Liste der besuchten Körper des Sonnensystems
Diese Liste enthält Himmelskörper des Sonnensystems, die von der Erde aus besucht wurden. Für jedes dieser Objekte sind alle bekannten Besuche aufgeführt, einschließlich der Flüge von „stummen“ Raumsonden, bei denen durch Bahnbestimmungen ein Erreichen des Ziels angenommen wird. Fehlgeschlagene Missionen, die sich keinem astronomischen Objekt näherten, sind nicht enthalten. Mit Ausnahme der Sonne gelten Annäherungen von weniger als 5 Millionen Kilometern als „Besuch“.
Art | Bedeutung |
---|---|
A | Atmosphärensonde |
F | atmosphärisches Fluggerät |
L | Lander |
O | Orbiter |
P | Probenrückführung |
Q | Penetrator |
R S | fahrender Rover springender Kleinrover |
V | Vorbeiflug |
Die Liste ist aufsteigend nach Entfernung der Himmelskörper von der Sonne bzw. ihrem jeweiligen Zentralkörper geordnet (mit Ausnahme der Asteroiden und Kometen), danach chronologisch nach Ankunft (nicht nach Startdatum) der Mission. Tochtersonden sind nach Möglichkeit von ihren Muttersonden getrennt, da sie in der Regel eine unterschiedliche Geschichte haben, aber beide können als eine Mission nummeriert sein. Ein Orbiter wie zum Beispiel Cassini ist bei Saturn nur einmal angegeben, bei dessen Monden dagegen bei jedem Vorbeiflug (mit der Orbit-Nummerierung), solange die Sonde nicht in einen Orbit um einen der Monde selbst eintrat.
- Der Name bemannter Missionen ist fett wiedergegeben; Raumfahrzeuge mit grün hinterlegtem Namen sind noch am jeweiligen Himmelskörper aktiv oder dorthin unterwegs.
- „Stumme Sonden“, die wegen Funkkontaktverlust keine Daten vom Zielort zur Erde sandten, sind mit dem 🔇-Symbol gekennzeichnet.
- Die mit einem * markierten Besuche sind ungeplant oder unwissentlich erfolgt.
- Die †-Markierung bedeutet hier, dass der Körper erst beim Besuch entdeckt wurde.
- Fett sind in der letzten Spalte die größte Annäherung sowie alle weichen Landungen markiert.
- Die Entfernungen sind einheitlich in Kilometern angegeben, auch wenn sie nicht auf Kilometer genau messbar waren. So kann z. B. die Angabe 2500 km für 2500 ± 249 km, für 2500 ± 49 km, für 2500 ± 4 km oder für 2500 ± 0,4 km stehen.
Aufgeführt sind alle Besucher, die der Sonne näher kamen als der Planet Merkur im Jahresdurchschnitt, d. h. näher als 60 Millionen km. Die nächstentfernten Besucher waren die diversen Venussonden in rund 110 Mio. km Entfernung.
Sonne | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
1. | Helios 1 | 10. Dezember 1974 | 1975 | O | 46.500.000 | ||
2. | Helios 2 | 15. Januar 1976 | 1976 | O | 43.500.000 | ||
3. | Parker Solar Probe | 12. August 2018 | November 2018 (erstes Perihelion) | O | 24. Dezember 2024: [1] | 6.167.590||
4. | Solar Orbiter | 10. Februar 2020 | März 2022 (erstes Perihelion) | O | 26. März 2022: 48.000.000 bis 2027 oder 2030: ca. 42.000.000 |
Merkur | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
1. | Mariner 10 | 3. November 1973 | 29. März 1974 | V | 705 | ||
21. September 1974 | V | 50.000 | |||||
16. März 1975 | V | 375 | |||||
2. | Messenger | 3. August 2004 | 14. Januar 2008 | V | 200 | ||
6. Oktober 2008 | V | 200 | |||||
30. September 2009 | V | 228 | |||||
18. März 2011 | O | 200 | |||||
3. | BepiColombo | (c) ESA–C. Carreau, CC BY-SA 3.0 igo | 20. Oktober 2018 | 1. Oktober 2021 | V | 199 | |
23. Juni 2022 | V | ca. 200 | |||||
19. Juni 2023 | V | 236 | |||||
4. September 2024 | V | 165 | |||||
1. Dezember 2024 | V | 37.826 | |||||
8. Januar 2025 (geplant) | V | ||||||
Dezember 2025 (geplant) | O |
Venus | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) / Missionsdauer |
---|---|---|---|---|---|---|---|
1. | Venera 1 🔇 | 12. Februar 1961 | 20. Mai 1961 | V | 100.000 | ||
2. | Mariner 2 | 27. August 1962 | 14. Dezember 1962 | V | 34.000 | ||
3. | Zond 1 🔇 | 2. April 1964 | 14. Juli 1964 | V | 100.000 | ||
4. | Venera 2 | 12. November 1965 | 27. Februar 1966 | V | 24.000 | ||
5. | Venera 3 🔇 | 16. November 1965 | 1. März 1966 | V | ? | ||
Venera 3 Lander 🔇 | L | Aufschlag | |||||
6. | Venera 4 | 12. Juni 1967 | 18. Oktober 1967 | V | ? | ||
Venera 4 Lander | L | 96 min. / 24,96 | |||||
7. | Mariner 5 | 14. Juni 1967 | 19. Oktober 1967 | V | 3.990 | ||
8. | Venera 5 | 5. Januar 1969 | 16. Mai 1969 | V | ? | ||
Venera 5 Lander | L | 53 min. / 18 | |||||
9. | Venera 6 | 10. Januar 1969 | 17. Mai 1969 | V | ? | ||
Venera 6 Lander | L | 51 min. / 10 | |||||
10. | Venera 7 | 17. August 1970 | 15. Dezember 1970 | V | ? | ||
Venera 7 Lander | L | Landung (23 min) | |||||
11. | Venera 8 | 27. März 1972 | 22. Juli 1972 | V | ? | ||
Venera 8 Lander | L | Landung (11 s) | |||||
12. | Mariner 10 | 4. November 1973 | 5. Februar 1974 | V | 5.800 | ||
13. | Venera 9 | 8. Juni 1975 | 20. Oktober 1975 | O | bis 22. März 1976 | ||
Venera 9 Lander | L | Landung (53 min) | |||||
14. | Venera 10 | 14. Juni 1975 | 25. Oktober 1975 | O | ? | ||
Venera 10 Lander | L | Landung (63 min) | |||||
15. | Pioneer Venus 1 | 20. Mai 1978 | 4. Dezember 1978 | O | bis 8. Oktober 1992 | ||
16. | Pioneer Venus 2 | 8. August 1978 | 9. Dezember 1978 | O | ? | ||
Pioneer Venus 2 Tochtersonde | A | Landung (67 min) | |||||
17. | Venera 12 | 14. September 1978 | 21. Dezember 1978 | V | ? | ||
Venera 12 Lander | L | Landung (110 min) | |||||
18. | Venera 11 | 9. September 1978 | 25. Dezember 1978 | V | ? | ||
Venera 11 Lander | L | Landung (95 min) | |||||
19. | Venera 13 | 30. Oktober 1981 | 1. März 1982 | V | ? | ||
Venera 13 Lander | L | Landung (127 min) | |||||
20. | Venera 14 | 4. November 1981 | 3. März 1982 | V | ? | ||
Venera 14 Lander | L | Landung (57 min) | |||||
21. | Venera 15 | 2. Juni 1983 | 10. Oktober 1983 | O | bis 1984 | ||
22. | Venera 16 | 7. Juni 1983 | 14. Oktober 1983 | O | bis 12. Juli 1984 | ||
23. | Vega 1 | 15. Dezember 1984 | 11. Juni 1985 | V | ? | ||
Vega 1 Lander | L | Landung (56 min) | |||||
24. | Vega 2 | 15. Dezember 1984 | 14. Juni 1985 | V | ? | ||
Vega 2 Lander | L | Landung (57 min) | |||||
25. | Galileo | 18. Oktober 1989 | 9. Februar 1990 | V | 16.103 | ||
26. | Magellan | 4. Mai 1989 | 10. August 1990 | O | bis 12. Oktober 1994 | ||
27. | Cassini-Huygens | 15. Oktober 1997 | 24. April 1998 | V | 300 | ||
24. Juni 1999 | V | 600 | |||||
28. | Venus Express | 9. November 2005 | 11. April 2006 | O | bis Ende 2014 | ||
29. | Messenger | 3. August 2004 | 24. Oktober 2006 | V | 2.990 | ||
5. Juni 2007 | V | 337 | |||||
30. | IKAROS | (c) Pavel Hrdlička, Wikipedia, CC BY-SA 3.0 | 20. Mai 2010 | 8. Dezember 2010 | V | 80.800 | |
31. | Akatsuki (Planet-C) | 8. Dezember 2010 | V | 550 | |||
6. Dezember 2015 | O | 400 | |||||
32. | UNITEC-1 | ca. Dezember 2010 | V | ? | |||
33. | Parker Solar Probe | 12. August 2018 | 3. Oktober 2018 | V | 2.548 | ||
26. Dezember 2019 | V | 3.023 | |||||
11. Juli 2020 | V | 830 | |||||
20. Februar 2021 | V | 2.385 | |||||
16. Oktober 2021 | V | 3.814 | |||||
21. August 2023 | V | 4.003 | |||||
6. November 2024 (geplant) | V | 375 | |||||
34. | BepiColombo | 20. Oktober 2018 | 15. Oktober 2020 | V | 10.720 | ||
10. August 2021 | V | 552 | |||||
35. | Solar Orbiter | 10. Februar 2020 | 27. Dezember 2020 | V | ca. 7.500[2] | ||
9. August 2021 | V | 7.995 | |||||
4. September 2022 | V | 12.500 | |||||
Februar 2025 (geplant) | V | ||||||
Dezember 2026 (geplant) | V | ||||||
März 2028 (geplant) | V | ||||||
Juni 2029 (geplant) | V | ||||||
September 2030 (geplant) | V | ||||||
JUICE | 14. April 2023 | August 2025 (geplant) | V | 9.500 (geplant) | |||
Zukünftige Missionen (geplant) | |||||||
Rocket Lab | 2026[3] | V, A | |||||
MBR Explorer | 2028[4] | V | |||||
Davinci | 2029[5] | O, A | |||||
Tianwen-4 | 2030 | ca. 2031 | V | ||||
EnVision | frühestens 2031[6] | nach 15 Monaten[6] | O |
Mond | |||||||
Nr. | Raumsonde bzw. Mission | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) / Missionsdauer |
---|---|---|---|---|---|---|---|
1. | Luna 1 | 2. Januar 1959 | 4. Januar 1959 | V | 6.000 | ||
2. | Pioneer 4 | 4. März 1959 | 5. März 1959 | V | 60.000 | ||
3. | Luna 2 | 12. September 1959 | 13. September 1959 | L | harte Landung | ||
4. | Luna 3 | 4. Oktober 1959 | 6. Oktober 1959 | V | 6.200 | ||
5. | Ranger 3 | 26. Januar 1962 | 28. Januar 1962 ? | L | 36.000 | ||
6. | Ranger 4 🔇 | 23. April 1962 | 26. April 1962 | L | harte Landung | ||
7. | Ranger 5 | 18. Oktober 1962 | 20. Oktober 1962 ? | L | 700 | ||
8. | Luna 4 | 2. April 1963 | 4. April 1963 ? | L | 8.336,2 | ||
9. | Ranger 6 | 30. Januar 1964 | 2. Februar 1964 | L | harte Landung | ||
10. | Ranger 7 | 28. Juli 1964 | 31. Juli 1964 | L | harte Landung | ||
11. | Ranger 8 | 17. Februar 1965 | 20. Februar 1965 | L | harte Landung | ||
12. | Ranger 9 | 21. März 1965 | 24. März 1965 | L | harte Landung | ||
13. | Luna 5 | 9. Mai 1965 | 12. Mai 1965 | L | Aufprall | ||
14. | Luna 6 | 8. Juni 1965 | 11. Juni 1965 | L | 159.218 | ||
15. | Zond 3 (Marssonde) | 18. Juli 1965 | 21. Juli 1965 ? | V | 9.200 | ||
16. | Luna 7 | 4. Oktober 1965 | 7. Oktober 1965 | L | Aufprall | ||
17. | Luna 8 | 3. Dezember 1965 | 6. Dezember 1965 ? | L | Aufprall | ||
18. | Luna 9 | 31. Januar 1966 | 3. Februar 1966 ? | L | Landung bis 6. Februar 1966 | ||
19. | Luna 10 | 31. März 1966 | 3. April 1966 | O | bis ? | ||
20. | Surveyor 1 | 30. Mai 1966 | 2. Juni 1966 | L | Landung bis 7. Januar 1967 | ||
21. | Lunar Orbiter 1 | 10. August 1966 | 14. August 1966 | O | bis 29. Oktober 1966 | ||
22. | Luna 11 | 24. August 1966 | 27. August 1966 | O | bis 31. Oktober 1966 | ||
23. | Surveyor 2 | 20. September 1966 | 22. September 1966 | L | Aufschlag | ||
24. | Luna 12 | 22. Oktober 1966 | 25. Oktober 1966 | O | bis ? | ||
25. | Lunar Orbiter 2 | 6. November 1966 | 10. November 1966 | O | bis 11. Oktober 1967 | ||
26. | Luna 13 | 21. Dezember 1966 | 24. Dezember 1966 | L | Landung bis 30. Dezember 1966 | ||
27. | Lunar Orbiter 3 | 5. Februar 1967 | 8. Februar 1967 | O | bis 10. Oktober 1967 | ||
28. | Surveyor 3 | 17. April 1967 | 20. April 1967 | L | Landung bis 4. Mai 1967 | ||
29. | Lunar Orbiter 4 | 4. Mai 1967 | 8. Mai 1967 | O | bis 31. Oktober 1967 | ||
30. | Surveyor 4 | 14. Juli 1967 | 17. Juli 1967 | L | Aufprall | ||
31. | Explorer 35 | 19. Juli 1967 | 21. Juli 1967 | O | bis Juni 1973 | ||
32. | Lunar Orbiter 5 | 1. August 1967 | 4. August 1967 | O | bis 31. Januar 1968 | ||
33. | Surveyor 5 | 8. September 1967 | 11. September 1967 | L | Landung bis 17. Dezember 1967 | ||
34. | Surveyor 6 | 7. November 1967 | 10. November 1967 | L | Landung bis 14. Dezember 1967 | ||
35. | Surveyor 7 | 7. Januar 1968 | 21. Februar 1968 | L | Landung bis 21. Februar 1968 | ||
36. | Luna 14 | 7. April 1968 | 10. April 1968 | O | bis ? | ||
37. | Zond 5 | 14. September 1968 | 17. September 1968 | V | 1.960 | ||
38. | Zond 6 | 10. November 1968 | 13. November 1968? | V | 2.420 | ||
39. | Apollo 8 | 21. Dezember 1968 | 24. Dezember 1968 | O | 112 | ||
40. | Apollo 10 | 18. Mai 1969 | 21. Mai 1969 | O | bis 24. Mai 1969 | ||
22. Mai 1969 | L | 14 | |||||
41. | Apollo 11 | 16. Juli 1969 | 19. Juli 1969 | O | bis 22. Juli 1969 | ||
20. Juli 1969 | L, P | Landung & Rückführung bis 21. Juli 1969 | |||||
42. | Luna 15 | 13. Juli 1969 | 21. Juli 1969 | L | Aufschlag | ||
43. | Zond 7 | 7. August 1969 | 11. August 1969 | V | 1.984,6 | ||
44. | Apollo 12 | 14. November 1969 | 18. November 1969 | O | bis 21. November 1969 | ||
19. November 1969 | L, P | Landung & Rückführung bis 20. November 1969 | |||||
45. | Apollo 13 | 11. April 1970 | 15. April 1970 | O, L | 254,3 | ||
46. | Luna 16 | 12. September 1970 | 18. September 1970 ? | L, P | Landung & Rückführung | ||
47. | Zond 8 | 20. Oktober 1970 | 24. Oktober 1970 | V | 1110,4 | ||
48. | Luna 17 (Lunochod 1) | 10. November 1970 | 17. November 1970 | L, R | bis 4. Oktober 1971 | ||
49. | Apollo 14 | 31. Januar 1971 | 5. Februar 1971 | O | bis 7. Februar 1971 | ||
5. Februar 1971 | L, P | Landung & Rückführung bis 6. Februar 1971 | |||||
50. | Apollo 15 | 26. Juli 1971 | 30. Juli 1971 | O | bis 4. August 1971 | ||
30. Juli 1971 | L, R, P | Landung & Rückführung bis 2. August 1971 | |||||
51. | Luna 18 | 2. September 1971 | 6. September 1971 ? | L | Aufprall | ||
52. | Luna 19 | 28. September 1971 | 2. Oktober 1971 | O | bis 20. Oktober 1972 | ||
53. | Luna 20 | 14. Februar 1972 | 19. Februar 1972 ? | L, P | Landung & Rückführung | ||
54. | Apollo 16 | 16. April 1972 | 19. April 1972 | O | bis 25. April 1972 | ||
21. April 1972 | L, R, P | Landung & Rückführung bis 24. April 1972 | |||||
55. | Apollo 17 | 7. Dezember 1972 | 10. Dezember 1972 | O | 16. Dezember 1972 | ||
11. Dezember 1972 | L, R, P | Landung & Rückführung bis 15. Dezember 1972 | |||||
56. | Luna 21 (Lunochod 2) | 8. Januar 1973 | 15. Januar 1973 | L, R | bis 3. Mai 1973 | ||
57. | Explorer 49 (RAE-B) | 10. Juni 1973 | 15. Juni 1973 | O | 1.053 bis August 1977 | ||
58. | Luna 22 | 29. Mai 1974 | 2. Juni 1974 | O | bis 2. September 1975 | ||
59. | Luna 23 | 28. Oktober 1974 | 2. November 1974 ? | P | Landung | ||
60. | Luna 24 | 9. August 1976 | 13. August 1976 ? | P | Landung & Rückführung | ||
61. | ISEE-3/ICE | 12. August 1978 | 16. Oktober 1982 | V | ? | ||
30. März 1983 | V | ? | |||||
23. April 1983 | V | ? | |||||
27. September 1983 | V | ? | |||||
22. Dezember 1983 | V | ? | |||||
62. | Hiten | 24. Januar 1990 | 15. Februar 1992 | O | bis 10. April 1993 | ||
Hagoromo 🔇 | O | ||||||
63. | Clementine | 25. Januar 1994 | 19. Februar 1994 | O | bis 14. Mai 1994 | ||
64. | Lunar Prospector | 6. Januar 1998 | 11. Januar 1998 | O | bis 31. Juli 1999 | ||
65. | AsiaSat 3 (HGS-1) | 24. Dezember 1997 | 13. Mai 1998 | V | ? | ||
7. Juni 1998 | V | ? | |||||
66. | Nozomi (Planet-B) | 3. Juli 1998 | 24. September 1998 | V | ? | ||
18. Dezember 1998 | V | ? | |||||
67. | SMART-1 | 28. September 2003 | 15. November 2004 | O | bis 3. September 2006 | ||
68. | STEREO-A | 26. Oktober 2006 | 15. Dezember 2006 | V | 7.322 | ||
STEREO-B | 15. Dezember 2006 | V | 11.750 | ||||
21. Januar 2007 | V | 8.800 | |||||
69. | Kaguya | 14. September 2007 | 3. Oktober 2007 | O | harte Landung bis 10. Juni 2009 | ||
70. | Chang’e 1 | 24. Oktober 2007 | 5. November 2007 | O | harte Landung bis 1. März 2009 | ||
71. | Chandrayaan-1 | 22. Oktober 2008 | 27. Oktober 2008 | O | 100 bis 29. August 2009 | ||
72. | Lunar Reconnaissance Orbiter | 18. Juni 2009 | 23. Juni 2009 | O | |||
LCROSS | L | harte Landung | |||||
73. | Chang’e 2 | 1. Oktober 2010 | 6. Oktober 2010 | O | 15 bis 8. Juni 2011 | ||
74. | Artemis P1 (Themis B) | 17. Februar 2007 | 2. Juli 2011 | O | |||
Artemis P2 (Themis C) | 17. Juli 2011 | O | |||||
75. | GRAIL-A | 10. September 2011 | 31. Dezember 2011 | O | bis 17. Dezember 2012 geplanter Absturz | ||
GRAIL-B | 1. Januar 2012 | O | bis 17. Dezember 2012 geplanter Absturz | ||||
76. | LADEE | 7. September 2013 | 6. Oktober 2013 | O | bis 8. April 2014 | ||
77. | Chang’e 3 | 1. Dezember 2013 | 14. Dezember 2013 | O, L | Landung bis 3. August 2016 | ||
78. | Chang’e 5-T1 | 23. Oktober 2014 | 27. Oktober 2014 | V | 13.000 bis 31. Oktober 2014 | ||
4M | 28. Oktober 2014 | V | 13.000 bis 11. November 2014 | ||||
79. | Longjiang-2 | 20. Mai 2018 | 5. Mai 2018 | O | Absturz am 31. Juli 2019 | ||
80. | Chang’e 4 | 7. Dezember 2018 | 3. Januar 2019 | L, R | Landung | ||
81. | Beresheet | 22. Februar 2019 | 4. April 2019 | L | Aufprall am 11. April 2019 | ||
82. | Chandrayaan-2 | 22. Juli 2019 | 20. August 2019[7] | O | |||
Vikram, Pragyaan 🔇 | 6. September 2019 | L, R | Aufprall am 6. September 2019 | ||||
83. | Chang’e 5 | 23. November 2020 | 28. November 2020 | O | bis 13. Dezember 2020 | ||
1. Dezember 2020 | L, P | Landung & Rückführung bis 3. Dezember 2020 | |||||
84. | Photon | 28. Juni 2022 | 7. Juli 2022[8] | V | 390.000 | ||
Capstone | 13. November 2022[9] | O | |||||
85. | Danuri | 4. August 2022 | 16. Dezember 2022 | O | |||
86. | Artemis 1 | gemeinsamer Start am 16. November 2022
| 21. November 2022 | O | 130 bis 11. Dezember 2022 | ||
ArgoMoon | V | ||||||
BioSentinel | V | ||||||
CuSP 🔇 | V | ||||||
Equuleus | 22. November 2022 | V | |||||
LunaH-Map | (O) V | 1300 Vorbeiflug nach Triebwerksfehler | |||||
Lunar IceCube 🔇? | O? | ||||||
LunIR | V | ||||||
NEA Scout 🔇 | V | ||||||
Omotenashi 🔇 | (L) V | Vorbeiflug nach Fehlfunktion | |||||
Team Miles 🔇 | V | ||||||
87. | Hakuto-R M1 | 11. Dezember 2022 | 26. April 2023 | L, R | Aufprall | ||
Raschid 🔇 | R | ||||||
Lunar Flashlight | Juni 2023 | (O) V | Vorbeiflug nach Triebwerksfehler[10] | ||||
88. | Luna 25 | 10. August 2023 | 19. August 2023 | L | Aufprall | ||
89. | Chandrayaan-3 | 14. Juli 2023 | 23. August 2023 | L, R | Landung bis 4. September 2023 | ||
90. | SLIM | 6. September 2023 | 19. Januar 2024 | L, R, S | Landung bis 28. April 2024 | ||
91. | IM-1 | 15. Februar 2024 | 22. Februar 2024 | L | Landung bis 29. Februar 2024 | ||
92. | Elsternbrücke 2 | 20. März 2024 | 24. März 2024[11] | O | |||
Tiandu 1 | O | ||||||
Tiandu 2 | O | ||||||
Chang’e-6 | 3. Mai 2024 | 8. Mai 2024 | O | ||||
1. Juni 2024 | L, P, R | Landung & Rückführung bis 3. Juni 2024 | |||||
iCube-Q | 8. Mai 2024[12] | O | |||||
DRO-A | 13. März 2024 | spätestens Mitte August 2024[13] | O | ||||
DRO-B | O | ||||||
95. | JUICE | 14. April 2023 | 19. August 2024[14] | V | |||
Für die kommenden Monate geplante Starts | |||||||
Hakuto-R M2 | Januar 2025[15] | 2025 | L, R | ||||
Blue Ghost M1 | 2025 | L | |||||
IM-2 | Februar 2025[16] | 2025 | L, R, S | ||||
Lunar Trailblazer[17] | 2025 | O | |||||
Khon1[18] | 2025 | O |
Mars | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) / Missionsdauer |
---|---|---|---|---|---|---|---|
1. | Mars 1 🔇 | 1. November 1962 | 19. Juni 1963 | V | ? | ||
2. | Mariner 4 | 28. November 1964 | 15. Juli 1965 | V | 9.844 | ||
3. | Zond 2 🔇 | 30. November 1964 | 6. August 1965 | V | 1.500 | ||
4. | Mariner 6 | 25. Februar 1969 | 31. Juli 1969 | V | 3.431 | ||
5. | Mariner 7 | 27. März 1969 | 5. August 1969 | V | 3.430 ? | ||
6. | Mariner 9 | 30. Mai 1971 | 14. November 1971 | O | bis ? | ||
7. | Mars 2 | 19. Mai 1971 | 27. November 1971 | O | ? | ||
Mars 2 Lander | L | Ausfall | |||||
8. | Mars 3 | 29. Mai 1971 | 2. Dezember 1971 | O | ? | ||
Mars 3 Lander | L | Landung (110 s) | |||||
9. | Mars 4 🔇 | 21. Juli 1973 | 10. Februar 1974 | O | 2.200 | ||
10. | Mars 5 | 25. Juli 1973 | 12. Februar 1974 | O | (16 Tage) | ||
11. | Mars 7 | 9. August 1973 | 9. März 1974 | O | ? | ||
Mars 7 Lander | L | 1.300 | |||||
12. | Mars 6 🔇 | 5. August 1973 | 12. März 1974 | O | ? | ||
Mars 6 Lander 🔇 | L | Landung (0 s) | |||||
13. | Viking 1 | 20. August 1975 | 19. Juni 1976 | O | bis 7. August 1980 | ||
Viking 1 Lander (Thomas A. Mutch Memorial Station) | 20. Juli 1976 | L | Landung bis 11. November 1982 | ||||
14. | Viking 2 | 9. September 1975 | 7. August 1976 | O | bis 25. September 1978 | ||
Viking 2 Lander (Gerald Soffen Memorial Station) | 3. September 1976 | L | Landung bis 11. April 1980 | ||||
15. | Phobos 1 🔇 | 7. Juli 1988 | 23. Januar 1989 | V | ? | ||
16. | Phobos 2 | 12. Juli 1988 | 28. Januar 1989 | O | bis 27. März 1989 | ||
17. | Mars Observer 🔇 | 25. September 1992 | 24. August 1993 | O | ? | ||
18. | Mars Pathfinder (Carl Sagan Memorial Station) | 4. Dezember 1996 | 4. Juli 1997 | L | Landung bis 7. Oktober 1997 | ||
Sojourner | R | bis 7. Oktober 1997 | |||||
19. | Mars Global Surveyor | 7. November 1996 | 11. September 1997 | O | bis 2. November 2006 | ||
20. | Mars Climate Orbiter 🔇 | 11. Dezember 1998 | 23. September 1999 | O | Aufprall | ||
21. | Mars Polar Lander 🔇 | 3. Januar 1999 | 3. Dezember 1999 | L | Aufprall | ||
Deep Space 2 🔇 | Q | Aufprall | |||||
22. | Mars Odyssey | 7. April 2001 | 24. Oktober 2001 | O | |||
23. | Nozomi (Planet-B) | 3. Juli 1998 | 14. Dezember 2003 | V | 870 | ||
24. | Mars Express | 2. Juni 2003 | 25. Dezember 2003 | O | |||
Beagle 2 🔇 | L | Landung | |||||
25. | MER-A (Spirit) | 10. Juni 2003 | 4. Januar 2004 | R | bis 22. März 2010 | ||
26. | MER-B (Opportunity) | 8. Juli 2003 | 25. Januar 2004 | R | bis 10. Juni 2018 | ||
27. | Mars Reconnaissance Orbiter | 12. August 2005 | 10. März 2006 | O | |||
28. | Rosetta | 2. März 2004 | 25. Februar 2007 | V | 250 | ||
29. | Phoenix | 4. August 2007 | 25. Mai 2008 | L | Landung bis 2. November 2008 | ||
30. | Dawn | 27. September 2007 | 17. Februar 2009 | V | 543 | ||
31. | MSL (Curiosity) | 26. November 2011 | 6. August 2012 | R | |||
32. | MAVEN | 18. November 2013 | 22. September 2014 | O | 144 | ||
33. | Mars Orbiter Mission | 5. November 2013 | 24. September 2014 | O | 366 | ||
34. | ExoMars Trace Gas Orbiter | 14. März 2016 | 19. Oktober 2016 | O | 400 | ||
Schiaparelli | L | Aufprall | |||||
35. | InSight | 5. Mai 2018 | 26. November 2018 | L | Landung bis 21. Dezember 2022 | ||
Mars Cube One A | V | ca. 3.500 | |||||
Mars Cube One B | V | ca. 3.500 | |||||
36. | al-Amal | 19. Juli 2020 | 9. Februar 2021 | O | |||
37. | Tianwen-1 | 23. Juli 2020 | 10. Februar 2021 | O, L, R | Landung | ||
38. | Mars 2020 (Perseverance) | 30. Juli 2020 | 18. Februar 2021 | L, R | Landung | ||
Ingenuity | F | ||||||
39. | Europa Clipper | 14. Oktober 2024 | Februar 2025 (geplant) | V | |||
40. | Hera | (c) ESA – Science Office, CC BY-SA IGO 3.0 | 7. Oktober 2024 | März 2025 (geplant) | V | ||
41. | Psyche | 13. Oktober 2023 | Mai 2026 (geplant) | V | |||
Zukünftige Missionen (geplant) | |||||||
Martian Moons Exploration (MMX) | August 2026 | Juli 2027 | O | ||||
ExoMars Rosalind Franklin | 4. Quartal 2028 | 2030[19] | L | ||||
Tianwen-3 | ca. 2030[20] | O, P |
Phobos | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) / Missionsdauer |
---|---|---|---|---|---|---|---|
1. | Viking 1 (Marsorbiter) | 20. August 1975 | 19. Juni 1976 | V | < 100[21] 17. August 1980 | ||
2. | Phobos 1 🔇 | 7. Juli 1988 | 23. Januar 1989 | V | |||
3. | Phobos 2 (Orbiter & Lander) | 12. Juli 1988 | 29. Januar 1989 | V | 191 | ||
4. | Mars Global Surveyor (Marsorbiter) | 7. November 1996 | 11. September 1997 | V | 9.670 | ||
5. | Mars Express | 2. Juni 2003 | 30. August 2004 | V | 149 | ||
2. Oktober 2007 | V | 130 | |||||
23. Juli 2008 | V | 92 | |||||
3. März 2010 | V | 67 | |||||
7. März 2010 | V | 112 | |||||
9. Januar 2011 | V | 100 | |||||
28. Dezember 2013 | V | 45 | |||||
14. Januar 2016 | V | 53 | |||||
16. November 2016 | V | 127 | |||||
6. | Mars Reconnaissance Orbiter | 12. August 2005 | 10. März 2006 | V | 5.800 | ||
23. März 2008 | V | 6.800 | |||||
Zukünftige Missionen (geplant) | |||||||
Martian Moons Exploration (MMX) | August 2026 | September 2027 | L, P | Rückführung ca. 2031 | |||
Idefix | Februar 2029 | R |
Für Mars Express sind nur sehr nahe Vorbeiflüge aufgeführt. Es gab zahlreiche weitere Vorbeiflüge in Entfernungen von ca. 600 bis 6000 km.
Deimos | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
1. | Mariner 9 | 30. Mai 1971 | < 27. Oktober 1972 | V | |||
2. | Viking 2 (Mars Orbiter) | 9. September 1975 | 7. August 1976 | V | 30 | ||
3. | al-Amal | 19. Juli 2020 | < 24. April 2023 | V | 100 | ||
23. August 2023 | V | 400 | |||||
Zukünftige Missionen (geplant) | |||||||
Martian Moons Exploration (MMX) | August 2026 | 2030 | V | Vorbeiflug des Phobos-Landers |
- (152830) Dinkinesh
Asteroiden | ||||||||
Objekt | Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) Missionsdauer |
---|---|---|---|---|---|---|---|---|
(951) Gaspra | 1. | Galileo | 18. Oktober 1989 | 29. Oktober 1991 | V | 1.610 | ||
(243) Ida | 1. | Galileo | 20. August 1993 | V | 2.393 | |||
(243) I Dactyl | 1. | Galileo † | 20. August 1993 | V | 2.393 | |||
(253) Mathilde | 1. | NEAR Shoemaker | 17. Februar 1996 | 27. Oktober 1997 | V | 1.212 | ||
(9969) Braille | 1. | Deep Space 1 | 24. Oktober 1998 | 29. Juli 1999 | V | 26 | ||
(2685) Masursky | 1. | Cassini-Huygens | 15. Oktober 1997 | 23. Januar 2000 | V | 1.496.000 | ||
(433) Eros | 1. | NEAR Shoemaker | 17. Februar 1996 | 14. Februar 2000 | L | Landung (17 Tage) | ||
(5535) Annefrank | 1. | Stardust | 7. Februar 1999 | 2. November 2002 | P | 3.079 | ||
(25143) Itokawa | 1. | Hayabusa | 9. Mai 2003 | 12. September 2005 | L, P | Landung & Rückführung | ||
(132524) APL | 1. | New Horizons | 10. Januar 2006 | 13. Juni 2006 | V | 101.867 | ||
(2867) Šteins | 1. | Rosetta | 2. März 2004 | 5. September 2008 | V | 800 | ||
(21) Lutetia | 1. | 10. Juli 2010 | V | 3.162 | ||||
(4) Vesta | 1. | Dawn | 27. September 2007 | 16. Juli 2011 | O | 15 Verlassen des Orbits: 5. September 2012 | ||
(4179) Toutatis | 1. | Chang’e-2 | 1. Oktober 2010 | 13. Dezember 2012 | V | 3,2 | ||
(1) Ceres | 1. | Dawn | 27. September 2007 | 6. März 2015 | O | 49 Orbit bis 1. November 2018 | ||
(162173) Ryugu | 1. | Hayabusa 2 | 3. Dezember 2014 | 2018 | O, L, P | Landung & Rückführung 2020 | ||
2001 CC21 | 1. | Hayabusa 2 | Juli 2027 (geplant) | V | ||||
1998 KY26 | 1. | Juli 2031 (geplant) | V | |||||
(101955) Bennu | 1. | OSIRIS-REx | 8. September 2016 | Dezember 2018 | O, L, P | Landung & Rückführung 2023 | ||
(65803) Didymos | 1. | DART | 24. November 2021 | 26. September 2022 | Q | Einschlag | ||
2. | LICIACube | 26. September 2022 | V | |||||
Dimorphos | 1. | V | ||||||
(152830) Dinkinesh | 1. | Lucy | 16. Oktober 2021 | 1. November 2023 | V | 450 | ||
(52246) Donaldjohanson | 1. | Lucy | 20. April 2025 (geplant) | V | 922 | |||
(3548) Eurybates | 1. | 12. August 2027 (geplant) | V | 1.000 | ||||
Queta | 1. | 12. August 2027 (geplant) | V | |||||
(15094) Polymele | 1. | 15. September 2027 (geplant) | V | 425 | ||||
(11351) Leucus | 1. | 18. April 2028 (geplant) | V | 1.000 | ||||
(21900) Orus | 1. | 11. November 2028 (geplant) | V | 1.000 | ||||
(617) Patroclus | 1. | 2. März 2033 (geplant) | V | 1.000 | ||||
Menoetius | 1. | 2. März 2033 (geplant) | V | 1.000 | ||||
(65803) Didymos | 3. | Hera | (c) ESA – Science Office, CC BY-SA IGO 3.0 | 7. Oktober 2024 | 2026[22] | O | ||
Milani[23] | O | |||||||
Juventas[23] | O | |||||||
(99942) Apophis | 1. | OSIRIS-REx | 8. September 2016 | 2029 (geplant) | O | |||
(16) Psyche | 1. | Psyche | 13. Oktober 2023 | August 2029 (geplant) | O | |||
Zukünftige Missionen (geplant) | ||||||||
? | Odin | 2025 | ? | O[24] | ||||
(469219) Kamoʻoalewa | 1. | Tianwen-2 | 2025 | 2026 | V | |||
(3200) Phaethon | 1. | Destiny+ | 2025 | 2029 | V | 500 | ||
2015 XF261 | 1. | (unbenannt)[25] | 2027 | April 2029 | Q |
Zu Asteroiden des Kuiper-Gürtels siehe unten im Abschnitt Transneptunische Objekte.
Kometen | |||||||||
Objekt | Bild | Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) Missionsdauer |
---|---|---|---|---|---|---|---|---|---|
21P/ Giacobini- Zinner | 1. | ISEE-3/ICE | 12. August 1978 | 11. September 1985 | V | 7.800 | |||
1P/Halley | 1. | Vega 1 | 15. Dezember 1984 | 6. März 1986 | V | 8.890 | |||
2. | Suisei | 18. August 1985 | 8. März 1986 | V | 151.000 | ||||
3. | Vega 2 | 21. Dezember 1984 | 9. März 1986 | V | 8.030 | ||||
4. | Giotto | 2. Juli 1985 | 14. März 1986 | V | 596 | ||||
26P/ Grigg- Skjellerup | 1. | Giotto | 2. Juli 1985 | 10. Juli 1992 | V | 200 | |||
19P/Borrelly | 1. | Deep Space 1 | 24. Oktober 1998 | 22. September 2001 | V | 2.200 | |||
81P/Wild 2 | 1. | Stardust | 7. Februar 1999 | 2. Januar 2004 | V | 240 | |||
9P/Tempel 1 | 1. | Deep Impact | 12. Januar 2005 | 2. Juli 2005 | V Q | 500 Einschlag | |||
2. | Stardust | 7. Februar 1999 | 14. Februar 2011 | V | 181 | ||||
103P/Hartley | 1. | Deep Impact | 12. Januar 2005 | 11. Oktober 2010 | V | 700 | |||
67P/ Tschurjumow- Gerassimenko | (c) ESA/Rosetta/NAVCAM, CC BY-SA IGO 3.0 | 1. | Rosetta | 2. März 2004 | 6. August 2014 | O, L | Landung Philae 12. November 2014 | ||
Zukünftige Missionen (geplant) | |||||||||
311P/Panstarrs | (c) ESA/Hubble, CC BY 4.0 | 1. | Tianwen-2 | 2025 | 2035 2036 | V O |
Jupiter und die vier galileischen Monde |
---|
Jupiter | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) Missionsdauer |
---|---|---|---|---|---|---|---|
1. | Pioneer 10 | 2. März 1972 | 3. Dezember 1973 | V | 130.254 | ||
2. | Pioneer 11 | 6. April 1973 | 2. Dezember 1974 | V | 42.760 | ||
3. | Voyager 1 | 5. September 1977 | 5. März 1979 | V | 278.000 | ||
4. | Voyager 2 | 20. August 1977 | 9. Juli 1979 | V | 650.000 | ||
5. | Ulysses | 6. Oktober 1990 | 8. Februar 1992 | V | 378.400 | ||
6. | Galileo- Tochtersonde | 18. Oktober 1989 | 7. Dezember 1995 | A | bis 7. Dezember 1995 geplanter Absturz | ||
Galileo | 18. Oktober 1989 | 8. Dezember 1995 | O | bis 21. September 2003 geplanter Absturz | |||
7. | New Horizons | 19. Januar 2006 | 28. Februar 2007 | V | 2.300.000 | ||
8. | Juno | 5. August 2011 | 4. Juli 2016 | O | bis September 2025 | ||
9. | Europa Clipper | 14. Oktober 2024 | April 2030 (geplant) | O | bis ca. 2034 | ||
10. | JUICE | 14. April 2023 | 2031 (geplant) | O | bis ca. 2033 | ||
Zukünftige Missionen (geplant) | |||||||
Tianwen-4 | 2030 | 2035 | O | ||||
2035 | V |
Io | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
1. | Pioneer 11 | 6. April 1973 | 2. Dezember 1974 | V | 756.000 | ||
2. | Voyager 1 | 5. September 1977 | 5. März 1979 | V | 18.640 | ||
3. | Voyager 2 | 20. August 1977 | 9. Juli 1979 | V | 582.000 | ||
4. | Galileo I00 | 18. Oktober 1989 | 7. Dezember 1995 | V | 897 | ||
Galileo I24 | 11. Oktober 1999 | V | 611 | ||||
Galileo I25 | 26. November 1999 | V | 301 | ||||
Galileo I27 | 22. Februar 2000 | V | 198 | ||||
Galileo I31 | 6. August 2001 | V | 194 | ||||
Galileo I32 | 16. Oktober 2001 | V | 184 | ||||
Galileo I33 | 17. Januar 2002 | V | 102 | ||||
5. | New Horizons | 19. Januar 2006 | 28. Februar 2007 | V | 2.260.221 | ||
6. | Juno 1 | 5. August 2011 | 30. Dezember 2023 | V | rund 1.500 | ||
3. Februar 2024 | V | rund 1.500 |
Europa | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
1. | Pioneer 10 | 2. März 1972 | 3. Dezember 1973 | V | 324.000 | ||
2. | Voyager 1 | 5. September 1977 | 5. März 1979 | V | 732.270 | ||
3. | Voyager 2 | 20. August 1977 | 9. Juli 1979 | V | 204.030 | ||
4. | Galileo E04 | 18. Oktober 1989 | 19. Dezember 1996 | V | 692 | ||
Galileo E06 | 20. Februar 1997 | V | 586 | ||||
Galileo E11 | 6. November 1997 | V | 2.043 | ||||
Galileo E12 | 16. Dezember 1997 | V | 201 | ||||
Galileo E14 | 29. März 1998 | V | 1.644 | ||||
Galileo E15 | 31. Mai 1998 | V | 2.515 | ||||
Galileo E16 | 21. Juli 1998 | V | 1.834 | ||||
Galileo E17 | 26. September 1998 | V | 3.582 | ||||
Galileo E18 | 22. November 1998 | V | 2.271 | ||||
Galileo E19 | 1. Februar 1999 | V | 1.439 | ||||
Galileo E26 | 3. Januar 2000 | V | 351 | ||||
5. | New Horizons | 19. Januar 2006 | 28. Februar 2007 | V | 2.957.815 | ||
6. | Juno 1 | 5. August 2011 | 29. September 2022 | V | 352 | ||
Europa Clipper | 14. Oktober 2024 | 2030er (geplant) | V | min. 45 Vorbeiflüge | |||
JUICE | 14. April 2023 | > 2030 (geplant) | V | mehrere Vorbeiflüge |
Ganymed | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) Missionsdauer |
---|---|---|---|---|---|---|---|
1. | Pioneer 11 | 6. April 1973 | 2. Dezember 1974 | V | 739.000 | ||
2. | Voyager 1 | 5. September 1977 | 5. März 1979 | V | 112.030 | ||
3. | Voyager 2 | 20. August 1977 | 9. Juli 1979 | V | 59.530 | ||
4. | Galileo G01 | 18. Oktober 1989 | 27. Juni 1996 | V | 835 | ||
Galileo G02 | 6. September 1996 | V | 261 | ||||
Galileo G07 | 5. April 1997 | V | 3.102 | ||||
Galileo G08 | 7. Mai 1997 | V | 1.603 | ||||
Galileo G28 | 20. Mai 2000 | V | 809 | ||||
Galileo G29 | 28. Dezember 2000 | V | 2.338 | ||||
5. | New Horizons | 19. Januar 2006 | 28. Februar 2007 | V | 3.029.556 | ||
6. | Juno 1 | 5. August 2011 | 7. Juni 2021 | V | ca. 1.000 | ||
JUICE | 14. April 2023 | > 2030 (geplant) 2034 (geplant) | V O | mehrere Vorbeiflüge |
Kallisto | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
1. | Pioneer 11 | 6. April 1973 | 2. Dezember 1974 | V | 787.000 | ||
2. | Voyager 1 | 5. September 1977 | 6. März 1979 | V | 113.950 | ||
3. | Voyager 2 | 20. August 1977 | 8. Juli 1979 | V | 212.050 | ||
4. | Galileo C03 | 18. Oktober 1989 | 4. November 1996 | V | 1.196 | ||
Galileo C09 | 25. Juni 1997 | V | 418 | ||||
Galileo C10 | 17. September 1997 | V | 535 | ||||
Galileo C20 | 5. Mai 1999 | V | 1.321 | ||||
Galileo C21 | 30. Juni 1999 | V | 1.048 | ||||
Galileo C22 | 14. August 1999 | V | 2.299 | ||||
Galileo C23 | 16. September 1999 | V | 1.052 | ||||
Galileo C30 | 25. Mai 2001 | V | 138 | ||||
5. | New Horizons | 19. Januar 2006 | 28. Februar 2007 | V | 4.153.289 | ||
JUICE | 14. April 2023 | > 2030 (geplant) | V | mehrere Vorbeiflüge | |||
Zukünftige Missionen (geplant) | |||||||
Tianwen-4 | 2030 | O |
Kleine Jupitermonde
Metis | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
1. | Voyager 1 † | 5. September 1977 | 5. März 1979 | V | 637.000 | ||
2. | Voyager 2 * | 20. August 1977 | 9. Juli 1979 | V | ? | ||
3. | Galileo | 18. Oktober 1989 | 4. Januar 2000 | V | 293.000 |
Adrastea | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
1. | Voyager 1 † | 5. September 1977 | 5. März 1979 | V | ? | ||
2. | Voyager 2 | 20. August 1977 | 9. Juli 1979 | V | ? | ||
3. | Galileo | 18. Oktober 1989 | November 1996 – Juni 1997 | V | ? |
Amalthea | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
1. | Voyager 1 | 5. September 1977 | 5. März 1979 | V | 420.100 | ||
2. | Voyager 2 | 20. August 1977 | 9. Juli 1979 | V | 558.270 | ||
3. | Galileo A34 | 18. Oktober 1989 | 5. November 2002 | V | 160 |
Thebe | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
1. | Voyager 1 † | 5. September 1977 | 5. März 1979 | V | ? | ||
2. | Voyager 2 * | 20. August 1977 | 9. Juli 1979 | V | ? | ||
3. | Galileo | 18. Oktober 1989 | 4. Januar 2000 | V | 193.000 |
Himalia | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
1. | Cassini-Huygens | 15. Oktober 1997 | 19. Dezember 2000 | V | 4.420.000 |
Saturn | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) Missionsdauer |
---|---|---|---|---|---|---|---|
1. | Pioneer 11 | 6. April 1973 | 1. September 1979 | V | 20.200 | ||
2. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 101.300 | ||
3. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 124.420 | ||
4. | Cassini-Huygens | 15. Oktober 1997 | 1. Juli 2004 | O | Cassini: bis 15. September 2017 geplanter Absturz |
Saturnmond Titan
Titan | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
1. | Pioneer 11 | 6. April 1973 | 1. September 1979 | V | 500.000 | ||
2. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 6.490 | ||
3. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 665.960 | ||
4. | Cassini-Huygens | 15. Oktober 1997 | 26. Oktober 2004 | V | 1.174 | ||
Cassini-Huygens | 13. Dezember 2004 | V | 1.192 | ||||
Cassini | 14. Januar 2005 | V | 60.003 | ||||
Huygens | 14. Januar 2005 | L | Landung | ||||
Zukünftige Missionen (geplant) | |||||||
5. | Dragonfly | 2028 | Mitte 2030er | L, F |
Die folgende Tabelle enthält alle Cassini-Vorbeiflüge an Titan in Entfernungen < 100.000 km nach der Landung von Huygens. Die Cassini-Orbits um den Saturn sind ab diesem Zeitpunkt beginnend mit 1 durchnummeriert.[26][27]
|
|
|
Kleine Saturnmonde
- Raumsonde Pioneer 11
- Voyager-Raumsonde
- Raumsonde Cassini
Die folgenden Fotos wurden alle von Cassini aufgenommen:
Für Cassini sind bei jedem Mond der nahste Vorbeiflug und alle weiteren in < 10.000 km Abstand angegeben. Dabei steht zum Beispiel „Cassini (120)“ für den 120. Saturnumlauf von Cassini seit der Huygens-Landung.[27]
kleine Saturn-Monde | |||||||
Objekt | Nr. | Raumsonde | Land | Startdatum | Ankunft | Art | Abstand (km) |
---|---|---|---|---|---|---|---|
Pan | 1. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | ? | |
2. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | ? | ||
3. | Cassini (264) | 15. Oktober 1997 | 7. März 2017 | V | 22.226 | ||
Daphnis | 1. | Voyager 1 * | 5. September 1977 | 12. November 1980 | V | ? | |
2. | Voyager 2 * | 20. August 1977 | 25. August 1981 | V | ? | ||
3. † | Cassini (230) | 15. Oktober 1997 | 14. Januar 2016 | V | 20.418 | ||
Atlas | 1. † | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 219.000 | |
2. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 287.170 | ||
3. | Cassini (227) | 5. Oktober 1997 | 12. April 2017 | V | 10.825 | ||
Prometheus | 1. † | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 270.000 | |
2. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 107.000 | ||
3. | Cassini (227) | 15. Oktober 1997 | 5. Dezember 2015 | V | 23.274 | ||
Pandora | 1. † | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 300.000 | |
2. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 246.590 | ||
3. | Cassini (253) | 15. Oktober 1997 | 19. Dezember 2016 | V | 22.117 | ||
Epimetheus | 1. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 121.000 | |
2. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 147.010 | ||
3. | Cassini (53) | 15. Oktober 1997 | 3. Dezember 2007 | V | 9.181 | ||
Cassini (227) | 5. Dezember 2015 | V | 2.641 | ||||
Cassini (259) | 30. Januar 2017 | V | 3.566 | ||||
Cassini (262) | 21. Februar 2017 | V | 8.025 | ||||
Janus | 1. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 297.000 | |
2. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 222.760 | ||
3. | Cassini (74) | 15. Oktober 1997 | 1. Juli 2008 | V | 29.620 | ||
Aegaeon | 1. † | Cassini (228) | 15. Oktober 1997 | 19. Dezember 2015 | V | 2.527 | |
Mimas | 1. | Pioneer 11 | 6. April 1973 | 1. September 1979 | V | 103.000 | |
2. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 88.440 | ||
3. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 309.900 | ||
4. | Cassini (126) | 15. Oktober 1997 | 13. Februar 2010 | V | 9.544 | ||
Methone | 1. | Voyager 1 * | 5. September 1977 | 12. November 1980 | V | ? | |
2. | Voyager 2 * | 20. August 1977 | 25. August 1981 | V | ? | ||
3. † | Cassini (166) | 15. Oktober 1997 | 21. Mai 2012 | V | 1.870 | ||
Anthe | 1. | Voyager 1 * | 5. September 1977 | 12. November 1980 | V | ? | |
2. | Voyager 2 * | 20. August 1977 | 25. August 1981 | V | ? | ||
3 † | Cassini (231) | 15. Oktober 1997 | 30. Januar 2016 | V | 118.713 | ||
Pallene | 1. | Voyager 1 * | 5. September 1977 | 12. November 1980 | V | ? | |
2. | Voyager 2 * | 20. August 1977 | 25. August 1981 | V | ? | ||
3. † | Cassini (153) | 15. Oktober 1997 | 14. September 2011 | V | 25.937 | ||
Enceladus | 1. | Pioneer 11 | 6. April 1973 | 1. September 1979 | V | 225.000 | |
2. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 202.040 | ||
3. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 87.140 | ||
4. | Cassini (3) | 15. Oktober 1997 | 17. Februar 2005 | V | 1.265 | ||
Cassini (4) | 8. März 2005 | V | 498 | ||||
Cassini (11) | 14. Juli 2005 | V | 166 | ||||
Cassini (61) | 12. März 2008 | V | 47 | ||||
Cassini (80) | 11. August 2008 | V | 50 | ||||
Cassini (88) | 10. Oktober 2008 | V | 25 | ||||
Cassini (91) | 1. November 2008 | V | 170 | ||||
Cassini (120) | 2. November 2009 | V | 100 | ||||
Cassini (121) | 21. November 2009 | V | 1.598 | ||||
Cassini (130) | 28. April 2010 | V | 101 | ||||
Cassini (131) | 18. Mai 2010 | V | 437 | ||||
Cassini (136) | 13. August 2010 | V | 2555 | ||||
Cassini (141) | 30. November 2010 | V | 46 | ||||
Cassini (142) | 21. Dezember 2010 | V | 48 | ||||
Cassini (154) | 1. Oktober 2011 | V | 98 | ||||
Cassini (155) | 18. Oktober 2011 | V | 1.230 | ||||
Cassini (156) | 6. November 2011 | V | 497 | ||||
Cassini (162) | 10. März 2012 | V | 9.072 | ||||
Cassini (163) | 28. März 2012 | V | 73 | ||||
Cassini (164) | 15. April 2012 | V | 74 | ||||
Cassini (165) | 3. Mai 2012 | V | 73 | ||||
Cassini (224) | 28. Oktober 2015 | V | 49 | ||||
Cassini (228) | 19. Dezember 2015 | V | 4.998 | ||||
Tethys | 1. | Pioneer 11 | 6. April 1973 | 1. September 1979 | V | 332.000 | |
2. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 415.670 | ||
3. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 93.000 | ||
4. | Cassini (15) | 15. Oktober 1997 | 24. September 2005 | V | 1.493 | ||
Cassini (164) | 15. April 2012 | V | 9.059 | ||||
Cassini (225) | 11. November 2015 | V | 8.407 | ||||
Telesto | 1. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | ? | |
2. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | ? | ||
3. | Cassini (16) | 15. Oktober 1997 | 10. Oktober 2005 | V | 9.518 | ||
Calypso | 1. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | ? | |
2. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | ? | ||
3. | Cassini (126) | 15. Oktober 1997 | 13. Februar 2010 | V | 21.304 | ||
Dione | 1. | Pioneer 11 | 6. April 1973 | 1. September 1979 | V | 291.000 | |
2. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 161.520 | ||
3. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 502.250 | ||
4. | Cassini (16) | 10. Oktober 2005 | 10. Oktober 2005 | V | 498 | ||
Cassini (129) | 7. April 2010 | V | 506 | ||||
Cassini (158) | 12. Dezember 2011 | V | 101 | ||||
Cassini (217) | 16. Juni 2015 | V | 517 | ||||
Cassini (220) | 17. August 2015 | V | 479 | ||||
Helene | 1. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | ? | |
2. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | ? | ||
3. | Cassini (127) | 15. Oktober 1997 | 3. März 2010 | V | 1.852 | ||
Cassini (149) | 18. Juni 2011 | V | 6.953 | ||||
Polydeuces | 1. | Voyager 1 * | 5. September 1977 | 12. November 1980 | V | ? | |
2. | Voyager 2 * | 20. August 1977 | 25. August 1981 | V | ? | ||
3. † | Cassini (215) | 15. Oktober 1997 | 10. Mai 2015 | V | 33.996 | ||
Rhea | 1. | Pioneer 11 | 6. April 1973 | 1. September 1979 | V | 342.000 | |
2. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 73.980 | ||
3. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 645.280 | ||
4. | Cassini (18) | 15. Oktober 1997 | 26. November 2005 | V | 504 | ||
Cassini (49) | 30. August 2007 | V | 5.728 | ||||
Cassini (101) | 2. März 2010 | V | 101 | ||||
Cassini (143) | 11. Januar 2011 | V | 71 | ||||
Cassini (151) | 1. August 2011 | V | 5.887 | ||||
Cassini (183) | 8. März 2013 | V | 997 | ||||
Hyperion | 1. | Pioneer 11 | 6. April 1973 | 1. September 1979 | V | 674.000 | |
2. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 880.440 | ||
3. | Voyager 2 | 20. August 1977 | 25. August 1981 | V | 470.840 | ||
4. | Cassini (15) | 15. Oktober 1997 | 26. September 2005 | V | 466 | ||
Japetus | 1. | Pioneer 11 | 6. April 1973 | 1. September 1979 | V | 1.000.000 | |
2. | Voyager 1 | 5. September 1977 | 12. November 1980 | V | 2.470.000 | ||
3. | Voyager 2 | 20. August 1977 | 22. August 1981 | V | 908.680 | ||
4. | Cassini (49) | 15. Oktober 1997 | 10. September 2007 | V | 1.618 | ||
Phoebe | 1. | Voyager 2 | 20. August 1977 | September 1981 | V | 2.075.600 | |
2. | Cassini-Huygens (0) | 15. Oktober 1997 | 12. Juni 2004 | V | 2.068 |
Uranus | |||||||
Nr. | Raumsonde | Bild | Land | Startdatum | Ankunft | Art | Abstand (km) Missionsdauer |
---|---|---|---|---|---|---|---|
1. | Voyager 2 | 20. August 1977 | 24. Januar 1986 | V | 81.422 | ||
Zukünftige Missionen (geplant) | |||||||
Tianwen-4 | 2030 | ca. 2046[28] | A | ||||
V |
Uranus-Monde
Der Uranus wurde bisher nur von der Raumsonde Voyager 2 besucht. Beim ihrem Vorbeiflug im Jahr 1986 wurden mehrere Monde entdeckt.
Uranus-Monde | |||
Objekt | Ankunft | Art | Abstand (km) |
---|---|---|---|
Cordelia | 24. Januar 1986 | V | ? |
Ophelia | 24. Januar 1986 | V | ? |
Bianca | 24. Januar 1986 | V | ? |
Cressida | 24. Januar 1986 | V | ? |
Desdemona | 24. Januar 1986 | V | ? |
Juliet † | 24. Januar 1986 | V | ? |
Portia | 24. Januar 1986 | V | ? |
Rosalind † | 24. Januar 1986 | V | ? |
Cupid * | 24. Januar 1986 | V | ? |
Belinda † | 23. Januar 1986 | V | ? |
Perdita † | 23. Januar 1986 | V | ? |
Puck † | 24. Januar 1986 | V | 492.616 |
Mab * | 23. Januar 1986 | V | ? |
Miranda | 24. Januar 1986 | V | 29.000 |
Ariel | 24. Januar 1986 | V | 127.000 |
Umbriel | 24. Januar 1986 | V | 325.000 |
Titania | 24. Januar 1986 | V | 365.000 |
Oberon | 24. Januar 1986 | V | 470.000 |
Der Neptun wurde bisher nur von der Raumsonde Voyager 2 besucht. Diese amerikanische Sonde startete am 20. August 1977 und passierte 1989 das Neptun-System, wobei mehrere Monde entdeckt wurden.
- Raumsonde Voyager 2
Neptun und seine Monde | |||
Objekt | Ankunft | Art | Abstand (km) |
---|---|---|---|
Neptun | 24. August 1989 | V | 4.824 |
Naiad † | 24. August 1989 | V | ? |
Thalassa † | 24. August 1989 | V | ? |
Despina † | 24. August 1989 | V | ? |
Galatea † | 24. August 1989 | V | ? |
Larissa † | 24. August 1989 | V | 60.180 |
Proteus † | 24. August 1989 | V | 97.860 |
Triton | 24. August 1989 | V | 39.790 |
Nereid | 24. August 1989 | V | 4.652.880 |
Die bislang einzige Raumsonde, die transneptunische Objekte besuchte, ist die am 19. Januar 2006 gestartete US-amerikanische Vorbeiflugsonde New Horizons. Sie passierte am 14. Juli 2015 den Zwergplaneten Pluto und am 1. Januar 2019 (486958) Arrokoth.
- Die Monde Charon, Styx, Nix, Kerberos und Hydra
- (134340) Pluto
- Charon
- Styx
- Nix
- Kerberos
- Hydra
- (486958) Arrokoth
Pluto und seine Monde | |||
Objekt | Ankunft | Art | Abstand (km) |
---|---|---|---|
(134340) Pluto | 14. Juli 2015 | V | 12.500 |
Charon | 14. Juli 2015 | V | 28.800 |
Styx | 14. Juli 2015 | V | 391.000 |
Nix | 14. Juli 2015 | V | 21.000 |
Kerberos | 14. Juli 2015 | V | 396.100 |
Hydra | 14. Juli 2015 | V | 75.000 |
Arrokoth | |||
Objekt | Ankunft | Art | Abstand (km) |
---|---|---|---|
(486958) Arrokoth | 1. Januar 2019 | V | 3.536 |
Siehe auch
- Zeitleiste der Erkundung des Weltraums
- Liste der Raumsonden
- Liste der künstlichen Objekte auf anderen Himmelskörpern
Einzelnachweise
- ↑ X-Nachricht von Thomas Zurbuchen, 24. Dezember 2024.
- ↑ Hello, Venus! Solar Orbiter spacecraft makes first swing past planet. Space.com, 27. Dezember 2020.
- ↑ CNBC: Watch CNBC's full interview with Rocket Lab CEO Peter Beck (ab 0:07:49) auf YouTube, 15. November 2024.
- ↑ MBR Explorer: All about UAE’s new space mission to Asteroid Belt. Gulf News, 29. Mai 2023.
- ↑ New NASA spacecraft could survive a hellish descent on Venus. CNN, 6. Juni 2022.
- ↑ a b Liste der besuchten Körper des Sonnensystems im NSSDCA Master Catalog, abgerufen am 7. Oktober 2023 (englisch).
- ↑ ISRO: Chandrayaan-2 update: Lunar Orbit Insertion. 20. August 2019, abgerufen am 22. Juli 2023 (englisch).
- ↑ Twitter-Nachricht von Peter Beck, 7. Juli 2022.
- ↑ Jeff Foust: CAPSTONE enters lunar orbit. In: Space News. 14. November 2022, abgerufen am 17. November 2022 (englisch).
- ↑ NASA Eyes New Lunar CubeSat Orbit, Propulsion Challenges Continue – Small Satellite Missions. Abgerufen am 15. April 2023 (amerikanisches Englisch).
- ↑ Andrew Jones: China’s Queqiao-2 relay satellite enters lunar orbit. Spacenews, 25. März 2024.
- ↑ 与嫦娥六号分离,刚“单飞”探月的上海交大“思源二号”立方星在忙什么. 163.com, abgerufen am 28. Mai 2024 (chinesisch).
- ↑ Chinese spacecraft appear to reach lunar orbit despite launch setback. Spacenews, 20. August 2024.
- ↑ Juice rerouted to Venus in world’s first lunar-Earth flyby. In: esa.int. 21. August 2024, abgerufen am 9. Oktober 2024 (englisch).
- ↑ Firefly, ispace lunar landers to share Falcon 9 launch. Spacenews, 18. Dezember 2024.
- ↑ X-Nachricht von Jeff Foust, 14. November 2024.
- ↑ Lunar Trailblazer im NSSDCA Master Catalog, abgerufen am 30. November 2024 (englisch).
- ↑ NASA Selects Intuitive Machines to Deliver 4 Lunar Payloads in 2024, 17. November 2021.
- ↑ NASA, European Space Agency Unite to Land Europe’s Rover on Mars. NASA, 16. Mai 2024, abgerufen am 28. Mai 2024.
- ↑ China targets 2030 for Mars sample return mission, potential landing areas revealed. SpaceNews, 8. März 2024, abgerufen am 8. Mai 2024.
- ↑ M.V. Kudryashove, P. Rosenblatt, J.-C. Marty: Phobos mass estimation from MEX and Viking 1 data: Influence of different noise sources and estimation strategies. (PDF) Abgerufen am 30. April 2019.
- ↑ ESA: Hera-Team gratuliert NASA zur Asteroiden-Mission. 27. September 2022, abgerufen am 14. Juli 2023: „Die ESA-Sonde Hera wird ihrer Vorgängerin im Jahr 2024 ins All folgen und zwei Jahre später bei Dimorphos ankommen“
- ↑ a b ESA: Die unglaublichen Abenteuer der Hera-Mission - Hera stellt sich vor. 29. Juni 2023, abgerufen am 14. Juli 2023.
- ↑ Asteroid-mining company AstroForge gets 1st-ever FCC license for commercial deep-space mission. Space.com, 5. November 2024.
- ↑ China reschedules planetary defense mission for 2027 launch. Spacenews, 16. Juli 2024.
- ↑ Titan Events Table. In: Cassini Mission Archive. NASA, abgerufen am 7. Mai 2019.
- ↑ a b Cassini Event Calendar. In: pds-atmospheres.nmsu.edu. Abgerufen am 7. Mai 2019.
- ↑ https://twitter.com/AJ_FI/status/1760235409248759820
Auf dieser Seite verwendete Medien
(c) I, Cmapm, CC BY-SA 3.0
The flag of the Soviet Union (1955-1991) using a darker shade of red.
(c) I, Cmapm, CC BY-SA 3.0
The flag of the Soviet Union (1955-1991) using a darker shade of red.
US Flag with 48 stars. In use for 47 years from July 4, 1912, to July 3, 1959.
Artist's concept of Voyager in flight
Artist's conception of DAVINCI probe. DAVINCI: Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging. During its 63-minute descent, DAVINCI would collect and return measurements of Venus.
NASA's Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development for a launch opportunity in 2009. This picture is an artist's concept portraying what the advanced rover would look like in Martian terrain, from a side aft angle.
The arm extending from the front of the rover is designed both to position some of the rover's instruments onto selected rocks or soil targets and also to collect samples for analysis by other instruments. Near the base of the arm is a sample preparation and handling system designed to grind samples, such as rock cores or small pebbles, and distribute the material to analytical instruments.
The mast, rising to about 2.1 meters (6.9 feet) above ground level, supports two remote-sensing instruments: the Mast Camera for stereo color viewing of surrounding terrain and material collected by the arm, and the ChemCam for analyzing the types of atoms in material that laser pulses have vaporized from rocks or soil targets up to about 9 meters (30 feet) away.Autor/Urheber: Ardenau4, Lizenz: CC0
Uranus on 1986-01-23, taken by NASA's Voyager 2 probe. This color image was composed of three frames, orange, green, and blue, taken by Voyager 2's imaging system. This color image has been calibrated to best represent Uranus's true color and appearance. Based on: Irwin, Patrick G J (2023-12-23). "Modelling the seasonal cycle of Uranus’s colour and magnitude, and comparison with Neptune". Monthly Notices of the Royal Astronomical Society 527 (4): 11521–11538. DOI:10.1093/mnras/stad3761. ISSN 0035-8711.
The Lunar Flashlight, one of the secondary payloads on the first flight of NASA’s Space Launch System, will examine the moon’s surface for ice deposits and identify locations where resources may be extracted.
Illustration of ESA's Mars Express spacecraft
Saturn's inner moon Daphnis on a detailed photograph by Cassini.
Autor/Urheber: Nesnad, Lizenz: CC BY-SA 4.0
The Mars Orbiter Mission (MOM), informally called Mangalyaan (Sanskrit: मङ्गलयान, English: Mars-craft) is a Mars orbiter that was successfully launched on 5th November 2013 by the Indian Space Research Organisation (ISRO). This is a less than perfect artist's concept of the orbiter in orbit. I'm aware that the image is not 100% accurate, but I did attempt to emulate what the craft looks like. I thought a free-use image would be valuable to Wikipedia projects. If there is interest, I might come back and fine-tune this image to be more correct.
Comet 21P/Giacobini-Zinner
Iapetus as seen by the Cassini probe.
Original NASA caption: Cassini captures the first high-resolution glimpse of the bright trailing hemisphere of Saturn's moon Iapetus.
This false-color mosaic shows the entire hemisphere of Iapetus (1,468 kilometers, or 912 miles across) visible from Cassini on the outbound leg of its encounter with the two-toned moon in Sept. 2007. The central longitude of the trailing hemisphere is 24 degrees to the left of the mosaic's center.
Also shown here is the complicated transition region between the dark leading and bright trailing hemispheres. This region, visible along the right side of the image, was observed in many of the images acquired by Cassini near closest approach during the encounter.
Revealed here for the first time in detail are the geologic structures that mark the trailing hemisphere. The region appears heavily cratered, particularly in the north and south polar regions. Near the top of the mosaic, numerous impact features visible in NASA Voyager 2 spacecraft images (acquired in 1981) are visible, including the craters Ogier and Charlemagne.
The most prominent topographic feature in this view, in the bottom half of the mosaic, is a 450-kilometer (280-mile) wide impact basin, one of at least nine such large basins on Iapetus. In fact, the basin overlaps an older, similar-sized impact basin to its southeast.
In many places, the dark material--thought to be composed of nitrogen-bearing organic compounds called cyanides, hydrated minerals and other carbonaceous minerals--appears to coat equator-facing slopes and crater floors. The distribution of this material and variations in the color of the bright material across the trailing hemisphere will be crucial clues to understanding the origin of Iapetus' peculiar bright-dark dual personality.
The view was acquired with the Cassini spacecraft narrow-angle camera on Sept. 10, 2007, at a distance of about 73,000 kilometers (45,000 miles) from Iapetus.
The color seen in this view represents an expansion of the wavelengths of the electromagnetic spectrum visible to human eyes. The intense reddish-brown hue of the dark material is far less pronounced in true color images. The use of enhanced color makes the reddish character of the dark material more visible than it would be to the naked eye.
This mosaic consists of 60 images covering 15 footprints across the surface of Iapetus. The view is an orthographic projection centered on 10.8 degrees south latitude, 246.5 degrees west longitude and has a resolution of 426 meters (0.26 miles) per pixel. An orthographic view is most like the view seen by a distant observer looking through a telescope.
At each footprint, a full resolution clear filter image was combined with half-resolution images taken with infrared, green and ultraviolet spectral filters (centered at 752, 568 and 338 nanometers, respectively) to create this full-resolution false color mosaic.
Ein STEREO Observatorium führt einen Fly by am Mond aus.
Внешний вид АМС "Маринер-9".
Comet 1P/Halley as taken March 8, 1986 by W. Liller, Easter Island, part of the International Halley Watch (IHW) Large Scale Phenomena Network.
Asteroid moonlet Dimorphos as seen by the DART spacecraft 11 seconds before impact. DART’s onboard DRACO imager captured this image from a distance of 42 miles (68 kilometers). This image was the last to contain all of Dimorphos in the field of view. Dimorphos is roughly 525 feet (160 meters) in length. Dimorphos’ north is toward the top of the image.
A Helios spacecraft prototype was encapsulated in its payload fairing in the Spacecraft Assembly and Encapsulation Facility [SAEF] here today. A flight version of the West German-built solar probe will be launched aboard a Titan/Centaur from Complex 41. The prototype is to be moved to Complex 41 for mating with the Titan/Centaur in early October. It will be removed and returned to the SAEF after completion of the Titan/Centaur terminal countdown demonstration in late October.
Artist's Concept of MAVEN, set to launch in 2013.
(c) ISAS/JAXA, CC BY 4.0
Rotation gif of 162173 Ryugu.
Image Credit: JAXA Hayabusa 2 ONC-T v-filter
Date observation: 2018-07-10
USSR stamp dedicated to Venera-11 and Venera-12 space exploration mission
Stamp of the Soviet Union, Venera 9 (a USSR unmanned space mission to Venus), 1984.
The Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) is expected to be the first spacecraft to operate in a near rectilinear halo orbit around the Moon. In this unique orbit, the CubeSat will rotate together with the Moon as it orbits Earth and will pass as close as 1,000 miles and as far as 43,500 miles from the lunar surface.
GRAIL lunar probes
This image of Thebe was taken by NASA's Galileo spacecraft on January 4, 2000, at a range of 193,000 kilometers.
This picture shows a Marsnik spacecraft. Both were identical. It was originally found on http://nssdc.gsfc.nasa.gov/database/MasterCatalog?sc=MARSNK1
LCROSS spacecraft with Centaur Stage.
(c) ESA/Rosetta/NAVCAM, CC BY-SA IGO 3.0
Zusammengesetztes Bild des Kometen 67P/Churyumov-Gerasimenko, fotografiert am 19. September 2014 mit der Navigationskamera (NAVCAM) der Raumsonde Rosetta aus 28.6 km Entfernung.
Autor/Urheber: Dnepr740, Lizenz: CC BY-SA 4.0
Scheme of ESA's JUICE spacecraft
Autor/Urheber: NASA on The Commons, Lizenz: No restrictions
(1965) Zond 2 was an automatic interplanetary station launched from a Tyazheliy Sputnik (64-078A) in Earth parking orbit towards Mars to test space-borne systems and to carry out scientific investigations. The probe carried a descent craft and the same instruments as the Mars 1 flyby spacecraft: a magnetometer probe, television photographic equipment, a spectroreflectometer , radiation sensors (gas-discharge and scintillation counters), a spectrograph to study ozone absorption bands, and a micrometeoroid instrument. The spacecraft had six experimental low-thrust electrojet plasma ion engines that served as actuators of the attitude control system and could be used instead of the gas engines to maintain orientation. Power was provided by two solar panels.
Zond 2 took a long curving trajectory towards Mars to minimize the relative velocity. The electronic ion engines were successfully tested shortly after launch under real space environment conditions over the period December 8-18, 1964. One of the two solar panels failed so only half the anticipated power was available to the spacecraft. After a mid-course maneuver, communications with the spacecraft were lost in early May, 1965. The spacecraft flew by Mars on 6 August 1965 at a distance of 1500 km and a relative speed of 5.62 km/s.
nasaimages.org/luna/servlet/detail/nasaNAS~20~20~120437~2...(c) RIA Novosti archive, image #510848 / Alexander Mokletsov / CC-BY-SA 3.0
“Interplanetary station Luna 1”. Interplanetary station Luna 1 exhibited in the "Kosmos" pavilion of the Exhibition of Achievements of National Economy of the USSR (VDNKh).
Grafik der NASA-Raumsonde NEAR, die den Asteroiden Eros besuchte und am Ende ihrer Mission auf ihm landete.
Portion de l'image S1986U10.jpg avec quatre lunes uraniennes identifiées, dont fr:S/1986 U 10
Image de la lune uranienne S/1986 U 10 saise par le télescope spatial Hubble le 25 août 2003
Source : NASA
http://www.solarviews.com/cap/uranus/1986u10.htmAutor/Urheber: zelario12, Lizenz: CC BY-SA 2.0
8-frame mosaic taken by NASA's Voyager 2 spacecraft.
frames were stitched together in GIMP - the perspective was locked to the view from the last wide-angle frame, and the last two frames.
Colorized using GCV color data taken earlier in the flyby calibrated against published spectra.Four combined images of Kerberos taken by the Long Range Reconnaissance Imager (LORRI) instrument on 14 July, approximately 7 hours before New Horizons’ closest approach to Pluto and at a distance of 396 100 km from Kerberos.
Global mosaic of 102 Viking 1 Orbiter images of Mars taken on orbit 1,334, 22 February 1980. The images are projected into point perspective, representing what a viewer would see from a spacecraft at an altitude of 2,500 km. At center is Valles Marineris, over 3000 km long and up to 8 km deep. Note the channels running up (north) from the central and eastern portions of Valles Marineris to the area at upper right, Chryse Planitia. At left are the three Tharsis Montes and to the south is ancient, heavily impacted terrain. (Viking 1 Orbiter, MG07S078-334SP)
Some of the features in this mosaic are annotated in Wikimedia Commons.
James Irwin, Pilot der Mondlandefähre von Apollo 15, salutiert vor der amerikanischen Flagge.
Der Astronaut James B. Irwin, Pilot des Mondlandemoduls, salutiert militärisch neben der aufgestellten US-Fahne stehend, während eines Apollo 15 Außeneinsatzes an der Hadley-Apennin Landestelle. Die Fahne wurde gegen Ende des zweiten Außeneinsatzes aufgestellt. Das Mondlandemodul „Falcon“ steht in der Bildmitte. Das Mondauto (LRV) ist rechts am Bildrand zu sehen. Der Blick richtet sich fast genau nach Süden. Mons Hadley Delta erhebt sich im Hintergrund rund 4000 Meter hoch über die Ebene. Der Fuß des Berges ist ungefähr fünf Kilometer entfernt. Dieses Foto wurde von Astronaut David R. Scott, dem Kommandanten von Apollo 15, aufgenommen.
Janus, Saturn's moon (Saturn in background). Image taken by Cassini. NASA PD
USSR stamp
Color image of Hydra, image create using high resolution LORRI image and MVIC color data.
(c) ESA – Science Office, CC BY-SA IGO 3.0
ESA’s Hera mission concept, currently under study, would be humanity’s first mission to a binary asteroid: the 800 m-diameter Didymos is accompanied by a 170 m-diameter secondary body. Hera will study the aftermath of the impact caused by the NASA spacecraft DART on the smaller body.
This “super-resolution” view of asteroid Bennu was created using eight images obtained by NASA’s OSIRIS-REx spacecraft on Oct. 29, 2018 from a distance of about 205 miles (330 km). The spacecraft was moving as it captured the images with the PolyCam camera, and Bennu rotated 1.2 degrees during the nearly one minute that elapsed between the first and the last snapshot. The team used a super-resolution algorithm to combine the eight images and produce a higher resolution view of the asteroid. Bennu occupies about 100 pixels and is oriented with its north pole at the top of the image.
Autor/Urheber: Ebottlaender, Lizenz: CC BY-SA 4.0
MMX Rover "IDEFIX" folded and ready for flight before its transfert in Japan to be attached to the MMX (Martian Moon Exploration) mission. The rover is a french-german cooperation between CNES and DLR.
Original Caption Released with Image:
NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera and approximates what the human eye would see. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A false color version of the mosaic has been created to enhance the contrast of the color variations.
The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout A of false color image). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B of false color image). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C of false color image). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D of false color image). In this region bright, white material can also be seen to emanate from linear rifts and cliffs.
Comparison of this image to previous Galileo images reveals many changes due to the ongoing volcanic activity.
Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here.
North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit.
The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC.
This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo.Ceres photographed by Dawn from about 80 000 km.
Ranger 4 Sonde
NASA photograph of one of the two identical Voyager space probes Voyager 1 and Voyager 2 launched in 1977.
The 3.7 metre diameter high-gain antenna (HGA) is attached to the hollow ten-sided polygonal body housing the electronics, here seen in profile. The Voyager Golden Record is attached to one of the bus sides.
The angled square panel below is the optical calibration target and excess heat radiator.
The three radioisotope thermoelectric generators (RTGs) are mounted end-to-end on the left-extending boom. One of the two planetary radio and plasma wave antenna extends diagonally left and down, the other extends to the rear, mostly hidden here. The compact structure between the RTGs and the HGA are the high-field and low-field magnetometers (MAG) in their stowed state; after launch an Astromast boom extended to 13 metres to distance the low-field magnetometers.
The instrument boom extending to the right holds, from left to right: the cosmic ray subsystem (CRS) above and Low-Energy Charged Particle (LECP) detector below; the Plasma Spectrometer (PLS) above; and the scan platform that rotates about a vertical axis.
The scan platform comprises: the Infrared Interferometer Spectrometer (IRIS) (largest camera at right); the Ultraviolet Spectrometer (UVS) to the right of the UVS; the two Imaging Science Subsystem (ISS) vidicon cameras to the left of the UVS; and the Photopolarimeter System (PPS) barely visible under the ISS.
Suggested for English Wikipedia:alternative text for images: A space probe with squat cylindrical body topped by a large parabolic radio antenna dish pointing upwards, a three-element radioisotope thermoelectric generator on a boom extending left, and scientific instruments on a boom extending right. A golden disk is fixed to the body.L1 (Zond) circumlunar spacecraft.
Foto della sonda spaziale sovietica Mars 4 (uguale a Mars 5).
Saturn's moon Pan on a cropped image from March 7th.
Autor/Urheber: Armael, Lizenz: CC0
Mockup (1:1) of the moon rover Lunokhod 1 at Memorial Museum of Astronautics (Moscow).
The Clementine satellite undergoes final checks in this 1993 photograph. The satellite was built by the staff of the Naval Research Laboratory, Washington, D.C. The recent interpretation of data from the Clementine spacecraft mission, a joint Ballistic Missile Defense Organization/NASA venture, has revealed that deposits of ice could exist in permanently dark regions near the South Pole of the Moon. Initial estimates suggest that the ice deposit area is the size of small lake (60 to 120 thousand cubic meters), and that the lunar crater containing the ice deposit has a depth greater than the height of Mount Everest, and a rim circumference twice the size of Puerto Rico. The discovery of ice on the Moon has enormous implications for the potential return of humans to the Moon's surface and the establishment of a permanent lunar station. The lunar ice could be mined and dissociated into hydrogen and oxygen by electric power provided by solar panels or a nuclear generator, providing both breathable oxygen and potable water for the permanent station on the Moon. Hydrogen and oxygen are also prime components of rocket motor fuel and could potentially result in the establishment of a lunar filling station making transport to or from the Moon more economical by at least a factor of ten. The Clementine spacecraft was launched aboard a Titan II missile from Vandenberg Air Force Base, Calif., on Jan. 25, 1994. Its primary military mission was to qualify lightweight sensor and camera technology for possible application for ballistic missile defense programs, but it also demonstrated a capability for low-cost, high-value space exploration missions.
Die Sonne mit Sonnenflecken. Die zwei kleinen Sonnenflecken in der Mitte haben ungefähr den gleichen Durchmesser wie unser Planet Erde.
This image shows comet Tempel 1 approximately 5 minutes before Deep Impact's probe smashed into its surface. It was taken by the probe's impactor targeting sensor. The Sun is to the right of the image and reveals terrain varying in brightness by a factor of two. Shadows and bright areas indicate surface topography. Smooth regions with no features (lower left and upper right) are probably younger than rougher areas with circular features, which are probably impact craters. The probe crashed between the two dark-rimmed craters near the center and bottom of the comet.
The nucleus is estimated to be about 5 kilometers (3.1 miles) across and 7 (4.3 miles) kilometers tall.Bianca - moon of Uranus
PIA19388: Interplanetary CubeSat for Technology Demonstration at Mars (Artist's Concept)
http://photojournal.jpl.nasa.gov/catalog/PIA19388
NASA's two MarCO CubeSats will be flying past Mars in September 2016 just as NASA's next Mars lander, InSight, is descending through the Martian atmosphere and landing on the surface. MarCO, for Mars Cube One, will provide an experimental communications relay to inform Earth quickly about the landing.
This illustration depicts a moment during the lander's descent when it is transmitting data in the UHF radio band, and the twin MarCO craft are receiving those transmissions while simultaneously relaying the data to Earth in a different radio band. Each of the MarCO twins carries two solar panels for power, and both UHF-band and X-band radio antennas. As a technology demonstration, MarCO could lead to other "bring-your-own-relay" mission designs and also to use of miniature spacecraft for a wide diversity of interplanetary missions.
MarCO is the first interplanetary use of CubeSat technologies for small spacecraft. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies to streamline development. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft.
The two briefcase-size MarCO CubeSats will ride along with InSight on an Atlas V launch vehicle lifting off in March 2016 from Vandenberg Air Force Base, California. MarCO is a technology demonstration aspect of the InSight mission and not needed for that mission's success. InSight, an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, will investigate the deep interior of Mars to advance understanding of how rocky planets, including Earth, formed and evolved.
After launch, the MarCO twins and InSight will be navigated separately to Mars.
The MarCO and InSight projects are managed for NASA's Science Mission Directorate, Washington, by JPL, a division of the California Institute of Technology, Pasadena.Autor/Urheber: Zhang Lihua/Dong Fang Hong Satelliten GmbH, Lizenz: CC BY 4.0
Relaissatellit der chinesischen Mission Chang’e 7 zum Südpol des Mondes
Asteroid (253) Mathilde von der Raumsonde NEAR Shoemaker am 27. Juni 1997 aus einer Entferung von 2400 km aufgenommen. Er wird von oben rechts von der Sonne beleuchtet. Der auf dem Bild sichtbare Teil des Asteroiden hat eine Ausdehnung von 59 km x 47 km, wobei die Bildauflösung 380 m/Bildpunkt beträgt. Auf der Oberfläche sind viele große Krater sichtbar, wie der vermutlich mehr als 10 km tiefe mit langen Schatten versehene Krater in der Bildmitte.
The two "spots" in this image are a composite of two images of asteroid 2002 JF56 taken on June 11 and June 12, 2006, with the Multispectral Visible Imaging Camera (MVIC) component of the New Horizons Ralph imager. In the bottom image, taken when the asteroid was about 3.36 million kilometers (2.1 million miles) away from the spacecraft, 2002 JF56 appears like a dim star. At top, taken at a distance of about 1.34 million kilometers (833,000 miles), the object is more than a factor of six brighter. The best current, estimated diameter of the asteroid is approximately 2.5 kilometers.
(c) Indian Space Research Organisation (GODL-India)
03pragyanrovermountedontherampprojectingfromoutofthesidesofvikramlander
Autor/Urheber: Nesnad, Lizenz: CC BY-SA 3.0
Nozomi (のぞみ) (Japanese for "Wish" or "Hope," and known before launch as Planet-B) was planned as a Mars-orbiting aeronomy probe, but was unable to achieve Mars orbit due to electrical failures. Operation was terminated on December 31, 2003. I couldn't find a free use image of this spacecraft, so to the best of my limited ability I handcrafted an obj file and rendered it in a 3D graphics program in order to represent what this spacecraft might have looked like in space.
Raw Narrow Angle Camera image of Helene. Taken by Cassini-Huygens on July 20, 2007 from 40,211 km with clear filters. Adapted from source image (cropped and contrast adjusted).
NASA’s Orion spacecraft will carry astronauts further into space than ever before using a module based on Europe’s Automated Transfer Vehicles (ATV).
The ATV-derived service module, sitting directly below Orion’s crew capsule, will provide propulsion, power, thermal control, as well as supplying water and gas to the astronauts in the habitable module.
The first Orion mission will be an uncrewed lunar flyby in 2017, returning to Earth’s atmosphere at 11 km/s – the fastest reentry ever.Autor/Urheber: ESA/ATG medialab, Lizenz: CC BY-SA 2.0
Artist's impression of the Rosetta orbiter, on a black background.
Autor/Urheber: Loren Roberts for The Planetary Society, Lizenz: CC BY-SA 3.0
Chang’e-4, Lander and Rover,
derived work of File:20180912 6258TPS-TPR-2018Q3-18-09-04-p14legacy.png
Saturn's large, smog-enshrouded moon Titan greets Cassini in full natural color as the spacecraft makes its third close pass on Feb. 15, 2005. This view has been rotated so that north on Titan is up. There is a slight difference in brightness from north to south, a seasonal effect that was noted in NASA's Voyager spacecraft images, and is clearly visible in some infrared images from Cassini. The northern polar region is largely in darkness at this time. This image was taken with the Cassini spacecraft wide angle camera through using red, green and blue spectral filters were combined to create this natural color view. The image was acquired at a distance of approximately 229,000 kilometers (142,000 miles) from Titan and at a Sun-Titan-spacecraft, or phase, angle of 20 degrees. Resolution in the image is about 14 kilometers (9 miles) per pixel.
Asteroid 4 Vesta from Dawn on July 17, 2011. The image was taken from a distance of 9,500 miles (15,000 km) away from Vesta.
Globales Farbmosaik von Triton, 1989 aufgenommen durch Voyager 2
Lunar Orbiter
Venus in real colors, processed from clear and blue filtered Mariner 10 images.
Source images are in the public domain (NASA)
Images processed by Ricardo Nunes, downloaded from http://www.astrosurf.com/nunes/explor/explor_m10.htmLADEE Mondorbiter
Pluto in der besten Auflösung, kontrastverbessert, farbverstärkt und um Infrarot erweitert Pluto, aufgenommen von der Raumsonde New Horizons.
Autor/Urheber: Pline, Lizenz: CC BY-SA 3.0
Schiaparelli EDM lander concept Paris Air Show 2013
Original Caption Released with Image: This Voyager 2 picture of Oberon is the best the spacecraft acquired of Uranus' outermost moon. The picture was taken shortly after 3:30 a.m. PST on Jan. 24, 1986, from a distance of 660,000 kilometers (410,000 miles). The color was reconstructed from images taken through the narrow-angle camera's violet, clear and green filters. The picture shows features as small as 12 km (7 mi) on the moon's surface. Clearly visible are several large impact craters in Oberon's icy surface surrounded by bright rays similar to those seen on Jupiter's moon Callisto. Quite prominent near the center of Oberon's disk is a large crater with a bright central peak and a floor partially covered with very dark material. This may be icy, carbon-rich material erupted onto the crater floor sometime after the crater formed. Another striking topographic feature is a large mountain, about 6 km (4 mi) high, peeking out on the lower left limb. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
With this full-disk mosaic, Cassini presents the best view yet of the south pole of Saturn's moon Tethys. The giant rift Ithaca Chasma cuts across the disk. Much of the topography seen here, including that of Ithaca Chasma, has a soft, muted appearance. It is clearly very old and has been heavily bombarded by impacts over time. Many of the fresh-appearing craters (ones with crisp relief) exhibit unusually bright crater floors. The origin of the apparent brightness (or "albedo") contrast is not known. It is possible that impacts punched through to a brighter layer underneath, or perhaps it is brighter because of different grain sizes or textures of the crater floor material in comparison to material along the crater walls and surrounding surface. The moon's high southern latitudes, seen here at the bottom, were not imaged by NASA's Voyager spacecraft during their flybys of Tethys 25 years ago. The mosaic is composed of nine images taken during Cassini's close flyby of Tethys (1,071 kilometers, or 665 miles across) on Sept. 24, 2005, during which the spacecraft passed approximately 1,500 kilometers (930 miles) above the moon's surface. This view is centered on terrain at approximately 1.2 degrees south latitude and 342 degrees west longitude on Tethys. It has been rotated so that north is up. The clear filter images in this mosaic were taken with the Cassini spacecraft narrow-angle camera at distances ranging from 71,600 kilometers (44,500 miles) to 62,400 kilometers (38,800 miles) from Tethys and at a Sun-Tethys-spacecraft, or phase, angle of 21 degrees. The image scale is 370 meters (1,200 feet) per pixel.
Despina as seen by Voyager 2. There is significant horizontal smearing due to the combination of long exposure needed at this distance from the Sun, and the rapid relative motion of the moon and Voyager.
Autor/Urheber: Recentcontributor2000, Lizenz: CC BY-SA 4.0
Artist's rendering of the Lunar IceCube spacecraft
This synthetic image of NASA's Opportunity Mars Exploration Rover inside Endurance Crater was produced using "Virtual Presence in Space" technology. Developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif., this technology combines visualization and image-processing tools with Hollywood-style special effects. The image was created using a photorealistic model of the rover and a false-color mosaic taken on sol 134 (June 9, 2004) by Opportunity's panoramic camera with the 750-, 530- and 430-nanometer filters. The size of the rover in the image is approximately correct and was based on the size of other features in the image. Because this synthesis provides viewers with a sense of their own "virtual presence" (as if they were there themselves), such views can be useful to mission teams by enhancing perspective and a sense of scale.
Autor/Urheber: Hayk, Lizenz: CC BY-SA 3.0
Automatic laboratory Lunokhod-2, the mockup on a scale of 1:1 (The third navigational TV-camera and magnetometer rod are absent).
This image of a xenon ion engine, photographed through a port of the vacuum chamber where it was being tested at NASA's Jet Propulsion Laboratory, shows the faint blue glow of charged atoms being emitted from the engine.
The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Ion propulsion was first proposed in the 1950s and NASA performed experiments on this highly efficient propulsion system in the 1960s, but it was not used aboard an American spacecraft until the 1990s.
Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, DC. The California Institute of Technology in Pasadena manages JPL for NASA.
The almost imperceptible thrust from the ion propulsion system is equivalent to the pressure exerted by a sheet of paper held in the palm of your hand. The ion engine is very slow to pick up speed, but over the long haul it can deliver 10 times as much thrust per pound of fuel as more traditional rockets.
Unlike the fireworks of most chemical rockets using solid or liquid fuels, the ion drive emits only an eerie blue glow as ionized (electrically charged) atoms of xenon are pushed out of the engine. Xenon is the same gas found in photo flash tubes and many lighthouse bulbs.SkyFire is a small spacecraft of the 6U CubeSat format, Lockheed Martin, mass of ≈14 kg (31 lb) that is proposed to be launched in 2018 on the SLS Exploratory Mission1 to the Moon. It will do a Moon flyby and will collect surface spectroscopy and thermography of the surface of the Moon. It was selected in April 2015 by NASA's NextSTEP program ('Next Space Technologies for Exploration Partnerships').
MESSENGER image - First look at side of Mercury not seen by Mariner 10
This computer mosaic of Deimos was made with images acquired from Viking Orbiter during one of its close approaches to the moon. The 15-km (9-mi) diameter Deimos circles Mars every 30 hours. Scientists speculate that Deimos and its companion moon Phobos were once passing asteroids that were pulled in by the gravity of Mars.
Autor/Urheber: NASA / Voyager 2 / PDS / OPUS / Ardenau4, Lizenz: CC0
Neptune on 1989-08-17, taken by NASA's Voyager 2 probe. This color image was composed of three frames, orange, green, and blue, taken by Voyager 2's imaging system. This color image has been calibrated to best represent Neptune's true color and appearance. Based on: Irwin, Patrick G J (2023-12-23). "Modelling the seasonal cycle of Uranus’s colour and magnitude, and comparison with Neptune". Monthly Notices of the Royal Astronomical Society 527 (4): 11521–11538. DOI:10.1093/mnras/stad3761. ISSN 0035-8711.
Original Caption Released with Image: The southern hemisphere of Umbriel displays heavy cratering in this Voyager 2 image, taken Jan. 24, 1986, from a distance of 557,000 kilometers (346,000 miles). This frame, taken through the clear-filter of Voyager's narrow-angle camera, is the most detailed image of Umbriel, with a resolution of about 10 km (6 mi). Umbriel is the darkest of Uranus' larger moons and the one that appears to have experienced the lowest level of geological activity. It has a diameter of about 1,200 km (750 mi) and reflects only 16 percent of the light striking its surface; in the latter respect, Umbriel is similar to lunar highland areas. Umbriel is heavily cratered but lacks the numerous bright ray craters seen on the other large Uranian satellites; this results in a relatively uniform surface albedo (reflectivity). The prominent crater on the terminator (upper right) is about 110 km (70 mi) across and has a bright central peak. The strangest feature in this image (at top) is a curious bright ring, the most reflective area seen on Umbriel. The ring is about 140 km (90 miles) in diameter and lies near the satellite's equator. The nature of the ring is not known, although it might be a frost deposit, perhaps associated with an impact crater. Spots against the black background are due to 'noise' in the data. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Foto della sonda spaziale sovietica Mars 6 (uguale a Mars 7).
Pioneer 3 & 4
Mariner 6 and 7 spacecraft
Saturn's moon Pallene on an image from a distance of 36144.8 kilometres, taken on 16th October 2010.
Surveyor - NASA Lunar soft lander. The Surveyor program received the Collier Trophy in 1967 together with the Hughes Aircraft Company, the Jet Propulsion Laboratory, and associated organizations which put the successful series of spacerraft on the Moon, and facilitated the success in 1969, of the Apollo lunar landing of humans on another planet. This mock-up of the Surveyor spacecraft was taken in 1966.
Sojourner rover taking an Alpha Proton X-ray Spectrometer measurement of Yogi.
Pathfinder mission - Mars exploration - NASA
Hubble image showing the moons of Pluto, adding orbits, names and scale. The black stripe is because the exposure for pluto itself was much shorter than for the moons.
衛星ネレイド、ボイジャー2号の撮影
Autor/Urheber: ESA 2010 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA, Lizenz: CC BY-SA 2.0
Asteroid 21 Lutetia has been revealed as a battered world of many craters. ESA's Rosetta mission has returned the first close-up images of the asteroid showing it is most probably a primitive survivor from the violent birth of the Solar System.
Computer rendering of the Deep Impact space probe after separation of the impactor.
The Cassini spacecraft's close flyby of Epimetheus in December 2007 returned detailed images of the moon's south polar region.
The view shows what might be the remains of a large impact crater covering most of this face, and which could be responsible for the somewhat flattened shape of the southern part of Epimetheus (116 kilometers, or 72 miles across) seen previously at much lower resolution.
The image also shows two terrain types: darker, smoother areas, and brighter, slightly more yellowish, fractured terrain. One interpretation of this image is that the darker material evidently moves down slopes, and probably has a lower ice content than the brighter material, which appears more like "bedrock." Nonetheless, materials in both terrains are likely to be rich in water ice.
The images that were used to create this enhanced color view were taken with the Cassini spacecraft narrow-angle camera on Dec. 3, 2007. The views were obtained at a distance of approximately 37,400 kilometers (23,000 miles) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 65 degrees. Image scale is 224 meters (735 feet) per pixel.
The Cassini–Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.
For more information about the Cassini–Huygens mission visit http://saturn.jpl.nasa.gov/home/index.cfm. The Cassini imaging team homepage is at http://ciclops.org.
The NASA image has been cropped.original description: This giant mosaic reveals Saturn's icy moon Rhea in her full, crater-scarred glory. This view consists of 21 clear-filter images and is centered at 0.4 degrees south latitude, 171 degrees west longitude.
Parker Solar Probe artist rendering
- Artist’s concept of the Parker Solar Probe spacecraft approaching the sun. Launching in 2018, Parker Solar Probe will provide new data on solar activity and make critical contributions to our ability to forecast major space-weather events that impact life on Earth.
Artist’s concept of Japan’s Mars Moons eXploration (MMX) spacecraft, carrying a NASA instrument to study the Martian moons Phobos and Deimos.
Original Caption Released with Image: This processed color image of Jupiter was produced in 1990 by the U.S. Geological Survey from a Voyager 2 image captured in 1979. The colors have been enhanced to bring out detail. Zones of light-colored, ascending clouds alternate with bands of dark, descending clouds. The clouds travel around the planet in alternating eastward and westward belts at speeds of up to 540 kilometers per hour. Tremendous storms as big as Earthly continents surge around the planet. The Great Red Spot (oval shape toward the lower-left) is an enormous anticyclonic storm that drifts along its belt, eventually circling the entire planet.
Pioneer Venus Large Probe, from image:Pioneer_Venus_Large_Probe.jpg.
The Ranger fleet of spacecraft launched in the mid-sixties provided for the first time live television transmissions of the Moon from lunar orbit. These transmissions resolved surface features as small as 10 inches across and provided over 17,000 images of the lunar surface. These detailed photographs allowed scientists and engineers to study the Moon in greater detail than ever before thus allowing for the design of a spacecraft that would one day land men of Earth on its surface.
Autor/Urheber: Sprt98, Lizenz: CC BY-SA 4.0
在于青岛市黄岛区举行的2018东亚海洋合作平台青岛论坛东亚商品展中展出的中国火星探测器1:3模型
Asteroid Ida mit Mond Dactyl
Viking 1 launched aboard a Titan IIIE rocket August 20, 1975 and arrived at Mars on June 19, 1976. The first month was spent in orbit around the martian planet and on July 20, 1976 Viking Lander 1 separated from the Orbiter and touched down at Chryse Planitia.
Mars Polar Lander will use an articulated robotic arm to dig trenches to collect soil samples. This terrain near the south pole is believed to consist of layers of soil and ice built up over many years (similar to tree growth rings). The composition of the layers may reveal clues to past climatic conditions.
(c) Pavel Hrdlička, Wikipedia, CC BY-SA 3.0
Model of the Japanese interplanetary unmanned spacecraft IKAROS at the 61st International Astronautical Congress in Prague, Czech Republic
Image of Comet Hartley 2. This image was captured by NASA's EPOXI mission between Nov. 3 and 4, 2010, during the spacecraft's flyby of comet Hartley 2. It was captured using the spacecraft's Medium-Resolution Instrument.
Processed image of Nix
(c) ESA/Hubble, CC BY 4.0
These NASA/ESA Hubble Space Telescope images reveal a never-before seen set of six comet-like tails radiating from a body in the asteroid belt and designated P/2013 P5.
The asteroid was discovered as an unusually fuzzy looking object by astronomers using the Pan-STARRS survey telescope in Hawaii. The multiple tails were discovered in Hubble images taken on 10 September 2013. When Hubble returned to the asteroid on 23 September its appearance had totally changed — it looked as if the entire structure had swung around.
One interpretation is that the asteroid's rotation rate has increased to the point where dust is falling off the surface and escaping into space, where it is swept out into tails by the pressure of sunlight. According to this theory, the asteroid's spin has been accelerated by the gentle push of sunlight. Based on an analysis of the tail structure, the object has ejected dust for at least five months.
These visible-light images were taken with Hubble's Wide Field Camera 3. P/2013 P5 is seen on the left as viewed on 10 September 2013, and on the right as seen on 23 September 2013.Autor/Urheber: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill, Lizenz: CC BY 3.0
Processed true color image of Jupiter’s moon Europa, taken on September 29th 2022 by the probe Juno. Europa is more white than red. This side of Europa is the one that is always facing Jupiter at all times.
Jupitermond Adrastea, aufgenommen von de:Voyager 2. Die feine Linie oberhalb des Mondes ist ein Teil von Jupiters Ringsystem
Autor/Urheber: Hms1103, Lizenz: CC BY-SA 4.0
Half scale model of SLIM in landing configuration, exhibited at Sagamihara City Museum between June to August 2022.
Mars Observer in Mars Orbit showing the solar pannel.
Logotype of the European Space Agency (ESA). Intended for use at small sizes only, but the official, more detailed one seems eligible for copyright.
Polydeuces, moon of Saturn
This image, obtained with the wide-angle Multicolor Visible Imaging Camera (MVIC) component of New Horizons's RALPH instrument, was taken on 1 January 2019 5:26, 7 minutes before closest approach, from a distance of 6,700 km. The image has an original resolution of 440 feet (135 meters) per pixel.
Cassini image of Dione, highlighting wispy terrain
This splendid view showcases Dione's tortured complex of bright cliffs. At lower right is the feature called Cassandra, exhibiting linear rays extending in multiple directions.
The trailing hemisphere of Dione (1,126 kilometers, or 700 miles across) is seen here. North is up.
The image was taken in polarized green light with the Cassini spacecraft narrow-angle camera on July 24, 2006 at a distance of approximately 263,000 kilometers (163,000 miles) from Dione. Image scale is 2 kilometers (1 mile) per pixel.NASA graphic showing Dragonfly mission arriving on Saturn's moon Titan, and flying in its atmosphere.
Conceptual image of OSIRIS-REx spaceprobe
Artist's concept of the Phoenix Mars lander.
International Cometary Explorer (ICE), davor als International Sun Earth Explorer 3 (ISEE 3) bezeichnet, im Anflug auf den Kometen Giacobini-Zinner.
USSR stampː Space Probe, Space Capsule and Orbits. Seriesː Space Exploration
Proteus ist hinter dem geheimnisvollen Triton der zweitgrößte Mond des Neptuns. Proteus wurde erst 1989 durch das Voyager 2 Raumschiff entdeckt. Das ist ungewöhnlich, da Neptun einen kleineren Mond - Nereid - hat, der schon 33 Jahre früher von der Erde aus entdeckt wurde. Der Grund für Proteus' späte Entdeckung war seine sehr dunkle Oberfläche. Auch seine Umlaufbahn ist viel näher bei Neptun als die von Nereid. Proteus hat eine ungewöhnliche kastenartige Form und wäre er nur wenig masserreicher, würde ihn seine eigene Schwerkraft in eine Kugel umformen.
Image(s) of Styx taken by the Long Range Reconnaissance Imager (LORRI) on 13 July, approximately 12.5 hours before New Horizons’ closest approach to Pluto.
original description: This stunning false-color view of Saturn's moon Hyperion reveals crisp details across the strange, tumbling moon's surface. Differences in color could represent differences in the composition of surface materials. The view was obtained during Cassini's close flyby on Sept. 26, 2005. Hyperion has a notably reddish tint when viewed in natural color. The red color was toned down in this false-color view, and the other hues were enhanced, in order to make more subtle color variations across Hyperion's surface more apparent. Images taken using infrared, green and ultraviolet spectral filters were combined to create this view. The images were taken with the Cassini spacecraft's narrow-angle camera at a distance of approximately 62,000 kilometers (38,500 miles) from Hyperion and at a Sun-Hyperion-spacecraft, or phase, angle of 52 degrees. The image scale is 362 meters (1,200 feet) per pixel. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.
(c) ESA–C. Carreau, CC BY-SA 3.0 igo
The complete BepiColombo spacecraft stack on 5 July 2017.
From bottom to top: the Mercury Transfer Module (sitting on top of a cone-shaped adapter, and with one folded solar array visible to the right); the Mercury Planetary Orbiter (with the folded solar array seen towards the left, with red protective cover), and the Mercury Magnetospheric Orbiter (MMO).
The Mercury Magnetospheric Orbiter’s Sunshield and Interface Structure (MOSIF) that will protect the MMO during the cruise to Mercury is sitting on the floor to the right.Cassini spacecraft image of Prometheus, one of Saturn's small inner moons. Appearing like eyes on a potato, craters cover the dimly lit surface of the moon Prometheus in this high-resolution image from Cassini's early 2010 flyby.
The Jan. 27 encounter represented the closest imaging sequence yet of that moon for Cassini. This view looks toward the trailing hemisphere of Prometheus (86 kilometers, 53 miles across). North on Prometheus is up and rotated 8 degrees to the right.
The moon is lit by sunlight on the right and Saturnshine on the left.
The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 27, 2010. The view was obtained at a distance of approximately 34,000 kilometers (21,000 miles) from Prometheus and at a Sun-Prometheus-spacecraft, or phase, angle of 126 degrees. Image scale is 200 meters (658 feet) per pixel.
The Cassini Equinox Mission is a joint United States and European endeavor. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The imaging team consists of scientists from the US, England, France, and Germany. The imaging operations center and team lead (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.
For more information about the Cassini Equinox Mission visit http://ciclops.org, http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.
The original NASA image has been modified by cropping and brightening shadows. A version in which shadows are brightened less is here.Amalthea Moon
Vega solar system probe bus and landing apparatus (model) - Udvar-Hazy Center, Dulles International Airport, Chantilly, Virginia, USA.
Cassini narrow-angle camera raw image N00151485.jpg was taken on February 13, 2010 and received on Earth February 14, 2010. The camera was pointing toward CALYPSO, and the image was taken using the CL1 and GRN filters. This image has not been validated or calibrated. A validated/calibrated image will be archived with the NASA Planetary Data System in 2011.
The original NASA image has been modified by cropping, doubling the linear pixel density and sharpening.
Asteroid 5535 Annefrank
Die Raumsonde Juno vor dem Planeten Jupiter.
Image:Larissa.jpg cropped and cut down to show only one image.
The photojournal caption for the original image:
These Voyager 2 images of satellite 1989N2 at a resolution of 4.2 kilometers (2.6 miles) per pixel reveal it to be and irregularly shaped, dark object. The satellite appears to have several craters 30 to 50 kilometers (18.5 to 31 miles) across. The irregular outline suggests that this moon has remained cold and rigid throughout much of its history. It is about 210 by 190 kilometers (130 by 118 miles), about half the size of 1989N1. It has a low albedo surface reflecting about 5 percent of the incident light. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.Mariner 10 Diagram
On November 3, 1973, the Mariner Venus/Mercury 1973 spacecraft - also known as Mariner 10 - was launched from Kennedy Space Center. It was the first spacecraft designed to use gravity assist. Three months after launch it flew by Venus, changed speed and trajectory, then crossed Mercury's orbit in March 1974.
This photo identifies various parts of the spacecraft and the science instruments, which were used to study the atmospheric, surface, and physical characteristics of Venus and Mercury. This was the sixth in the series of Mariner spacecraft that explored the inner planets beginning in 1962.Autor/Urheber: Svobodat, Lizenz: CC BY-SA 4.0
Model of soviet unmanned spacecraft Luna 24 exhibited in Prague around 1980
An artist’s conception of the Lucy spacecraft flying by the Trojan Eurybates – one of the six diverse and scientifically important Trojans to be studied. Trojans are fossils of planet formation and so will supply important clues to the earliest history of the solar system.
Picture of Mariner 3 or 4.
Autor/Urheber: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill, Lizenz: CC BY 2.0
Ganymede photographed by Juno in 2021, Projected from the perspective of '3.
Autor/Urheber: UCL Mathematical and Physical Sciences from London, UK, Lizenz: CC BY 2.0
Solar Orbiter's heat shield. This is part of a set of photos showing the Solar Orbiter Structural Thermal Model (a full scale model of the spacecraft, which will be used for testing), taken at the Airbus Defence & Space facility in Stevenage in March 2015. Photo credit: O. Usher (UCL MAPS)
IM-1, the first NASA Commercial Launch Program Services launch for Intuitive Machines’ Nova-C lunar lander, will carry multiple payloads to the Moon, including Lunar Node-1, demonstrating autonomous navigation via radio beacon to support precise geolocation and navigation among lunar orbiters, landers, and surface personnel. NASA’s CLPS initiative oversees industry development of small robotic landers and rovers to support NASA’s Artemis campaign.
Galatea as seen by Voyager 2. The image is smeared due to the combination of long exposure needed at this distance from the Sun, and the rapid relative motion of Galatea and Voyager. Hence, Galatea appears more elongated than in reality.
A 3D model of the Rosetta Spacecraft. This is not a true representation of Rosetta as the actual spacecraft is protected by black multi layer insulation blankets, the High Gain is also black. Also the individual scientific payloads are highlighted in different colours on this model. The image was created using Celestia.
Apollo 10 command module "Charlie Brown"
The fully assembled Lunar Prospector spacecraft is shown mated atop the Star 37 Trans Lunar Injection module. Lunar Prospector represented the first NASA spacecraft to revisit the Moon in 25 years. In December of 1972 Apollo 17 astronauts Gene Cernan and Harrison Schmitt were the last humans to set foot upon the Moon and the last NASA mission to visit the lunar frontier.
On January 6, 1998 at 9:28 p.m., Lunar Prospector was launched from Cape Canaveral, Florida aboard a Lockheed Martin Athena II rocket. Also onboard were the ash remains of astrogeologist Eugene M. Shoemaker. A scientist from the U.S. Geological Survey, he was detailed to NASA and helped train Apollo astronauts in lunar geology. However, as co- founder of a "rogue string" of comet fragments, his name will forever be linked to the much heralded Shoemaker-Levy 9 cometary impact of the planet Jupiter in 1995. Lunar Prospector mapped the Moon's elemental composition, gravity fields, magnetic fields and resources. Prospector provided insights into the origin and evolution of the Moon.
One of the most significant finds by Lunar Prospector was confirmation that there could be as much as 10 billion tons of subsurface frozen water near the Moon's polar region. The Lunar Prospector mission came to a creative and daring conclusion when on July 31, 1999 at 2:52:00.8 a.m. PDT Mission Control Ames directed the spacecraft to a crash landing into a deep crater near the Moon's South pole.
The hope was that the impact might release trapped water vapor. However no visible debris plume was detected by numerous observatories monitoring the event. This lack of direct evidence has not diminished the hope or belief that subsurface frozen water does exist.Stardust-Sonde / Artist Rendering der Annäherung an Wild 2.
NASA description:
- Cassini acquired infrared, green and ultraviolet images on Sept. 5, 2005, which were combined to create this false-color view. The image was taken with the Cassini spacecraft narrow-angle camera at a distance of approximately 52,000 kilometers (32,000 miles) from Pandora and at a Sun-Pandora-spacecraft, or phase, angle of 54 degrees. Resolution in the original image was about 300 meters (1,000 feet) per pixel. The image has been magnified by a factor of two to aid visibility.
This mosaic of NEAR Shoemaker images, taken on December 3, 2000, from an orbital altitude of 200 kilometers (124 miles), provides an overview of the eastern part of the asteroid's southern hemisphere. In this view, south is to the top and the terminator (the imaginary line dividing day from night) lies near the equator. The conspicuous depression just above the center of the frame is the saddle-shaped feature Himeros.
This artist's rendering shows NASA's Europa Clipper spacecraft, which is being developed for a launch in October 2024. This view shows the spacecraft configuration, which could change before launch, as of early-2016.
The concept image shows two large solar arrays extending from the sides of the spacecraft, to which the mission's ice-penetrating radar antennas are attached. A saucer-shaped high-gain antenna is also side mounted, with a magnetometer boom placed next to it. On the forward end of the spacecraft (at left in this view) is a remote-sensing palette, which houses the rest of the science instrument payload.
The nominal mission would perform at least 45 flybys of Europa at altitudes varying from 1,700 miles to 16 miles (2,700 kilometers to 25 kilometers) above the surface.
This view takes artistic liberty with Jupiter's position in the sky relative to Europa and the spacecraft.The ascent stage of Apollo 17's Lunar Module Challenger rendezvous with Command Module America for the journey to Earth after 3 days on the Moon.
Galileo highest-res image asteroid Ida's moon (See below for details).
Uploader's notes: The original NASA image has been modified by cropping, removing artifacts and increasing linear pixel dimensions by a factor of 1.295.
Original caption released with image:
This raw, unprocessed image of Atlas was taken on April 12, 2017 and received on Earth April 13, 2017. The camera was pointing toward Atlas at approximately kilometers away, and the image was taken using the CL1 and IR1 filters. The image has not been validated or calibrated. A validated/calibrated image will be archived with the Planetary Data System in 2018.
The Cassini Solstice Mission is a joint United States and European endeavor. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The imaging team consists of scientists from the US, England, France, and Germany. The imaging operations center and team lead (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.
For more information about the Cassini Solstice Mission visit http://ciclops.org, http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.Autor/Urheber: Kevin M. Gill, Lizenz: CC BY 2.0
Processed by Kevin M. Gill, taken from data by NASA/JPL-Caltech. The original image is placed into a square black box for use in Wikipedia articles.
The S-IVB third stage of the Apollo 8 Saturn V, shortly after separation from the Command/Service Module. Bright objects are floating debris shed by the rocket. The Lunar Test Article is visible where the Lunar Module should be (Apollo 8 didn't carry a LM).
Saturn's small moon, one of the Alcyonides, Anthe, is visible on one of the closest and best views ever taken. It was shot from a distance of 119369 kilometres on 30th January 2016.
(c) Luc Viatour, CC BY-SA 3.0
Der Vollmond, fotografiert in Verdun (Belgien)
This is an artist's concept of the THEMIS spacecraft as it might appear in orbit.
Autor/Urheber: Armael, Lizenz: CC0
Mockup (1:3) of the spacecraft Venera 4 at Memorial Museum of Astronautics (Moscow).
Autor/Urheber: ESA 2008 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA; processing by T. Stryk., Lizenz: CC BY-SA 2.0
Asteroid 2867 Šteins was first imaged by ESA's Rosetta spacecraft using the OSIRIS camera on 5 September 2008. Image stacking and processing by amateur astrophotographer Ted Stryk has enhanced the shadows in order to emphasise the difference between bright crater rims and their shadowed floors.
However, this technique can also create some artifacts, such as the illusion of boulders protruding from the surface, that are not present in the raw data.
In total, over 40 craters have been identified on the surface of Steins, the largest appearing at the ‘top’ of this frame being the 2 km-wide crater named Diamond. Craters on Steins are named after gems, following Stein’s appearance as a diamond shape.Artist concept of NASA’s Double Asteroid Redirection Test spacecraft or DART. DART, which is moving to preliminary design phase, would be NASA’s first mission to demonstrate an asteroid deflection technique for planetary defense.
Image saisie par le télescope spatial Hubble le 25 août 2003 montrant la lune uranienne S/2003 U 1
Source : fr:NASA (http://www.solarviews.com/cap/uranus/2003u1.htm)
John W. Young on the Moon during Apollo 16 mission jumping about 42 Centimeters high. Charles M. Duke Jr. took this picture. The LM Orion is on the left. April 21, 1972
Charlie Hall inspects the Pioneer Venus multiprobe at Hughes Aircraft Co. in Dec. 1976
In this high resolution view of the icy, rocky nucleus of comet Borrelly, (about 45 meters or 150 feet per pixel) a variety of terrains and surface textures, mountains and fault structures, and darkened material are visible over the nucleus's surface. This was the final image of the nucleus of comet Borrelly, taken just 160 seconds before Deep Space 1's closest approach to it. This image shows the 8-km (5-mile) long nucleus about 3417 kilometers (over 2,000 miles) away.
This image shows the “moonrise” of the satellite as it emerges from behind asteroid Dinkinesh as seen by the Lucy Long-Range Reconnaissance Imager (L’LORRI), one of the most detailed images returned by NASA’s Lucy spacecraft during its flyby of the asteroid binary. This image was taken at 12:55 p.m. EDT (1655 UTC) Nov. 1, 2023, within a minute of closest approach, from a range of approximately 270 miles (430 km). From this perspective, the satellite is behind the primary asteroid. The image has been sharpened and processed to enhance contrast.
Original caption: NASA's Cassini spacecraft captured this view as it neared icy Enceladus for its closest-ever dive past the moon's active south polar region. The view shows heavily cratered northern latitudes at top, transitioning to fractured, wrinkled terrain in the middle and southern latitudes. The wavy boundary of the moon's active south polar region -- Cassini's destination for this flyby -- is visible at bottom, where it disappears into wintry darkness.
This view looks towards the Saturn-facing side of Enceladus. North on Enceladus is up and rotated 23 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Oct. 28, 2015.
The view was acquired at a distance of approximately 60,000 miles (96,000 kilometers) from Enceladus and at a Sun-Enceladus-spacecraft, or phase, angle of 45 degrees. Image scale is 1,896 feet (578 meters) per pixel.Autor/Urheber: Syced, Lizenz: CC0
Hakuto's proposed lunar lander and Sorato rover.
Autor/Urheber: TaBaZzz, Lizenz: CC BY-SA 4.0
A full scale model of Beresheet moon probe, presented at Habima Square (Tel aviv). Photo taken on the day of its launch.
USSR stamp
A Helios spacecraft prototype was encapsulated in its payload fairing in the Spacecraft Assembly and Encapsulation Facility [SAEF] here today. A flight version of the West German-built solar probe will be launched aboard a Titan/Centaur from Complex 41. The prototype is to be moved to Complex 41 for mating with the Titan/Centaur in early October. It will be removed and returned to the SAEF after completion of the Titan/Centaur terminal countdown demonstration in late October.
This picture of asteroid 951 Gaspra is a mosaic of two images taken by the Galileo spacecraft from a range of 5,300 kilometers (3,300 miles), some 10 minutes before closest approach on October 29, 1991.
Autor/Urheber: user:geni, Lizenz: CC BY-SA 4.0
Photo of a Beagle 2 replica in the London Science Museum
translated from French: Image taken from Voyager 2 on 24 January 1986 of the Uranian moon Puck (at a distance of 493 Mm (thousand kilometers))
Three-dimensional model of japanese space probe Kaguya (kown also as Selenological and Engineering Explorer and SELENE), launched on September 14, 2007 and developed for the exploration of the Moon.
Venus Express in Venus orbit.
PIA21635: NASA's Mars 2020 Rover Artist's Concept #1
https://photojournal.jpl.nasa.gov/catalog/PIA21635
This artist's concept depicts NASA's Mars 2020 rover on the surface of Mars.
The mission takes the next step by not only seeking signs of habitable conditions on Mars in the ancient past, but also searching for signs of past microbial life itself.
The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth.
Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.
NASA's Jet Propulsion Laboratory will build and manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington.
For more information about the mission, go to https://mars.nasa.gov/mars2020/.Autor/Urheber: Pline, Lizenz: CC BY-SA 4.0
Modell von Luna 25 auf der Pariser Luftfahrtschau 2015.
This enhanced color image of NASA's Ingenuity Mars Helicopter was taken by the Mastcam-Z instrument aboard Perseverance on April 16, 2023, the 766th Martian day, or sol, of the rover's mission. At the time the image was taken, the rover was about 75 feet (23 meters) away. The helicopter's first flight on Mars was on April 19, 2021.
This is the best look the Ingenuity team has had of the rotorcraft since its first flight.
Small diodes (visible more clearly in this image of helicopter) appear as small protrusions on the top of the helicopter's solar panel. The panel and the two 4-foot (1.2-meter) counter-rotating rotors have accumulated a fine coating of dust. The metalized insulating film covering the exterior of the helicopter's fuselage appears to be intact. Ingenuity's color, 13-megapixel, horizon-facing terrain camera can be seen at the center-bottom of the fuselage.
NASA's Jet Propulsion Laboratory, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover. Arizona State University leads the operations of the Mastcam-Z instrument, working in collaboration with Malin Space Science Systems in San Diego, on the design, fabrication, testing, and operation of the cameras, and in collaboration with the Niels Bohr Institute of the University of Copenhagen on the design, fabrication, and testing of the calibration targets.
The Ingenuity Mars Helicopter was built by JPL, which manages the project for NASA Headquarters. It is supported by NASA's Science Mission Directorate. NASA's Ames Research Center in California's Silicon Valley and NASA's Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity's development. AeroVironment Inc., Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Martin Space designed and manufactured the Mars Helicopter Delivery System.
Asteroid 2685 Masursky, imaged by the Cassini–Huygens space probe at the distance of 1.6 million kilometers on 23 January 2000.
Apollo 14, Alan B. Shepard Jr. on Lunar surface.
Dieses von der Weltramsonden Voyager 2 aufgenommene Bild zeigt neben den Ringen δ, γ, η, β, α, 4, 5 und 6 des Uranus, die Uranusmonde Cordelia und Ophelia.
Buzz Aldrin removing the passive seismometer from a compartment in the SEQ bay of the Lunar Lander.
벨린다.
Phoebe, as imaged by the Cassini probe.
Artist's rendering of the Mars Climate Orbiter
Mission spatiale européenne GIOTTO / comète de Halley
Artist impression of Solar Probe Plus during Venus fly-by
N00189072.jpg was taken on May 20, 2012 and received on Earth May 21, 2012. The camera was pointing toward METHONE, and the image was taken using the CL1 and CL2 filters. This image has not been validated or calibrated. A validated/calibrated image will be archived with the NASA Planetary Data System in 2013. Image rotated so that north is up. Original image had a pixel scale of 26.72 meters per pixel, but this has been enlarged by 2x to improve feature visibility.
Autor/Urheber: Reproduction by User:Waterced of an image from NASA, Lizenz: CC0
Diagram of the Chandrayaan-1 lunar orbiter
Artist's rendering of the MESSENGER spacecraft orbiting Mercury
The Apollo 13 Lunar Module Aquarius is jettisoned above the Earth after serving as a lifeboat for four days. It eventually reentered Earth's atmosphere over Fiji and burned up.
Autor/Urheber: Armael, Lizenz: CC0
Mockup (1:1) of Mars 3 lander at Memorial Museum of Astronautics (Moscow).
Artist's concept of 2001 Mars Odyssey spacecraft over Syrtis Major Planum.
Interplanetary Monitoring Platform-E (IMP-E) other Name Explorer 35
Künstlerische Darstellung von JUICE über Ganymed.
Galileo probe deployed.
- This photograph was taken by the STS-34 crew aboard the Space Shuttle Atlantis and shows the Galileo spacecraft being deployed on Oct. 18, 1989 from the payload bay. Galileo is a scientific craft that will go into orbit around the planet Jupiter and drop a probe into its atmosphere in search of primordial solar system material believed to be present there. The 70mm motion picture film will be used in the forthcoming "Blue Planet," which will address Earth's environmental problems from the perspective of space-based observation and solar system exploration. The film is being produced by IMAX Space Technology Inc. for the sponsor, the Smithsonian Institution, with funding provided by the Lockheed Corporation.
Alan L. Bean, Lunar Module pilot for the Apollo 12 mission, starts down the ladder of the Lunar Module (LM) "Intrepid" to join astronaut Charles Conrad, Jr., mission Commander, on the lunar surface.
Autor/Urheber: Igor Schwarzmann from Cologne, Germany, Lizenz: CC BY-SA 2.0
Posted via email from Igor Schwarzmann @ posterous
In Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), Jet Propulsion Laboratory workers are closing up the metal "petals" of the Mars Pathfinder lander. The Sojourner small rover is visible on one of the three petals.
Der 5 km große Kern des Kometen 81P/Wild. Aufnahme durch die Sonde Stardust am 2. Januar 2004.
Autor/Urheber: European Space Agency, Lizenz: CC BY-SA 3.0 igo
This artist's impression shows ESA’s Mars Express spacecraft scanning the fast-moving shadow of the moon Phobos as it moved across the martian surface.
For more informartion: www.esa.int/SPECIALS/Mars_Express/index.html
Credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO
Copyright Notice:
This work is licenced under the Creative Commons Attribution-ShareAlike 3.0 IGO (CC BY-SA 3.0 IGO) licence. The user is allowed to reproduce, distribute, adapt, translate and publicly perform this publication, without explicit permission, provided that the content is accompanied by an acknowledgement that the source is credited as 'ESA/DLR/FU Berlin’, a direct link to the licence text is provided and that it is clearly indicated if changes were made to the original content. Adaptation/translation/derivatives must be distributed under the same licence terms as this publication. To view a copy of this license, please visit creativecommons.org/licenses/by-sa/3.0/igo/This artist's-concept illustration depicts the spacecraft of NASA's Psyche mission near the mission's target, the metal asteroid Psyche. The artwork was created in May 2017 to show the five-panel solar arrays planned for the spacecraft.
The spacecraft's structure will include power and propulsion systems to travel to, and orbit, the asteroid. These systems will combine solar power with electric propulsion to carry the scientific instruments used to study the asteroid through space.
The mission plans launch in 2022 and arrival at Psyche, between the orbits of Mars and Jupiter, in 2026. This selected asteroid is made almost entirely of nickel-iron metal. It offers evidence about violent collisions that created Earth and other terrestrial planets.Autor/Urheber: Kevin Gill from Los Angeles, CA, United States, Lizenz: CC BY 2.0
Processed using low resolution (wide angle) orange, green, and blue filtered images colorizing higher resolution (narrow angle) unfiltered images taken by Voyager 2 on July 8 1979.
NASA/JPL-Caltech/Kevin M. GillWhile cruising around Saturn in early October 2004, Cassini captured a series of images that have been composed into the largest, most detailed, global natural color view of Saturn and its rings ever made.
This grand mosaic consists of 126 images acquired in a tile-like fashion, covering one end of Saturn's rings to the other and the entire planet in between. The images were taken over the course of two hours on Oct. 6, 2004, while Cassini was approximately 6.3 million kilometers (3.9 million miles) from Saturn. Since the view seen by Cassini during this time changed very little, no re-projection or alteration of any of the images was necessary.
Three images (red, green and blue) were taken of each of 42 locations, or "footprints," across the planet. The full color footprints were put together to produce a mosaic that is 8,888 pixels across and 4,544 pixels tall.
The smallest features seen here are 38 kilometers (24 miles) across. Many of Saturn's splendid features noted previously in single frames taken by Cassini are visible in this one detailed, all-encompassing view: subtle color variations across the rings, the thread-like F ring, ring shadows cast against the blue northern hemisphere, the planet's shadow making its way across the rings to the left, and blue-grey storms in Saturn's southern hemisphere to the right. Tiny Mimas and even smaller Janus are both faintly visible at the lower left.
The Sun-Saturn-Cassini, or phase, angle at the time was 72 degrees; hence, the partial illumination of Saturn in this portrait. Later in the mission, when the spacecraft's trajectory takes it far from Saturn and also into the direction of the Sun, Cassini will be able to look back and view Saturn and its rings in a more fully-illuminated geometry.Mariner 2 was the world's first successful interplanetary spacecraft. Launched August 27, 1962, on an Atlas-Agena rocket, Mariner 2 passed within about 34,000 kilometers (21,000 miles) of Venus, sending back valuable new information about interplanetary space and the Venusian atmosphere. Mariner 2 recorded the temperature at Venus for the first time, revealing the planet's very hot atmosphere of about 500 degrees Celsius (900 degrees Fahrenheit). The spacecraft's solar wind experiment measured for the first time the density, velocity, composition and variation over time of the solar wind.
This artist's concept depicts the stationary NASA Mars lander known by the acronym InSight at work studying the interior of Mars. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in March 2016 and land on Mars six months later. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth.
Jet Propulsion Laboratory (JPL) workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station.
Mariner 5
Autor/Urheber: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Lizenz: CC BY 3.0
Visualization of the Hayabusa 2 probe. MASCOT lander visible.
Autor/Urheber: Wikibob, Lizenz: GFDL
Models of the Soviet Luna sample return spacecraft and the Lunokhod lunar rover at the 2007 Paris Air Show. The closest model is the Luna sample return lander with soil sample scoop - the ascent stage is the smaller cylinder with spherical Earth-return capsule on top. The midground model is the Lunokhod lunar rover with eight wheels and a shuttable lid containing the solar cells.
Charon seen from New Horizons, July 14, 2015.
http://www.nasa.gov/feature/pluto-s-big-moon-charon-reveals-a-colorful-and-violent-history
Pluto's moon Charon
Charon in Enhanced Color NASA's New Horizons captured this high-resolution enhanced color view of Charon just before closest approach on July 14, 2015. The image combines blue, red and infrared images taken by the spacecraft’s Ralph/Multispectral Visual Imaging Camera (MVIC); the colors are processed to best highlight the variation of surface properties across Charon. Charon’s color palette is not as diverse as Pluto’s; most striking is the reddish north (top) polar region, informally named Mordor Macula. Charon is 754 miles (1,214 kilometers) across; this image resolves details as small as 1.8 miles (2.9 kilometers).Artist's rendering, from NASA, of the constituent spacecraft of the European Space Agency's BepiColombo mission, in their cruise phase configuration. The Mercury Planetary Orbiter on the left and the Mercury Magnetospheric Orbiter on the right, with a sunshade module at center.
Pioneer 11 and Saturn rings on 1 September 1979.
Aegaeon, a small moon of Saturn only 500 meters across, is visible in this image taken from 15238.2 kilometres. It was shot on 27th January 2010.
Der Asteroid (9969) Braille
ExoMars Trace Gas Orbiter