the spacecraft.
Apollo 17 LM Ascent Stage.jpg
The ascent stage of Apollo 17's Lunar Module Challenger rendezvous with Command Module America for the journey to Earth after 3 days on the Moon.
Dactyl-HiRes.jpg
Galileo highest-res image asteroid Ida's moon (See below for details).
Atlas 2017-04-12 raw preview.jpg
Uploader's notes: The original NASA image has been modified by cropping, removing artifacts and increasing linear pixel dimensions by a factor of 1.295.

Original caption released with image:

This raw, unprocessed image of Atlas was taken on April 12, 2017 and received on Earth April 13, 2017. The camera was pointing toward Atlas at approximately kilometers away, and the image was taken using the CL1 and IR1 filters. The image has not been validated or calibrated. A validated/calibrated image will be archived with the Planetary Data System in 2018.

The Cassini Solstice Mission is a joint United States and European endeavor. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The imaging team consists of scientists from the US, England, France, and Germany. The imaging operations center and team lead (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini Solstice Mission visit http://ciclops.org, http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.
Anthe N1832831075 1.jpg
Saturn's small moon, one of the Alcyonides, Anthe, is visible on one of the closest and best views ever taken. It was shot from a distance of 119369 kilometres on 30th January 2016.
Full Moon Luc Viatour.jpg
(c) Luc Viatour, CC BY-SA 3.0
Der Vollmond, fotografiert in Verdun (Belgien)
THEMIS.jpg
This is an artist's concept of the THEMIS spacecraft as it might appear in orbit.
Venera 4 (MMA 2011) (1).JPG
Autor/Urheber: Armael, Lizenz: CC0
Mockup (1:3) of the spacecraft Venera 4 at Memorial Museum of Astronautics (Moscow).
Lunar-Resurs-DSC 0019.jpg
Autor/Urheber: Pline, Lizenz: CC BY-SA 4.0
Atterrisseur lunaire russe Lunar-Resurs (Luna 27) Salon du Bourget 2017, Paris
2867 Šteins by Rosetta (reprocessed) - cropped.png
Autor/Urheber: ESA 2008 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA; processing by T. Stryk., Lizenz: CC BY-SA 2.0
Asteroid 2867 Šteins was first imaged by ESA's Rosetta spacecraft using the OSIRIS camera on 5 September 2008. Image stacking and processing by amateur astrophotographer Ted Stryk has enhanced the shadows in order to emphasise the difference between bright crater rims and their shadowed floors.

However, this technique can also create some artifacts, such as the illusion of boulders protruding from the surface, that are not present in the raw data.

In total, over 40 craters have been identified on the surface of Steins, the largest appearing at the ‘top’ of this frame being the 2 km-wide crater named Diamond. Craters on Steins are named after gems, following Stein’s appearance as a diamond shape.
DART image.jpg
Artist concept of NASA’s Double Asteroid Redirection Test spacecraft or DART. DART, which is moving to preliminary design phase, would be NASA’s first mission to demonstrate an asteroid deflection technique for planetary defense.
S2003U1 zoom.png
Image saisie par le télescope spatial Hubble le 25 août 2003 montrant la lune uranienne S/2003 U 1

Source : fr:NASA (http://www.solarviews.com/cap/uranus/2003u1.htm)

La portion centrale supérieure de l'image originale a été retenue et les lunes Portia, Juliette et S/2003 U 1 identifiées.
John W. Young on the Moon.jpg
John W. Young on the Moon during Apollo 16 mission jumping about 42 Centimeters high. Charles M. Duke Jr. took this picture. The LM Orion is on the left. April 21, 1972
Pioneer Venus 2 inspection.jpg
Charlie Hall inspects the Pioneer Venus multiprobe at Hughes Aircraft Co. in Dec. 1976
Veritas20150930.jpg
Artist's concept of the Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy (Veritas) spacecraft, a proposed mission for NASA's Discovery program.
Hakuto spacecraft and rover models.jpg
Autor/Urheber: Syced, Lizenz: CC0
Hakuto's proposed lunar lander and Sorato rover.
Beresheet model on Habima Square 20190222 01.jpg
Autor/Urheber: TaBaZzz, Lizenz: CC BY-SA 4.0
A full scale model of Beresheet moon probe, presented at Habima Square (Tel aviv). Photo taken on the day of its launch.
Galileo Gaspra Mosaic.jpg
This picture of asteroid 951 Gaspra is a mosaic of two images taken by the Galileo spacecraft from a range of 5,300 kilometers (3,300 miles), some 10 minutes before closest approach on October 29, 1991.
Himalia.png
Image of the moon Himalia taken by the Cassini spacecraft on 19 December 2000.
Beagle 2 replica.jpg
Autor/Urheber: user:geni, Lizenz: CC BY-SA 4.0
Photo of a Beagle 2 replica in the London Science Museum
Puck.png
translated from French: Image taken from Voyager 2 on 24 January 1986 of the Uranian moon Puck (at a distance of 493 Mm (thousand kilometers))
Selene.gif
Three-dimensional model of japanese space probe Kaguya (kown also as Selenological and Engineering Explorer and SELENE), launched on September 14, 2007 and developed for the exploration of the Moon.
Europa-moon.jpg
This image shows a view of the trailing hemisphere of Jupiter's ice-covered satellite, Europa, in approximate natural color. Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long. The bright feature containing a central dark spot in the lower third of the image is a young impact crater some 50 kilometers (31 miles) in diameter. This crater has been provisionally named "Pwyll" for the Celtic god of the underworld. Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth's moon. This image was taken on September 7, 1996, at a range of 677,000 kilometers (417,900 miles) by the solid state imaging television camera onboard the Galileo spacecraft during its second orbit around Jupiter. The image was processed by Deutsche Forschungsanstalt fuer Luftund Raumfahrt e.V., Berlin, Germany.
Venus Express in orbit.jpg
Venus Express in Venus orbit.
PIA21635-Mars2020Rover-ArtistConcept-20170523.jpg
PIA21635: NASA's Mars 2020 Rover Artist's Concept #1

https://photojournal.jpl.nasa.gov/catalog/PIA21635

This artist's concept depicts NASA's Mars 2020 rover on the surface of Mars.

The mission takes the next step by not only seeking signs of habitable conditions on Mars in the ancient past, but also searching for signs of past microbial life itself.

The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth.

Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

NASA's Jet Propulsion Laboratory will build and manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington.

For more information about the mission, go to https://mars.nasa.gov/mars2020/.
Maquette-Luna-Glob-Lander-b-DSC 0075.jpg
Autor/Urheber: Pline, Lizenz: CC BY-SA 4.0
Modell von Luna 25 auf der Pariser Luftfahrtschau 2015.
Asteroid 2685Masurky.png
Asteroid 2685 Masursky, imaged by the Cassini–Huygens space probe at the distance of 1.6 million kilometers on 23 January 2000.
Apollo 14 Shepard.jpg
Apollo 14, Alan B. Shepard Jr. on Lunar surface.
Cordelia1 Mond.png
Dieses von der Weltramsonden Voyager 2 aufgenommene Bild zeigt neben den Ringen δ, γ, η, β, α, 4, 5 und 6 des Uranus, die Uranusmonde Cordelia und Ophelia.
Apollo 11 Lunar Lander - 5927 NASA.jpg
Buzz Aldrin removing the passive seismometer from a compartment in the SEQ bay of the Lunar Lander.
Belinda.gif
벨린다.
Phoebe cassini.jpg
Phoebe, as imaged by the Cassini probe.
Mars Climate Orbiter 2.jpg
Artist's rendering of the Mars Climate Orbiter
Mission Giotto (timbre RFA).jpg
Mission spatiale européenne GIOTTO / comète de Halley
Solar Probe Plus Venus flyby.jpg
Artist impression of Solar Probe Plus during Venus fly-by
Methone - Best Image From Cassini.jpg
N00189072.jpg was taken on May 20, 2012 and received on Earth May 21, 2012. The camera was pointing toward METHONE, and the image was taken using the CL1 and CL2 filters. This image has not been validated or calibrated. A validated/calibrated image will be archived with the NASA Planetary Data System in 2013. Image rotated so that north is up. Original image had a pixel scale of 26.72 meters per pixel, but this has been enlarged by 2x to improve feature visibility.
Chandrayaan-1.svg
Autor/Urheber: Reproduction by User:Waterced of an image from NASA, Lizenz: CC0
Diagram of the Chandrayaan-1 lunar orbiter
As8-16-2583.jpg
The S-IVB third stage of the Apollo 8 Saturn V, shortly after separation from the Command/Service Module. Bright objects are floating debris shed by the rocket. The Lunar Test Article is visible where the Lunar Module should be (Apollo 8 didn't carry a LM).
MESSENGER.jpg
Artist's rendering of the MESSENGER spacecraft orbiting Mercury
Apollo 13 Lunar Module.jpg
The Apollo 13 Lunar Module Aquarius is jettisoned above the Earth after serving as a lifeboat for four days. It eventually reentered Earth's atmosphere over Fiji and burned up.
Mars 3 (MMA 2011) (1).JPG
Autor/Urheber: Armael, Lizenz: CC0
Mockup (1:1) of Mars 3 lander at Memorial Museum of Astronautics (Moscow).
2001 mars odyssey wizja.jpg
Artist's concept of 2001 Mars Odyssey spacecraft over Syrtis Major Planum.
IMP-E.jpg
Interplanetary Monitoring Platform-E (IMP-E) other Name Explorer 35
JUICE spacecraft concept.jpg
Künstlerische Darstellung von JUICE über Ganymed.
Galileo probe deployed (large).jpg
Galileo probe deployed.
  • This photograph was taken by the STS-34 crew aboard the Space Shuttle Atlantis and shows the Galileo spacecraft being deployed on Oct. 18, 1989 from the payload bay. Galileo is a scientific craft that will go into orbit around the planet Jupiter and drop a probe into its atmosphere in search of primordial solar system material believed to be present there. The 70mm motion picture film will be used in the forthcoming "Blue Planet," which will address Earth's environmental problems from the perspective of space-based observation and solar system exploration. The film is being produced by IMAX Space Technology Inc. for the sponsor, the Smithsonian Institution, with funding provided by the Lockheed Corporation.
Bean Descends Intrepid - GPN-2000-001317.jpg
Alan L. Bean, Lunar Module pilot for the Apollo 12 mission, starts down the ladder of the Lunar Module (LM) "Intrepid" to join astronaut Charles Conrad, Jr., mission Commander, on the lunar surface.
"Венера-10".jpg
Autor/Urheber: Bekhruzbek Ochilov, Lizenz: CC BY-SA 4.0
"Венера-10"
Mars Pathfinder Lander preparations.jpg
In Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), Jet Propulsion Laboratory workers are closing up the metal "petals" of the Mars Pathfinder lander. The Sojourner small rover is visible on one of the three petals.
Wild2 3.jpg
Der 5 km große Kern des Kometen 81P/Wild. Aufnahme durch die Sonde Stardust am 2. Januar 2004.
Mars Express and Phobos (4400657859).jpg
Autor/Urheber: European Space Agency, Lizenz: CC BY-SA 3.0 igo

This artist's impression shows ESA’s Mars Express spacecraft scanning the fast-moving shadow of the moon Phobos as it moved across the martian surface.

For more informartion: www.esa.int/SPECIALS/Mars_Express/index.html

Credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO

Copyright Notice:

This work is licenced under the Creative Commons Attribution-ShareAlike 3.0 IGO (CC BY-SA 3.0 IGO) licence. The user is allowed to reproduce, distribute, adapt, translate and publicly perform this publication, without explicit permission, provided that the content is accompanied by an acknowledgement that the source is credited as 'ESA/DLR/FU Berlin’, a direct link to the licence text is provided and that it is clearly indicated if changes were made to the original content. Adaptation/translation/derivatives must be distributed under the same licence terms as this publication. To view a copy of this license, please visit creativecommons.org/licenses/by-sa/3.0/igo/
Saturn from Cassini Orbiter (2004-10-06).jpg
While cruising around Saturn in early October 2004, Cassini captured a series of images that have been composed into the largest, most detailed, global natural color view of Saturn and its rings ever made.

This grand mosaic consists of 126 images acquired in a tile-like fashion, covering one end of Saturn's rings to the other and the entire planet in between. The images were taken over the course of two hours on Oct. 6, 2004, while Cassini was approximately 6.3 million kilometers (3.9 million miles) from Saturn. Since the view seen by Cassini during this time changed very little, no re-projection or alteration of any of the images was necessary.

Three images (red, green and blue) were taken of each of 42 locations, or "footprints," across the planet. The full color footprints were put together to produce a mosaic that is 8,888 pixels across and 4,544 pixels tall.

The smallest features seen here are 38 kilometers (24 miles) across. Many of Saturn's splendid features noted previously in single frames taken by Cassini are visible in this one detailed, all-encompassing view: subtle color variations across the rings, the thread-like F ring, ring shadows cast against the blue northern hemisphere, the planet's shadow making its way across the rings to the left, and blue-grey storms in Saturn's southern hemisphere to the right. Tiny Mimas and even smaller Janus are both faintly visible at the lower left.

The Sun-Saturn-Cassini, or phase, angle at the time was 72 degrees; hence, the partial illumination of Saturn in this portrait. Later in the mission, when the spacecraft's trajectory takes it far from Saturn and also into the direction of the Sun, Cassini will be able to look back and view Saturn and its rings in a more fully-illuminated geometry.
Mariner 2.jpg
Mariner 2 was the world's first successful interplanetary spacecraft. Launched August 27, 1962, on an Atlas-Agena rocket, Mariner 2 passed within about 34,000 kilometers (21,000 miles) of Venus, sending back valuable new information about interplanetary space and the Venusian atmosphere. Mariner 2 recorded the temperature at Venus for the first time, revealing the planet's very hot atmosphere of about 500 degrees Celsius (900 degrees Fahrenheit). The spacecraft's solar wind experiment measured for the first time the density, velocity, composition and variation over time of the solar wind.
InSight lander (PIA17358).jpg
This artist's concept depicts the stationary NASA Mars lander known by the acronym InSight at work studying the interior of Mars. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in March 2016 and land on Mars six months later. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth.
Huygens backside.jpg
Jet Propulsion Laboratory (JPL) workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station.
Mariner 5.jpg
Mariner 5
Hayabusa 2 - visualization.jpg
Autor/Urheber: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Lizenz: CC BY 3.0
Visualization of the Hayabusa 2 probe. MASCOT lander visible.
Luna sample return and Lunokhod lunar rover models.jpg
Autor/Urheber: Wikibob, Lizenz: GFDL
Models of the Soviet Luna sample return spacecraft and the Lunokhod lunar rover at the 2007 Paris Air Show. The closest model is the Luna sample return lander with soil sample scoop - the ascent stage is the smaller cylinder with spherical Earth-return capsule on top. The midground model is the Lunokhod lunar rover with eight wheels and a shuttable lid containing the solar cells.
Charon-Neutral-Bright-Release.jpg
Charon seen from New Horizons, July 14, 2015.

http://www.nasa.gov/feature/pluto-s-big-moon-charon-reveals-a-colorful-and-violent-history

Pluto's moon Charon

Charon in Enhanced Color NASA's New Horizons captured this high-resolution enhanced color view of Charon just before closest approach on July 14, 2015. The image combines blue, red and infrared images taken by the spacecraft’s Ralph/Multispectral Visual Imaging Camera (MVIC); the colors are processed to best highlight the variation of surface properties across Charon. Charon’s color palette is not as diverse as Pluto’s; most striking is the reddish north (top) polar region, informally named Mordor Macula. Charon is 754 miles (1,214 kilometers) across; this image resolves details as small as 1.8 miles (2.9 kilometers).
BepiColombo spacecraft model.png
Artist's rendering, from NASA, of the constituent spacecraft of the European Space Agency's BepiColombo mission, in their cruise phase configuration. The Mercury Planetary Orbiter on the left and the Mercury Magnetospheric Orbiter on the right, with a sunshade module at center.
Pioneer11 Saturn rings.jpg
Pioneer 11 and Saturn rings on 1 September 1979.
N1643264379 1.jpg
Aegaeon, a small moon of Saturn only 500 meters across, is visible in this image taken from 15238.2 kilometres. It was shot on 27th January 2010.
PIA01345.jpg
Der Asteroid (9969) Braille
ExoMars Trace Gas Orbiter.jpg
ExoMars Trace Gas Orbiter