Liste von Doppel- und Mehrfachsternen

Diese Liste von Doppel- und Mehrfachsternen enthält die meisten visuellen Doppel- und Mehrfachsterne mit Bayer- und Flamsteed-Bezeichnung. Darüber hinaus sind enthalten:

  • einige Doppelsterne der 5. und 6. Größenklasse ohne Bayer- und Flamsteed-Bezeichnung mit etwa gleichen Helligkeiten,
  • besonders sonnennahe Systeme (bis ca. 20 Lj),
  • einige astrophysikalisch interessante Systeme.

Die Liste enthält in der Regel nicht:

  • Doppel- und Mehrfachsterne, deren Begleiter nur schwache, unverbundene Feldsterne sind,
  • nicht aufgelöste spektroskopische Doppelsterne (außer Untersysteme eines visuellen Doppelsterns),
  • unsichere und unbestätigte Komponenten,
  • Röntgendoppelsterne.

Braune Zwerge werden in der Liste wie Sterne behandelt.

Erläuterung der Liste

  • Stb.Sternbild (lateinisches Kürzel), in dem das System liegt.
  • System – Bezeichnung des Systems. Innerhalb eines Sternbildes kommen zuerst alle Systeme mit Bayer-Bezeichnung, danach alle Systeme mit Flamsteed-Bezeichnung, danach alle sonstigen Systeme.
  • Untersystem (nur bei Mehrfachsternen) – Die Zahl gibt die hierarchische Ebene an (1 = Hauptsystem, 2 = Untersystem, 3 = Unter-Untersystem usw.). In Klammer steht die Bezeichnung des Hauptsterns (Hauptkomponente, engl. primary) und des Begleitsterns (Begleiter, engl. secondary), getrennt durch einen Schrägstrich. Die Bezeichnung richtet sich nach dem WDS bzw. dem allgemeinen Benennungsschema bei Mehrfachsternen (Hartkopf & Mason 2004, bibcode:2004RMxAC..21...83H).
  • Typ – Einteilung nach Beobachtbarkeit. Abgesehen von den optischen Doppelsternen (O), die nur zufällig am Himmel nebeneinander stehen, unterscheidet man bei den physischen (d. h. gravitativ aneinander gebundenen) Doppelsternen zwischen visuellen, spektroskopischen, astrometrischen und fotometrischen (bedeckungsveränderlichen) Doppelsternen. Die Typen schließen sich gegenseitig nicht aus, z. B. konnten viele spektroskopisch oder astrometrisch entdeckte Doppelsterne später mit besserer Teleskoptechnik in visuelle Doppelsterne aufgelöst werden. Der Übergang zwischen „klassischen“ visuellen Doppelsternen und CPM-Paaren ist unscharf.
    • Visuelle Doppelsterne (engl. visual binaries) sind Doppelsterne, die in zwei getrennte Lichtquellen aufgelöst werden können. V – „klassischer“ visueller Doppelstern, der mit dem Auge (mit Hilfe eines Fernrohrs) trennbar ist oder es zum Zeitpunkt der Entdeckung war. V(aO) – konnte mit aktiver oder adaptiver Optik aufgelöst werden. V(IR) – konnte im infraroten Bereich des elektromagnetischen Spektrums aufgelöst werden. V(HST) – konnte mit dem Hubble-Weltraumteleskop aufgelöst werden. I – mit Long-Baseline-Interferometrie auflösbar. SI – mit Speckle-Interferometrie auflösbar. CPMcommon proper motion pairs sind weite visuelle Doppelsterne, die ihre Verwandtschaft durch ihre gemeinsame Eigenbewegung verraten. Sie zeigen kaum bis keine Relativbewegung zueinander und sind nur schwach bis gar nicht aneinander gebunden. Ein gemeinsamer Entstehungsursprung (Sternhaufen, Assoziation) wird angenommen.
    • SBSpektroskopische Doppelsterne (engl. spectroscopic binaries) weisen periodische Verschiebungen bzw. Aufspaltungen der Spektrallinien aufgrund der sich ändernden Radialgeschwindigkeit durch den Umlauf auf (siehe: Doppler-Effekt).
    • AAstrometrische Doppelsterne (engl. astrometric binaries) verraten sich durch ihre nichtlineare Eigenbewegung aufgrund des Umlaufs um das Baryzentrum mit ihrer nicht sichtbaren Komponente. Anmerkung: Oft wurden enge visuelle (interferometrische) Doppelsterne astrometrisch entdeckt. Der Einfachheit halber wird der Typ der astrometrischen Doppelsterne zusätzlich nur bei nicht-visuellen Systemen (SB, E) angeführt.
    • EFotometrische (bedeckungsveränderliche) Doppelsterne (engl. eclipsing binaries) zeigen periodische Helligkeitsabfälle infolge der gegenseitigen Bedeckungen der Komponenten.
    • Neben diesen Grundtypen gibt es noch weitere Kategorien, die aber in der Liste nicht verwendet werden, z. B. durch Sternbedeckungen nachgewiesene Doppelsterne (engl. occultation binaries), Röntgendoppelsterne (engl. X-ray binaries), so genannte Composite-Spectra-Sterne (Roter Riese + A/B-Hauptreihenstern) etc.
  • V1, V2Scheinbare visuelle Helligkeit der Hauptkomponente (V1) und des Begleiters (V2). Bei nicht aufgelösten Systemen ist die Helligkeit des Begleiters in der Regel unbekannt; in diesem Fall ist die Helligkeit in V1 die Gesamthelligkeit beider Komponenten (auf einen Zellenverbund wurde verzichtet).
  • ρWinkeldistanz zwischen den Komponenten (entfällt bei spektroskopischen und interferometrischen Doppelsternen).
  • Ep. – Jahr, in dem die Winkeldistanz gemessen wurde (entfällt bei spektroskopischen und interferometrischen Doppelsternen).
  • UUmlaufzeit in Jahren (a) oder Tagen (d). Die Umlaufzeit ist ohne Fehlerangabe und gerundet angegeben. Sie ist grün markiert, wenn die Qualität der Bahnelemente im 6th Orbit Catalog mit Grade 1 („endgültig“) oder 2 („gut“) bewertet ist, d. h. künftig keine großen Anpassungen der Bahnelemente mehr zu erwarten sind.
  • S1, S2Spektralklasse der Hauptkomponente (S1) und des Begleiters (S2). Ein angehängter Doppelpunkt (z. B. K3:) zeigt an, dass der Spektraltyp unsicher ist.
  • M1, M2 – Masse der Hauptkomponente (M1) und des Begleiters (M2) in Sonnenmassen. Ein Σ zeigt an, dass sich die Masse aus mehreren Einzelsternen zusammensetzt.
  • Entdeckercode – Details siehe Artikelende.
  • WDS – Nummer im Washington Double Star Catalog. Die WDS-Nummer fungiert zugleich als Koordinatenangabe, z. B. WDS 09285+0903 entspricht RA = 09 h 28,5 min, Dec = 09° 03'.
  • d – Entfernung des Systems in Parsec. Fett markierte Entfernungen stammen von präzise bestimmten dynamischen Parallaxen. Bei optischen Doppelsternen bezieht sich die Entfernung auf die hellere Komponente.
  • Quelle – Details siehe Artikelende.

Liste

Die Spalten sind mit einem Klick auf den Doppelpfeil sortierbar.

Stb.SystemUntersystemTypV1V2ρEp.US1S2M1M2Entdecker-
code
WDSdQuelle
Andα And (Sirrah)I/SB2,24,296,7 dB8 IV–VHgMn3,8 ± 0,21,6 ± 0,1MKT 1100084+290530[1] (M, d)
Andγ And1 (γ1 = A / γ2 = BC)V2,35,09,8″2020K2 IIbB9 V + A3 V + A0 VΣ 8,3 ± 0,3STF 20502039+4220120[2] (SBa/Bb, M),[3] (UBa/Bb)
2 (B/C)V5,36,50,2″201063 aB9 V + A3 VA0 VΣ 5,72,6STT 38
3 (Ba/Bb)SB6,5.2,67 dB9 VA3 V3,32,4
Andδ AndV(aO)/SB3,310,00,4″201453 aK3 IIIK4Σ 2,6 ± 0,4BTM 100393+305232[4] (S, M)
Andη AndI/SB4,4.116 dG8 IIIG8 III2,42,3MKT 200572+232570[5] (S, M)
Andο And1 (A/B)SI3,76,00,2″2015117 aB6 IIIpe + A2pΣ 18 ± 2WRH 3723019+4220210[6] (UBa/Bb), [3] (SAa/Ab), [7] (M)
2 (Aa/Ab)SI3,85,70,1″19975,6 aB6 IIIpeA2pBLA 12
2 (Ba/Bb)SB6,0.33,0 d
Andπ And1 (A/B)CPM4,47,136,2″2019B3 V + B6 VA6 VΣ 10,6H 5 1700369+3343180[8] (SAa/Ab, M)
2 (Aa/Ab)I/SB4,95,3144 dB3 VB6 V5,84,8MKT 1
Andφ AndV4,65,60,6″2016550 aB6 IVB9 VΣ 6,5 ± 2,8STT 51501095+4715220[9] (S, M)
Andψ And1 (Aa,Ab/Ac)SI5,28,10,4″2018MCA 7523460+4625310
2 (Aa/Ab)SI5,2.0,2″2003MCA 75
Andω And1 (A/B)V4,811,70,7″2002F3 V + F5 VΣ 1,9BU 99901277+452429[10] (S, M)
2 (Aa/Ab)I/SB4,8.255 dF3 VF5 V1,00,9CIA 4
And2 AndV5,27,70,2″200974 aB8A73,31,9BU 114723026+4245130[11] (S, M)
And26 AndV6,110,16,1″2016STT 500187+4347190
And36 AndV6,16,51,2″2019168 aG6 IVK6 IVΣ 1,9 ± 0,2STF 7300550+233838[9] (S, M)
And56 AndO5,86,1202,5″2014STFA 401562+3715100
And59 AndV6,16,716,6″2019STF 22202109+3902140
AndHR 647V6,67,20,7″2018145 aF2F7Σ 2,4 ± 0,3STF 22802140+472940[12] (S, M)
AndHR 283V6,06,87,9″20189200 aB9,5 VnnA2 VnSTF 7901001+4443150
AndHR 9074V6,56,72,5″2019570 aG0 VG0 VSTF 305023595+334330[13] (S)
AndGroombridge 34V8,311,434,1″20192600 aM1 VM3,5 V0,40,2GRB 3400184+44013,6[14] (S1, M1), [15] (S2, M2)
Antδ AntV5,69,810,3″2017B9–9,5 VF9 VeH N 5010296-3036140
Antζ1 AntV6,26,88,3″2020A1 VA1 VDUN 7809308-3153120
Antθ AntSI5,36,20,0″202018,3 aG7 IIIA8 V2,1 ± 0,51,8 ± 0,1FIN 32609442-2746100[16] (S, M)
Ant2MASS 0939-2448..T80,03–0,050,02–0,035,3[17] (S, M, d)
Apsδ1 ApsCPM4,95,4103,0″2010BSO 2216203-7842230
Apsι ApsSI5,96,50,1″2018160 aB9B9,55,44,7FIN 37317221-7007320[11] (S, M)
Aqlβ AqlV3,811,413,4″2015G8 IVM3STT 53219553+062414
Aqlδ AqlSI/SB3,49,20,1″19793,4 aF0 IVK:≈ 1,7≈ 0,7BNU 619255+030716[18] (V2, S, M)
Aqlε AqlSB/A4,0.3,5 aeps Aql18596+150442
Aqlη AqlV(HST)3,810,00,7″2012≈ 870 aF6 IabB9,8 V5,72,3EVS 219525+0100270[19] (U, M, d)
Aqlθ AqlI/SB3,55,017,1 dB9 IIIB9 III3,2 ± 0,72,5 ± 0,6MKT 1020113-004971[3] (S), [1] (M, d)
Aqlπ AqlV6,36,81,4″2019G8 IIIA3 VSTF 258319487+1149160
Aqlχ AqlV5,46,60,4″2020STT 38019426+1150260
Aql5 Aql1 (A/B)V5,97,012,5″2019kA3hA5VmA6kA4hF0VmF3STF 237918465-005894[20] (SAa/Ab), [3] (UAa od. Ab)
2 (Aa/Ab)SI5,96,80,0″201441 aAmAmMCA 53
3 (Aa oder Ab)SB..4,77 dAm
Aql11 AqlO5,39,320,8″2019STF 242418591+133848
Aql15 AqlO5,57,039,6″2019SHJ 28619050-040295
Aql18 AqlV5,46,40,3″2015210 aHEI 56819070+1104210
Aql23 AqlV5,38,33,2″2011STF 249219185+0105120
Aql45 AqlSI5,97,60,1″202010,2 aA3 IVCHR 8819407-0037110
Aql57 AqlCPM5,76,436,3″2019B7 VnB8 VSTF 259419546-0814140
AqlQS Aql1 (A/B)V6,76,80,1″201877 aB5 V + F3B4KUI 9319411+1349680[21] (UAa/Ab, S)
2 (Aa/Ab)E/SB6,7.2,51 dB5 VF3
AqlGliese 752 / VB 10CPM9,117,475,8″2012dM3,5M8 Ve0,50,09LDS 633419169+05105,9[22] (S, M)
Aqrδ AqrI/A3,3.1,3 aA3 VG5:76 Aqr22547-154935[23] (S)
Aqrζ Aqr1 (ζ2 = A / ζ1 = B)V4,34,52,4″2020430 aF1 IVF3 IVΣ 2,01,4STF 290922288-000128[24] (S), [25] (M)
2 (Aa/Ab)SI4,311,30,7″202025,1 aF1 IV1,40,6EBE 1
Aqrξ AqrSI/SB4,87,00,0″200825,5 aMCA 6821378-075155
Aqrψ1 Aqr1 (A/BC)CPM4,49,948,9″2014K1 IIIK1–2 V1,4 ± 0,3STFB 1223159-090544[26] (M)
2 (B/C)V10,510,70,4″202084 aK1–2 VBU 1220
Aqrψ3 AqrV5,09,01,5″2015HO 19923190-093773
Aqrω2 AqrV4,59,95,5″2012BU 27923427-143346
Aqr4 AqrV6,47,40,7″2020200 aF7 IVF6: V:1,61,3STF 272920514-053861[27] (M)
Aqr12 Aqr1 (A/B)V5,87,52,5″2017STF 274521041-0549150
2 (Aa/Ab)SI5,98,30,3″2017MCA 66
Aqr24 Aqr1 (A/B)V6,98,40,0″202048,7 aBU 121221395-000340[3] (UAa/Ab)
2 (Aa/Ab)SB6,9.5,88 d
Aqr29 Aqr1 (A/B)V7,27,23,8″2016A2 V + K0 IIIG0 IIS 80222024-1658180[21] (UAa/Ab, SAa/Ab)
2 (Aa/Ab)E/SB7,2.0,95 dA2 VK0 III
Aqr41 AqrV5,66,75,2″2015K0 IIIF2 VH N 5622143-210472
Aqr51 AqrV6,56,60,5″2019145 aA1A12,52,4BU 17222241-0450120[11] (S, M)
Aqr53 Aqr1 (A/B)V6,36,41,2″20192000 aG2 VG3 VSHJ 34522266-164519[3] (UBa/Bb)
2 (Ba/Bb)SB6,4.257 dG2 V
Aqr74 Aqr1 (A/B)SI5,86,40,1″20209,5 aB9pBΣ ≈ 15MCA 7322535-1137170[3] (UAa/Ab), [28] (S, M)
2 (Aa/Ab)SB5,8.3,43 dB9p
Aqr83 AqrV6,26,30,2″201821,8 aF2 VF2 VA 41723052-074264[24] (S)
Aqr86 AqrSI4,86,80,2″2020HDS 329323067-234556
Aqr89 AqrV5,36,00,2″2018108 aG2 IIIA2 VRST 332023099-2227150
Aqr94 Aqr1 (A/B)V5,27,012,1″2018G5–8 IV + K2–3K2Σ 1,9STF 299823191-132822[29] (S, M)
2 (Aa/Ab)SI/SB5,26,70,2″20206,3 aG5–8 IVK2–31,10,8MCA 74
Aqr97 AqrV5,66,70,1″202064 aA3A82,0–3,71,6HU 29523227-150265[11] (S, M)
Aqr101 AqrV4,87,71,0″2009B 190023333-205590
Aqr107 AqrV5,76,57,0″2018A9 IVF2 VH 2 2423460-184162
AqrR AqrV(aO)/SB7,7.44 aM6,5–8,5eD:1,0–1,50,6–1,0320[30] (V), [31] (U, S2, M)
AqrEZ Aqr1 (AC/B)SI/SB12,212,90,1″20202,3 aM4 V + MMΣ 0,220,12BLA 1022385-15193,4[32] (S, M)
2 (A/C)SB12,2.3,79 dM4 VM0,120,10Gl 866
Araγ AraCPM3,310,218,4″2016HJ 494217254-5623340
Araδ AraA3,6.2,9 adel Ara17311-604161
Araε2 Ara1 (A/C)CPM5,413,5113,6″2015F5 VFeDA3,2SKF 10317031-531426
2 (Aa/Ab)SI5,48,70,7″202041 aF5 VFeHDS 2412
Araν1 Ara (V539 Ara)1 (A/B)V5,79,212,3″2016B3 V + B4 VA0–1 VΣ 11,5HJ 497817505-5337360[21] (U, S), [33] (M, d)
2 (Aa/Ab)E/SB5,7.3,17 dB3 VB4 V6,25,3
Ara41 AraV5,68,910,6″2019610 aG9 VM0 VpCaCrBSO 1317191-46388,8
AraR Ara1 (A/B)V7,27,83,7″2016B5 V + F1 IVΣ 6,5HJ 486616397-5700120[34] (UAa/Ab, S, M)
2 (Aa/Ab)E/SB7,2.4,43 dB5 VF1 IV51,5
AraHR 64771 (AB/C)CPM5,27,1102,5″2016B8 V + B9 VB9,5 VDUN 21617269-4551190
2 (A/B)V5,66,52,1″2016B8 VB9 VHJ 4949
Ariβ AriI/SB2,65,2107 dA5 V2,01,0MKT 301546+204918[1] (S, M, d)
Ariγ AriV4,54,67,4″2020A2 IVpSiSrCrA0 VnpSTF 18001535+191850
Ariε AriV5,25,61,5″2019710 aA2 IVA3 IVsSTF 33302592+2120100
Ariλ AriCPM4,86,737,3″2019H 5 1201579+233639
Ariμ AriSI5,76,20,0″20208,8 aA1 VF2 V3,4 ± 1,72,1 ± 1,7BLA 102424+2001140[35] (S, M)
Ariπ AriV5,38,03,3″2015STF 31102493+1728240
Ariτ1 AriV5,38,10,9″2016COU 25903212+2109160
Ari1 AriV6,37,22,9″2018K1 IIIA6 VSTF 17401501+2217180[13] (S)
Ari10 AriV5,87,91,3″2018330 aF8 IVF9 VSTF 20802037+255649[24] (S)
Ari21 AriV6,46,50,2″201423,6 aF5 VF5 V1,41,4COU 7902157+250351[36] (S, M)
Ari30 Ari1 (A/BC)CPM6,57,037,9″2019F5 VF8 V + M1 VΣ 1,6STFA 502370+243945[3] (UAa/Ab), [37] (SB/C, MB/C)
2 (Aa/Ab)SB6,5.1,11 dF5 V
2 (B/C)V(aO)7,011,00,6″2018F8 VM1 V1,10,5RAO 8
Ari31 AriSI5,75,80,0″20203,8 aF7 VF7 VΣ 3,4MCA 702366+122735[38] (S, M)
Ari52 Ari1 (AB/C)V5,510,85,1″2005B9 + B9Σ 7,2STF 34603054+2515170[11] (S, M)
2 (A/B)V6,26,20,5″2016230 aB9B93,63,6STF 346
Ari63 AriSI5,38,10,3″2012HDS 42303228+204597
Ari66 Ari1 (A/B)V6,210,50,7″2018BU 87803284+224871
2 (Aa/Ab)SI6,07,40,1″2008BAG 2
Aurα Aur (Capella)1 (A/HL)CPM0,110,0722,8″2013G8 III + G0 IIIM2 + M4:Σ 5,1Σ 1,1FRH 105167+460013,2[39] (VAa/Ab, UH/L, SAa/Ab, M, d), [40] (SH/L)
2 (Aa/Ab)I/SB0,90,8104 dG8 IIIG0 III2,62,5ANJ 1
2 (H/L)V10,013,53,5″2015≈ 300 aM2M4:0,60,5ST 3
Aurβ Aur (Menkalinan)E/I/SB3,33,53,96 dA1mA1m2,42,3KOE 105595+445725[33] (S, M)
Aurε Aur (Almaaz)E/SB/A3,0.27,1 aF0 Ia≈ 2 vs. 15≈ 6 vs. 14eps Aur05020+43491500[41][42] (S, M), [43] (d)
Aurζ AurE/I/SB3,8.2,7 aK4 IbB6 V5,64,7MKT 605025+4105240[5] (S, M)
Aurθ AurV2,67,24,2″2019470 aB9 IVG2 VSTT 54505597+371351[24] (S)
Aurψ5 AurO5,38,729,4″2013SHJ 7506467+433517
Aurω AurV5,08,24,7″2019A1 VF9STF 61604593+375350
Aur5 Aur1 (A/B)V6,09,54,1″20171600 aF5 V1,40,9STT 9205003+392457[44] (M)
2 (Aa/Ab)SI6,0.0,1″2018F5 VCHR 159
Aur14 Aur1 (A/C)V5,07,314,3″2019A9 VF2 V + DA1,3STF 65305154+324182[3] (UAa/Ab, UCa1/Ca2), [45] (UCa/Cb), [46] (SCa/Cb)
2 (Aa/Ab)SB5,0.3,79 dA9 V
2 (Ca/Cb)V(HST)7,314,12,0″1999≈ 1300 aF2 VDA1,3BAS 5
3 (Ca1/Ca2)SB7,3.2,99 dF2 V
Aur16 Aur1 (A/B)V4,810,64,1″2002STT 10305182+332271
2 (Aa/Ab)SB/A4,8.1,2 a
Aur26 Aur1 (AB/C)V5,58,412,4″2019≈ 46 000 aG8 III + B9,5 VA6 VΣ 5,1 ± 1,42,1STF 75305386+3030170[47] (UAB/C, S, M)
1 (A/B)V6,36,20,2″201053 aG8 IIIB9,5 V2,1 ± 1,03,0 ± 0,4BU 1240
Aur41 AurV6,26,97,5″2019STF 84506116+4843100
Aur54 AurV6,27,90,8″2016STT 15206396+2816260
Aur60 AurV6,59,00,2″2012270 aA8G01,71,1COU 187706532+382670[11] (S, M)
AurWW AurE/SB5,8.2,53 dA5mA7m2,01,891[30] (V), [33] (U, S, M)
AurGliese 268SB11,5.10,4 ddM5edM5e0,20,26,3[30] (V), [3] (U, S), [48] (M, d)
Booδ BooCPM3,67,9105,0″201776 000 aG8 IIIFeG0 VvSTFA 2715155+331937
Booε Boo (Izar)V2,64,82,7″2020K0 II–IIIA2 VSTF 187714450+270462
Booζ BooV4,54,50,3″2019125 aA2 IIIA2 IIIΣ ≈ 2,3STF 186514411+134454[24] (S), [12] (M)
Booη BooSB/A2,7.1,4 a1,70,6eta Boo13547+182411,4[18] (M)
Booι BooCPM4,87,439,0″2020A7 VK1 VSTFA 2614162+512229
Booκ Boo1 (κ2 = A / κ1 = B)V4,56,613,8″201910 100 aA7 IVF2 VSTF 182114135+514749[3] (UBa/Bb)
2 (Ba/Bb)SB6,6.4,9 a
Booμ Boo1 (μ1 = A / μ2 = B)CPM4,37,0109,0″2018F0 IVG0 VΣ 3,2 ± 0,3STFA 2815245+372336[9] (M)
2 (Aa/Ab)SI4,3.0,1″20123,7 aF0 IV3,2 ± 0,3CHR 181
2 (Ba/Bb)V7,17,62,3″2019270 aG0 VSTF 1938
Booν2 BooSI5,85,80,1″20159,0 aB9A13,02,3A 163415318+4054130[11] (S, M)
Booξ BooV4,87,05,2″2020153 aG8 VK4 V0,90,7STF 188814514+19066,7[49] (S, M)
Booπ1 BooV4,95,85,4″2020STF 186414407+162588
Booτ BooV4,511,11,5″2017960 aF7 IV–VM3 V1,40,4STT 27013473+172716[50] (M)
Boo44 Boo1 (A/BC)V5,26,10,3″2019210 aG1 VG1,0Σ 1,6STF 190915038+473913[51] (UB/C, S, M)
2 (B/C)E/SB6,1.0,27 dG1,00,6
Boo1 BooV5,89,64,4″2019A1 VA2STF 177213407+195798
Boo3 BooSB6,0.36,0 dG0 IVF2p1,81,695[30] (V), [5] (S, M)
Boo12 BooI/SB4,8.9,60 dF8 IVF9 IVw1,41,4ISO 1414104+250636[33] (S, M)
Boo15 BooV5,48,40,8″2015KUI 6614148+100684
Boo39 BooV6,36,72,6″20202100 aF6 VF5 VSTF 189014497+484369[13] (S)
BooHP Boo1 (A/BC)V(aO)5,913,92,6″200928 000 aG2 VL4 + L41,0Σ 0,11POT 114503+235518[52] (S, M)
2 (B/C)V(aO)13,914,20,1″201310,3 aL4L40,060,05POT 1
BooHR 5138V6,46,50,1″202022,5 aF0 IVF2 IVΣ 2,4 ± 0,4BU 61213396+104560[24] (S), [53] (M)
BooHR 53861 (A/BC)V5,06,86,4″2020A0 VF0 V + F2 VSTF 183514234+082769[24] (SB/C)
2 (B/C)V7,47,70,3″202040 aF0 VF2 VBU 1111
Caeγ1 CaeV4,78,23,2″2001JC 905044-352956
Cam1 CamO?5,86,810,4″2018O9,7 IInB1 IV:STF 55004320+5355770
Cam2 Cam1 (AB/C)V5,67,50,8″2016480 aSTF 56604400+532865
2 (A/B)V5,97,40,0″201426,7 aSTF 566
Cam7 Cam1 (A/B)V4,57,90,6″20112700 aD 504573+5345110[3] (UAa/Ab)
2 (Aa/Ab)SB4,5.3,89 d
Cam11 / 12 Cam1 (11 / 12 Cam)CPM5,26,2177,7″2017B3 VeK0 IIIeΣ 1,6STFA 1305061+5858220[54] (U, M)
2 (12 Cam)SB6,2.80,9 dK0 IIIe1,10,5
Cam19 CamV6,29,81,5″2015HU 110705373+640998
CamHR 48921 (A/B)V5,35,721,8″2017A0 VA2 VSTF 169412492+8325130[3] (UAa/Ab)
2 (Ba/Bb)SB5,7.3,29 dA2 V
CamStein 2051V11,412,111,0″20201800 aM4 VeDC50,20,7STI 205104312+58585,5[55] (M)
Capα Cap (Algiedi)- (α2 / α1)O3,74,3381,2″2012G9 IIIG3 IbSTFA 5120181-123332
1 (α1 Cap Aa/Ab)V4,48,60,8″2002G3 IbWZ 1520176-1230270
Capβ Cap (Dabih)1 (β1 = A / β2 = B)CPM3,26,1205,4″2012K0 II–III + B8 V + G: V:B9–A0 III–IVΣ 7,9 ± 0,4STFA 5220210-1447170[3] (UAb1/Ab2), [56] (SAa/Ab, SAb1/Ab2, M)
2 (Aa/Ab)SI/SB3,14,90,0″20193,8 aK0 II–IIIB8 V3,7 ± 0,2Σ 4,2 ± 0,2BLA 7
2 (Ba/Bb)V6,29,10,4″2020540 aB9–A0 III–IVBAR 12
3 (Ab1/Ab2)SB4,9.8,68 dB8 VG: V:≤ 3,4≥ 0,8
Capγ CapA3,7.2,2 agam Cap21401-164048
Capζ CapSB/A3,8.6,5 aG8 IIIpDA2,2zet Cap21267-2225120[46] (S)
Capη CapSI5,07,40,3″202027,9 aA4 VF2 V2,0 ± 0,21,2 ± 0,1FIN 32821044-195151[12] (S), [16] (M, d)
Capο CapV5,96,722,0″2019A1 VA7–8 VSHJ 32420299-183572
Capπ CapV5,18,53,5″2019BU 6020273-1813200
Capρ CapV5,06,91,7″2018380 aSHJ 32320289-174930
Capτ CapV5,47,30,4″2019420 aB4 IVB6 IVHU 20020393-1457350[24] (S)
Carε Car (Avior)SI2,33,90,4″2019K3: IIIB2: VHDS 119008225-5931190
Carθ CarSB/A2,8.2,2 aB0,2 V≈ 15the Car10430-6424140[57] (S, M)
Carυ CarV3,06,05,1″2015RMK 1109471-6504440
Car128 G. Car1 (AB/C)V5,412,318,8″2015F3–4 V + F8–G7 VΣ 2,5 ± 0,6I 35809173-684134[16] (S, M, d)
2 (A/B)SI5,87,10,1″20203,4 aF3–4 VF8–G7 V1,4 ± 0,31,1 ± 0,3FIN 363
Carb1 CarCPM4,96,640,1″2010B2 VB8 IV:DUN 7408570-5914240
Care2 CarSI5,18,00,3″2015HDS 123308353-580169
CarV415 CarE/SB/A4,57,7195 dG6 IIA1 V3,22,0V415 Car06499-5337170[5] (S, M)
CarHR 2814V6,06,59,1″20151 000 000 aF5 VF9 VRMK 607204-521937
CarHR 3863V5,96,50,1″201910,6 aA3 IVΣ 5,8 ± 0,6B 78009407-575968[58] (M)
Casγ Cas1 (A/B)V2,210,92,1″2002B0,5 IVeF6 VΣ ≈ 16BU 102800567+6043190[59] (UAa/Ab, SA, M), [60] (SB)
2 (Aa/Ab)SB2,2.204 dB0,5 IVe≈ 15≈ 0,8
Casη CasV3,57,413,6″2020480 aG3 VK7 V1,00,6STF 6000491+57496,0[49] (S, M)
Casι Cas1 (AB/C)V4,59,16,7″2015A3 + G6 + F5K4 + M2STF 26202291+672441[61][62] (S, M)
2 (A/B)V4,66,92,9″20172400 aA3 + G6F5Σ 2,7 ± 0,4STF 262
2 (Ca/Cb)V(aO)9,1.0,2″2018K4M2CTU 2
3 (Aa/Ab)SI4,68,50,6″201048 aA3G62,0 ± 0,30,7CHR 6
Casλ CasV5,35,60,2″2010250 aB7,5 VB8,5 V3,43,1STT 1200318+5431120[24] (S), [11] (M)
Casμ CasSI/SB5,310,70,6″201621,6 aG5 VdM0,70,2WCK 101083+54557,6[63] (S, M)
Casο CasI/SB4,67,52,8 aNOI 300447+4817220
Casσ CasV5,07,23,1″2017STF 304923590+55451400
Cas6 CasV5,78,01,5″2015STT 50823488+62131900
Cas47 CasSI5,47,60,1″20144,4 aLSC 1902051+771733
Cas48 Cas1 (AB/C)CPM4,513,222,8″2015A2 V + F2 VΣ 3,1BU 51302020+705435[24] (S), [64] (M)
2 (A/B)V/SB4,76,70,6″201361 aA2 VF2 V1,91,2BU 513
Cas55 CasSI6,47,60,1″201141 aF9 IIA2 VnMCA 602145+6631290
CasAR Cas1 (AB/CD)CPM4,97,275,0″2018B3 VB9 VSHJ 35523300+5833180[65] (UAa/Ab, SAa/Ab, MAa/Ab)
2? (AB/F)CPM4,910,667,2″2012B3 VA0HJ 1888
2? (AB/G)CPM4,911,166,9″2012B3 VB3HJ 1888
2 (A/B)V4,99,30,9″2002B3 VΣ 7,8STT 496
2 (C/D)V7,29,11,3″2015B9 VDA 2
3 (Aa/Ab)E/SB4,9.6,07 dB4 VA6 V5,91,9
CasV773 Cas1 (A/B)V6,38,70,6″2010185 aA3 VF0–5BU 87001443+573287[21] (UAa/Ab)
2 (Aa/Ab)E6,3.1,29 dA3 V
CasHR 51 (A/B)V6,47,31,5″2020107 aG4 VK0 V + M2 V0,9Σ 1,3STF 306200063+582621[3] (UBa/Bb), [2] (S, M)
2 (Ba/Bb)SB7,3.47,7 dK0 VM2 V0,80,5
Cenα Cen (Alpha Centauri)1 (AB / C = Proxima Centauri)CPM−0,311,12,2°550 000 aG2 V + K1 VM5,5 VΣ 2,00,12LDS 49414396-60501,3[33] (SA/B, MA/B), [66] (SC, MC)
2 (A/B)V/SB0,01,35,2″201980 aG2 VK1 V1,10,9RHD 1
Cenβ Cen (Agena)1 (A/B)V0,64,00,3″2018≈ 170 aB1 III + B1 IIIBΣ 22,6 ± 0,3VOU 3114038-6022120[67] (UA/B, S, M)
2 (Aa/Ab)I/SB1,31,4357 dB1 IIIB1 III12,010,6RBT 1
Cenγ CenV2,82,90,4″202084 aA0 IIIA0 IIIHJ 453912415-485840[24] (S)
Cenδ CenO2,54,4269,1″1999B2 VneB3–5 IIIJC 212084-5043130
Cenκ Cen1 (A/B)V3,111,54,0″2000I 126014592-4206120
2 (Aa/Ab)SI3,34,70,1″202059 aHDS 2116
Cenπ CenV4,15,70,3″201939 aB9 V6,43,7I 87911210-5429110[68] (S, M)
Cend CenV4,65,00,2″202083 aG7 IIIG9 IIISEE 17913310-3924280[24] (S)
CenD CenV5,87,02,7″2015RMK 1412140-4543180
CenQ CenV5,26,55,6″2016B8,5 VnA2,5 VaDUN 14113417-543483
Ceny CenV6,36,41,0″2020360 aF0F11,51,5HWE 2813535-354052[11] (S, M)
Cen3 CenO4,56,07,8″2015B5 IIIB9 IVH 3 10113518-3300110
Cen4 Cen1 (A/B)V4,78,514,8″2013B5 IVpA3 VmH N 5113532-3156170[3] (U)
2 (Aa/Ab)SB4,7.6,93 dB5 IVp
2 (Ba/Bb)SB8,5.4,84 dA3 Vm
Cen46 CenV5,27,71,3″1995HJ 440911073-423889
CenV831 Cen1 (AB/C)V4,68,41,9″2019≈ 2000 aB8 VΣ 9,4≈ 1,5I 42413123-5955110[69] (UAB/C, UAa/Ab, S, M, d)
2 (A/B)V5,36,00,1″201927,4 aB8 VΣ 7,4≈ 2,0SEE 170
3 (Aa/Ab)E/SB5,3.0,64 dB8 V4,13,3
CenHR 4453V6,16,20,5″2019I 7811336-4035120
Cepβ Cep1 (A/B)V3,28,613,5″2016B2 III + B5 VeA0 VΣ 17 ± 43,1 ± 0,3STF 280621287+7034210[70] (SAa/Ab, MAa/Ab), [2] (SB, MB)
2 (Aa/Ab)SI/SB3,26,60,2″200783 aB2 IIIB5 Ve12,6 ± 3,24,4 ± 0,7LAB 6
Cepγ CepV(aO)/SB3,2> 7,30,9″200668 aK1 III–IVM41,40,4NHR 923393+773814[13] (V1), [71] (S, M)
Cepκ CepV4,48,37,3″2015B9 IIIA7 VSTF 267520089+774399
Cepξ Cep1 (A/B)V4,56,48,1″20192500 akA2,5hF2mF2(IV)F8 VΣ 1,4STF 286322038+643830[10] (M)
2 (Aa/Ab)SI/SB4,86,30,1″20122,2 akA2,5hF2mF2(IV)1,00,4MCA 69
Cepο CepV5,07,33,4″20182200 aSTF 300123186+680762
Cepπ Cep1 (A/B)V4,66,81,1″2016176 aG2 IIIA9 VΣ 6,9 ± 0,71,9 ± 0,2STT 48923079+752376[72] (S, M)
2 (Aa/Ab)SB/A4,4.1,5 aG2 III3,6 ± 0,53,3 ± 0,5
CepVV CepE/SB5,4.20,3 aM2 IabB2,5 vs. 208 vs. 20WRH 3621567+63381500[73][74] (M), [75] (S, d)
CepHR 1230V5,66,30,8″2012370 aG8 IIIA3,5 IV:STF 46004100+8042120
CepHR 8357O5,66,418,1″2018STF 284021520+5548200
CepKruger 60V9,911,41,5″201644,7 aM3 VM4 V0,30,18KR 6022280+57424,0[76] (M)
Cetγ Cet1 (AB/C)CPM3,510,2843,1″2000A2 Vn + F4 VK5 VALD 12402433+031424
2 (A/B)V3,56,21,9″2020A2 VnF4 VSTF 299
Cetε CetSI/SB5,26,50,1″20202,7 aF2 VF7–G4 V1,41,0FIN 31202396-115224[16] (S, M)
Cetμ CetiSI/SB4,26,20,2″20203,3 aA9 IIIPTOK 102449+100726[3] (U)
Cetν Cet1 (A/B)V5,09,18,4″2011STF 28102359+0536100[3] (UAa/Ab)
2 (Aa/Ab)SB5,0.2,0 a
Cetξ1 CetSI/SB4,3.0,1″20074,5 aMCA 502130+0851100
Cetο Cet (Mira)V6,810,40,5″2014500 aM5–9 IIIeDA1,2JOY 102193-025992[77] (M)
Cet10 CetSI6,58,90,5″2020HDS 6100266-0003140
Cet13 Cet1 (A/B)V/SB5,66,90,2″20206,9 aF9 V + K0 VG6 VΣ 1,80,9HO 21200352-033621[3] (UAa/Ab), [2] (S, M)
2 (Aa/Ab)SB5,6.2,08 dF9 VK0 V1,00,8
Cet26 CetV6,19,516,0″2015A8 IVG8 VSTF 8401038+012259
Cet37 Cet1 (A/B)CPM5,27,947,1″2018STFA 301144-075524
2 (Aa/Ab)SI5,29,70,2″2013WSI 70
Cet42 Cet1 (A/BC)V6,57,01,6″2020650 aG8 IIIA7 V + A:Σ 1,8 ± 0,6STF 11301198-0031100[20] (S, M)
2 (B/C)SI7,47,60,1″202027 aA7 VA:1,8 ± 0,6FIN 337
Cet84 CetV5,89,73,6″20123200 aSTF 29502412-004223
Cet94 CetV5,111,02,2″20151400 aHJ 66303128-011223
Cet95 CetV5,68,01,2″2017390 aK0 IVG8 VAC 203184-005664[24]
CetHR 159V/SB6,66,20,2″202025,0 aG8 VG8 V0,90,7BU 39500373-244615[1] (S, M, d)
CetHR 492V6,17,20,1″2020630 aF5 VF7 VSTF 14701417-111939
CetGJ 1005SI11,011,40,4″20204,6 aM3,5 VM0,180,12HEI 29900155-16085,0[78] (S, M)
CetLuyten 726-8V12,713,21,9″202026,3 aM5,5 VM6 V0,100,10LDS 83801388-17582,7[76] (M)
Chaδ1 ChaV6,26,50,8″2019I 29410453-8028110
Chaε Cha1 (AB/C)CPM4,96,6134,0″2015B9 V + B9 V + B9 VA0FGL 111596-7813110[79] (U, S, M)
2 (A/B)V5,36,00,2″2020≈ 920 aB9 V + B9 VB9 VΣ ≈ 5HJ 4486
3 (Aa/Ab)SI6,06,20,0″202013 aB9 VB9 V≈ 2,5≈ 2,5HJ 4486
Cirα CirV3,28,515,7″2016A7 VpSrCrEuK5 VDUN 16614425-645917
Cirγ CirV4,95,70,8″2019260 aB3–4 VF8 VHJ 475715234-5919140
Cirθ CirSI5,95,90,1″202040 aB3 VeΣ 40 ± 18FIN 37214567-6247460[20] (S, M)
Cir26 G. Cir1 (A/B)SI6,28,70,3″2018F8 II + B6Σ 10,2HDS 210014526-6349530[19] (U, S, M, d)
2 (Aa/Ab)I6,2.17,9 aF8 IIB65,25,0GAA 1
CMaα CMa (Sirius)V−1,58,411,2″202050 aA1 VDA22,11,0AGC 106451-16432,6[80] (S, M)
CMaε CMaV1,57,57,9″2008CPO 706586-2858120
CMaζ CMa- (A/B)O3,07,8169,6″2016B2,5 VK1 IIISMY 106203-3004110[3] (UAa/Ab)
1 (Aa/Ab)SI/SB3,63,80,0″20201,9 aB5,5 VTOK 82106203-3004220
CMaη CMaO2,56,8177,0″2020B5 IaA0 VSMY 207241-2918610
CMaμ CMaV5,37,12,9″2017STF 99706561-1403280
CMaν1 CMaV5,87,417,4″2019G8–K0 IIIF–GSHJ 7306364-184081
CMaπ CMaV4,79,611,6″2015H N 12306556-200830
CMaτ CMa1 (A/E)SI4,49,70,9″2018O9,2 + O9 IIIB2: VTOK 4207187-24571500[81] (U, S, d)
2 (Aa/Ab)SI4,95,30,1″2018O9,2O9 IIIFIN 313
3 (Aa)SB4,9.155 dO9,2
4 (Aa)E4,9.1,28 dO9,2
CMa27 CMaSI5,44,90,1″2020119 aB4Ve(shell)FIN 32307143-2621530
CMa29 CMa (UW CMa)E/SB5,0.4,39 dO7,5–8 IabfO9,7 Iab≈ 16≈ 191500[82] (U, S, M)
CMaHR 2522V5,67,20,4″2015580 aAC 406490-1509160
CMiα CMi (Prokyon)V0,510,83,8″201441 aF5 IV–VDQZ1,50,6SHB 107393+05143,5[83] (S, M)
CMiη CMiV5,311,14,3″2015BU 2107280+065797
CMiHR 2950V6,67,00,9″20191250 aSTF 112607401+051479
Cncζ Cnc1 (ζ1 = AB / ζ2 = CD)V4,95,96,0″2020740 aF8 V + G5 VG0 V + M2 VΣ 2,6Σ 2,0STF 119608122+173925[18][84] (S, M)
2 (A/B)V5,36,31,2″202059,4 aF8 VG5 V1,31,2STF 1196
2 (C/D)SI6,27,10,3″202017,3 aG0 VM2 V1,20,8HUT 1
Cncι CncV4,16,030,7″2018G8 IIIaA2 VSTF 126808467+2846100
Cncκ CncSI5,38,80,1″2019CHR 25709077+1040150
Cncπ1 Cnc1 (A/E)CPM6,617,043,0″1997G8 V + G8 VL8 + TΣ 1,8Σ ≈ 0,08–0,14WIL 109123+150020[1] (SAa/Ab, MAa/Ab, d), [85] (UEa/Eb, SEa/Eb, MEa/Eb)
2 (Aa/Ab)SI/SB7,27,20,1″20192,7 aG8 VG8 V0,90,9FIN 347
2 (Ea/Eb)V(aO)17,0.0,5″2004≈ 140–180 aL8T≈ 0,04–0,07≈ 0,04–0,07BUG 16
Cncφ2 CncV6,26,25,2″2019A5 IVA2 VpSTF 122308268+265685
Cnc21 CncV6,39,41,3″2019A 296108239+1038250
Cnc24 Cnc1 (A/BC)V6,97,55,7″2019F0 VF7 VSTF 122408267+243280
2 (B/C)V8,58,50,2″200721,8 aF7 VA 1746
Cnc55 (ρ1) CncCPM6,013,285,1″2012K0 IV–VM4,5 V1,00,3LDS 621908526+282013[86] (M1), [87] (M2)
Cnc57 CncV6,16,41,5″20192300 aSTF 129108542+3035140
Cnc66 CncV6,08,64,4″2017STF 129809014+3215150
Cnc75 CncSB/A6,0.19,4 dG5 IV–V1,21,075 Cnc09088+263831[88] (S, M, d)
CncGJ 1116V13,413,42,6″2020124 aM7 VM7 VLDS 383608582+19455,3
CncHM CncSB20.0,004 dDD0,60,35000[30] (V), [89] (U, S, M, d)
Colδ ColSB/A3,9.2,4 adel Col06221-332662
ColHR 24241 (AB/C)V5,511,521,0″1999HJ 387506354-3647160
2 (A/B)V5,96,91,6″2015BU 755
ColHR 24311 (A/B)CPM6,47,3287,2″2015F9 V + G1 VG2 VΣ 2,3Σ 1,9SHY 18506359-360540[24] (SAa/Ab), [11] (MAa/Ab), [68] (MBa/Bb)
2 (Aa/Ab)SI6,78,20,1″202028,9 aF9 VG1 V1,21,1FIN 19
2 (Ba/Bb)V7,88,60,1″202014,0 aG1 V1,10,8RST 4816
Comα ComV4,95,50,6″201925,9 aF5 VF6 V1,21,1STF 172813100+173218[90] (S, M)
Com2 ComV6,27,53,4″2020STF 159612043+2128100
Com12 ComSB4,9.1,1 aG7 IIIA3 IV2,62,112225+255185[5] (S, M)
Com23 ComSI5,06,90,4″202036 aWRH 1212349+223895
Com24 ComV5,16,320,2″2018K0 II–IIIA9 VSTF 165712351+1823120
Com35 Com1 (AB/C)V5,29,828,5″2016K0 III + F3 VSTF 168712533+211587[24] (S), [3] (UAa/Ab)
2 (A/B)V5,27,11,3″2019490 aK0 IIIF3 VSTF 1687
3 (Aa/Ab)SB5,2.8,0 aK0 III
Com39 Com1 (A/B)V6,08,81,8″2019COU 1113064+210950
2 (Aa/Ab)SI6,1.0,0″2009CHR 150
ComGliese 505V6,79,57,6″2018610 aK1 VM1 V0,70,5BU 80013169+170111,0[24] (S), [91] (MA), [87] (MB)
CrAγ CrAV4,56,41,5″2020122 aF8 VF8 V1,21,2HJ 508419064-370417[60] (S), [11] (M)
CrAκ CrACPM5,66,220,5″2018B9 VB8–A1DUN 22218334-3844210
CrAHR 6749V5,75,71,8″2019450 aA5 VA5 VHJ 501418068-432545[24] (S)
CrBα CrB (Gemma)E/SB/A2,2.17,4 dA0 VG5 V2,60,9alp CrB15347+264323[92] (S, M)
CrBβ CrBSI/SB3,75,20,3″201910,5 aA5F22,11,4JEF 115278+290634[93] (S, M)
CrBγ CrBV4,05,60,5″201591 aB9 IVA3 V2,81,7STF 196715427+261845[24] (S), [11] (M)
CrBζ2 CrBV5,05,96,3″2019B7 VB9 VSTF 196515394+3638150
CrBη CrBV/SB5,66,00,4″201941,6 aG1 VG3 V1,21,1STF 193715232+301718[24] (S), [9] (M)
CrBθ CrBV4,36,30,8″2016COU 61015329+3122120
CrBσ CrB1 (σ2/1 = AB / E)CPM5,112,3634,8″2015F6 V + G1 VM2,5 VΣ 3,2Σ 0,5STF 203216147+335221[94] (S, M)
2 (σ2 = A / σ1 = B)V5,66,57,2″2019670 aF6 VG1 VΣ 2,21,0STF 2032
2 (Ea/Eb)SI12,415,00,5″201852 aM2,5 V0,40,1YSC 152
3 (Aa/Ab)I/SB5,6.1,14 dF6 V1,11,1
Crtζ CrtSI5,07,80,3″2018HDS 165811448-1821100
Crtψ CrtV6,28,30,2″2018370 aB9 VA1 VBU 22011125-1830150[24] (S)
Cruα Cru (Acrux)1 (AB/C)CPM0,74,889,0″2020B0,5 IV + B1 VB3–5 VDUN 25212266-630699[3] (UAa/Ab), [95] (UCa/Cb)
2 (α1 = A / α2 = B)V1,31,63,5″2020B0,5 IVB1 VDUN 252
3 (Aa/Ab)SB1,3.75,8 dB0,5 IV
3 (Ca/Cb)SB4,8.1,23 dB3–5 V
Cruγ CruO1,86,5133,2″2018M3,5 IIIA3 VDUN 12412312-570727
Cruμ CruCPM3,95,034,5″2020B2 IV–VB5 VneDUN 12612546-5711130
Crvδ CrvV3,08,524,2″2020SHJ 14512299-163127
CrvVV Crv1 (AB/C)CPM5,110,345,9″2016F5 V + F4 IVnSTF 166912413-130177[3] (UAa/Ab), [96] (UA/B, UBa/Bb)
2 (A / B = VV Crv)V5,95,95,3″2020≈ 3500 aF5 VF4 IVnSTF 1669
3 (Aa/Ab)SB5,9.44,5 dF5 VΣ 3,5
3 (Ba/Bb)E/SB5,9.3,14 dF4 IVn2,01,5
CVnα CVn (Cor Caroli)V2,95,519,3″2020A0 VpSiEuF2 VSTF 169212560+381935
CVn2 CVnV5,98,711,6″2017M0,5 IIIF7 VSTF 162212161+4040200
CVn17 / 15 CVn1 (17 = A / 15 = BC)O6,06,3275,6″2012A9 III–IVB7 IIISTFA 2413101+383060
2 (B/C)V6,39,21,3″2016B7 IIIBU 60813101+38301140
CVn19 CVnSI5,99,50,6″2012220 aCHR 18013155+405173
CVn25 CVnV5,07,01,6″2019240 aA6 IIIF0 VSTF 176813375+361861[24] (S)
CVnHR 5110 (BH CVn)E/SB/A5,0.2,61 dF2 IVK0 IV1,50,8BH CVn13348+371146[97] (S, M)
Cygβ Cyg (Albireo)1 (β1 = A / β2 = B)O?3,24,734,6″2020K3 II + B9,5 VB8 VeΣ 9,5  +5,9−3,33,7 ± 0,1STFA 4319307+2758100[98] (U, M)
2 (Aa/Ac)SI3,45,20,3″2020122 aK3 IIB9,5 V4,2  +2,9−1,65,2  +3,1−1,7MCA 5519307+2758120
Cygδ CygV2,96,32,7″2017660 aB9 IIIF1 VSTF 257919450+450851[24] (S)
Cygζ CygV(HST)/
SB
3,213,217,8 aG8 IIIpDA4,2BAS 721129+301444[3] (U), [46] (S)
Cygλ Cyg1 (A/B)V4,76,30,9″2018800 aB4 VB7 VΣ 10,67,4STT 41320474+3629240[24] (S), [99] (M)
2 (Aa/Ab)SI5,45,80,0″199111,6 aB4 V5,35,3MCA 63
Cygμ CygV4,86,21,6″2019690 aF4 VG2 VSTF 282221441+284522[24] (S)
Cygο1 CygE/SI/SB3,9.0,0″198510,0 aK4 IbB3–411,77,1WRH 3320136+4644230[100] (S, M)
Cygο2 CygE/SB/A4,28,43,1 aK4–5 IbB6–79,74,820155+4743470[100] (S, M)
Cygτ Cyg1 (AB/F)CPM3,712,089,5″2012F0 V + G0 VM3Σ 2,7AGC 1321148+380320[40] (S), [18] (M)
2 (A/B)V3,86,61,1″201749,5 aF0 VG0 V1,71,0AGC 13
2 (Fa/Fb)SI12,213,80,4″2018M3JOD 20
Cygφ CygSI/SB4,95,10,0″19941,2 aK0 IIIK0 III2,22,1MCA 5719394+300974[101] (S, M)
Cygψ Cyg1 (A/B)V5,07,52,9″2017A2 IV–VF4 VSTF 260519556+522685[24] (S)
2 (Aa/Ab)SI5,66,10,1″201054 aF4 VYR 2
Cyg9 CygSI/SB5,96,50,0″19944,6 aG8 IIIaA2 V2,82,6WRH 3219348+2928180[5] (S, M)
Cyg16 Cyg1 (AC/B)V6,06,239,7″202013 500 aG1,5 Vb + MG2,5 VΣ 1,51,0STFA 4619418+503221[13] (SA/B), [102] (UA/C, SC, MC), [103] (MA/B)
2 (A/C)V(aO)6,013,03,2″2009≈ 700 aG1,5 VbM1,1≈ 0,4TRN 4
Cyg17 Cyg1 (AB/FG)CPM5,17,8817,6″20103 700 000 aF5,5 IV–V + K4K5 V + K5 VSTF 258019464+334421
2 (A/B)V5,19,325,9″20207900 aF5,5 IV–VK4STF 2580
2 (F/G)V8,58,63,2″2020230 aK5 VK5 VSTF 2576
Cyg44 CygV6,310,12,2″1991AC 1820310+36561200
Cyg47 CygSI4,87,30,3″1998K6: IbB2,5:WRH 3420339+35151300
Cyg49 CygV5,88,12,7″2016G8 IIbB9,9STF 271620410+3218270
Cyg52 CygV4,39,55,9″2018STF 272620456+304362
Cyg59 CygSI4,87,60,1″2015162 aMCA 6520598+4731400
Cyg60 CygV5,49,52,9″2017STT 42621012+4609490
Cyg61 CygV5,26,131,8″2019620 aK5 VK7 V0,70,6STF 275821069+38453,5[104] (S, M)
Cyg75 CygV5,310,12,7″2008AC 2021402+4316130
Cyg77 Cyg1 (AB/C)CPM5,87,8145,5″2017A0 V + A0 VF2ARY 12921424+4105130
2 (A/B)V6,36,70,2″201426,5 aA0 VA0 VKUI 108
2 (Ca/Cb)V8,18,60,5″2016F2BU 68821424+4103
CygHR 7294V6,56,77,2″20201460 aG3 VG2 VSTF 248619121+495125
CygHR 7911V6,76,80,9″20181150 aSTT 41020396+4035280
CygGJ 12451 (AC/B)V13,516,86,0″2019220 aM5 + M8,5M6 VΣ 0,19GIC 15919539+44254,7[105] (SA/C), [78] (MA/C)
2 (A/C)SI14,315,00,5″201616,8 aM5M8,50,110,08MCY 3
Delα Del1 (Aa/Ab)SI3,96,40,2″201416,9 aB9 IV3,8 ± 0,4Σ 3,3 ± 0,3WCK 220396+155578[106] (U, M)
2 (Ab1/Ab2)A6,4.30,0 d1,8 ± 0,21,5 ± 0,1
Delβ DelV/SB4,15,00,2″201826,7 aF5 IIIF5 IV1,81,5BU 15120375+143631[24] (S), [107] (M)
Delγ DelV4,45,08,9″20193200 aK1 IVF8 VSTF 272720467+160735
Delδ DelSB/A4,4.40,6 d1,81,664[30] (V), [108] (U, M)
Del1 DelV6,28,00,9″2016Be(shell)BBU 6320303+1054230[109] (S)
Del13 DelV5,68,21,5″2009BU 6520478+0600140
Dorα DorV3,64,60,2″202012,1 aA0 IIIpB9 IVB 209204340-550352[13] (S)
Draα Dra (Thuban)SB/A3,85,651,4 dA0 IIIA2:2,8≈ 2,6alp Dra14044+642393[110] (V), [111] (S, M)
Draε DraV4,06,93,2″20172800 aG7 IIIbF5 IIISTF 260319482+701647
Draζ DraSI3,24,20,1″19946,6 a5,9 ± 1,23,6 ± 0,8STA 117088+6543100[112] (M)
Draη DraV2,88,24,4″2015STT 31216240+613128
Draμ Dra1 (AB/C)V4,913,712,2″2015F7 V + F7 V + G4 VM3:Σ 3,2STF 213017053+542827[13] (SA), [2] (SBa/Bb, M)
2 (A/B)V5,75,72,7″2020420 aF7 VF7 V + G4 V1,2Σ 1,8BU 1088
3 (Ba/Bb)SB5,7.3,2 aF7 VG4 V1,10,9
Draν DraCPM4,94,962,1″2017kA3hF0mF0(IV–V)kA4hF2VmF3STFA 3517322+551130
Draο DraI/SB4,811,0138,4 dG9 III1,41,0CIA 818512+592396[113] (S, M)
Draφ Dra1 (A/B)V4,55,90,5″2011310 aB9 IV + F8 IVA3 IVΣ 4,8 ± 0,52,7 ± 0,2STT 35318208+712093[3] (UAa/Ab), [2] (S, M)
2 (Aa/Ab)SB4,5.26,8 dB9 IVF8 IV3,4 ± 0,31,4 ± 0,2
Draχ DraSI/SB3,75,70,1″2009281 dF7 VK0 V1,00,7LAB 518211+72448,3[33] (S, M, d)
Draψ1 DraV4,65,629,6″201910 000 aF5 IV–VF8 VSTF 224117419+720921
Draω DraSB/A4,8.5,28 dF5 V1,51,2ome Dra17370+684524[88] (S, M)
Dra17 / 16 Dra1 (17 = AB / 16 = C)CPM5,05,590,2″2018B8 V + A1 VB9,5 V + DA1,6Σ 4,7STFA 3016362+5255130[24] (SA/B), [46] (SCa/Cb, MCa/Cb)
2 (A/B)V5,46,43,2″2020B8 VA1 VSTF 2078
2 (Ca/Cb)SB5,5.B9,5 VDA1,64,00,7
Dra20 DraV7,17,30,9″2018320 aSTF 211816564+650270
Dra26 Dra1 (AB/C)CPM5,210,2737,9″2010F9 V + K3 VM1 VeΣ 1,8LDS 273617350+615314[24] (SA/B), [18] (SC, M)
2 (A/B)V/SB5,38,50,6″201376 aF9 VK3 V1,10,7BU 962
Dra39 Dra1 (AB/C)CPM5,08,088,9″2017A0 V + F6 VF7 IVSTF 232318239+584856[3] (UCa/Cb), [24] (SA/B)
2 (A/B)V5,18,13,8″20192500 aA0 VF6 VSTF 2323
2 (Ca/Cb)SB8,0.2,71 dF7 IV
Dra41 / 40 Dra1 (41 = A / 40 = B)V5,76,018,7″201918 000 aF7 V + F7 VK2 VΣ 2,5 ± 0,3STF 230818002+800045[3] (UBa/Bb), [114] (SAa/Ab, M)
2 (Aa/Ab)SI/SB6,26,70,1″20123,4 aF7 VF7 V1,3 ± 0,21,2 ± 0,2BAG 6
2 (Ba/Bb)SB5,6.10,5 dK2 V
DraHR 69831 (AB/C)CPM5,58,725,7″2012K1 III + G9 IIIF0STF 234818339+5221200[24] (SA/B)
2 (A/B)V6,26,40,2″2016210 aK1 IIIG9 IIIA 1377
DraGliese 687SI9,2.0,3″199324,5 aM3 V0,4CHR 6217364+68204,5[115] (M)
DraGliese 725V9,110,011,3″2019410 aM3 VM3,5 V0,30,3STF 239818428+59383,5[115] (M)
Equα EquI/SB3,9.98,8 dG7 IIIA4m2,11,0WRH 3521158+051558[5] (S, M)
Equγ EquV4,78,70,6″2014270 aA9 VpSrCrEuK1,80,6KNT 521103+100835[116] (U, SB, M)
Equδ EquV/SB5,25,50,3″20195,7 aF7 VF7 V1,21,2STT 53521145+100018[33] (S, M, d)
Equε Equ1 (AB/C)V5,37,110,6″2019F2 IV + F1 V + F7 IVG0 VΣ 5,1 ± 0,6STF 273720591+041854[3] (UAa/Ab), [24] (SB, SC), [2] (SAa/Ab, M)
2 (A/B)V6,06,30,0″2020104 aF2 IV + F1 VF7 IVΣ 3,3 ± 0,41,8STF 2737
3 (Aa/Ab)SB6,0.2,03 dF2 IVF1 V1,81,5
Eriθ EriV3,24,18,2″2020A3 IV–VA1 VPZ 202583-401849
Eriρ2 EriV5,48,91,4″2002BU 1103027-074174
Eriτ4 EriV3,99,55,7″2013JC 103195-214593
Erif EriV4,75,38,2″2020B9,5 VanA1 VaDUN 1603486-373751
Erip EriV5,85,911,3″2019490 aK0 VK0 VDUN 501398-56127,8[24] (S)
Eri15 EriV6,65,30,2″2018118 aSEE 2303184-223178
Eri20 EriSI5,56,80,1″202021,0 aHDS 45603363-1728130
Eri32 EriV4,85,96,9″2019G8 IIIA1 VSTF 47003543-025796
Eri39 EriV5,08,56,4″2015STF 51604144-101569
Eri40 (ο2) Eri1 (A/BC)CPM4,49,382,7″2019K0 VDA2,9 + M4,5 V0,8Σ 0,8STF 51804153-07395,0[117] (MA), [118] (MB/C)
2 (B/C)V9,511,28,2″2019223 aDA2,9M4,5 V0,60,2STF 518
Eri46 EriV5,79,21,3″2009BU 88104339-0644270
Eri53 EriV4,07,01,1″201677 aKUI 1804382-141836
Eri55 EriV6,76,89,3″2018F2 VpSrSiG5 IIISTF 59004436-0848650
Eri62 Eri1 (AB/C)CPM5,511,4127,1″2011GMC 1104564-0510240
1 (A/B)CPM5,58,966,1″2013SHJ 48
2 (Aa/Ab)SI5,59,60,4″2015HDS 641
Eri63 EriSB/A5,5.2,5 aK0 III–IVD2,00,463 Eri04598-101653[119] (S, M)
Forα ForV4,07,25,4″2017270 aF7 IVG7 VHJ 355503121-285914[24] (S)
Forη2 ForV6,010,04,9″2015HJ 353602502-3551120
Forκ For1 (A/B)SI/SB5,210,20,6″202026,5 aG1 VM1,2Σ 1,0LAF 2702225-234923[120] (UBa/Bb, S, M)
2 (Ba/Bb)SB10,2.3,67 dMM0,50,5
Forχ3 ForV6,510,16,5″2015I 5803282-3551100
Forω ForV5,07,711,0″2013B9 VaA5 VHJ 350602338-2814140
Gemα Gem (Kastor)1 (AB / C = YY Gem)CPM1,69,869,8″201713 000 aA1 V + M5 V + A4 V + M0 VM1 Ve + M1 Ve5,9 ± 0,4Σ 1,2STF 111007346+315316[3] (UAa/Ab, UBa/Bb), [121] (SAa/Ab, SBa/Bb, MAa/Ab, MBa/Bb), [33] (SCa/Cb, MCa/Cb)
2 (A/B)V1,93,05,4″2020460 aA1 V + M5 VA4 V + M0 V3,1 ± 0,22,8 ± 0,2STF 1110
2 (Ca/Cb)E/SB9,8.0,81 dM1 VeM1 Ve0,60,6YY Gem
3 (Aa/Ab)SB1,9.9,21 dA1 VM5 V2,70,4
3 (Ba/Bb)SB3,0.2,93 dA4 VM0 V2,30,5
Gemγ Gem (Alhena)SI/SB1,97,50,4″201212,6 aA0 IVmG2,81,1OCC 901106377+162434[122] (S, M)
Gemδ Gem1 (A/B)V3,68,25,5″20181420 aF1 IV–VK3 VSTF 106607201+215919[24] (S)
2 (Aa/Ab)SB/A3,6.6,1 aF1 IV–V
Gemη Gem1 (A/B)V3,56,21,7″20181030 aBU 100806149+2230210[3] (UAa/Ab)
2 (Aa/Ab)SB3,5.8,2 a
Gemκ GemV3,710,07,2″2019STT 17907444+242443
Gemν Gem1 (A/B)SI4,15,10,1″202019,1 aB6 IVeBeΣ 5,2 ± 0,81,8 ± 0,4BTZ 106290+2013170[106] (U, SB, M)
2 (Aa/Ab)A4,1.54,0 dB6 IVe2,7 ± 0,42,5 ± 0,4
Gemσ GemI/SB4,311,019,6 dK1 III4,2≥ 1,6CIA 707433+285338[111] (S, M)
Gem1 Gem1 (A/B)V/SB4,85,50,1″200813,4 aK0 IIIF6 IV1,9Σ 2,7KUI 2306041+231648[123] (UBa/Bb, S, M)
2 (Ba/Bb)SB/A5,5.9,60 dF6 IVG2 V1,71,0
Gem3 GemV5,98,50,6″2008B2,5 Ib21BU 124106097+23072500[124] (S, M, d)
Gem4 GemV7,57,80,1″2011610 aBU 105806105+2300640
Gem38 GemV4,87,87,3″20181750 aA9 VpG6 VSTF 98206546+131129[24] (S)
Gem51 GemSI5,75,80,1″1991HDS 100307134+1610180
Gem63 Gem1 (A/B)CPM5,211,043,0″2006F1 V + F6 V + F5 VΣ 3,6SHJ 36807277+212734[125] (M), [2] (SAa1/Aa2), [60] (SAb, SD)
2 (Aa/Ab)SI5,37,30,1″20182,1 aF1 V + F6 VF5 VΣ 2,61,0MCA 30
3 (Aa1/Aa2)SB/A5,3.1,93 dF1 VF6 V1,41,2
Gem68 GemSI5,47,60,2″2018170 aMCA 3207336+1550130
Gem82 GemSI6,97,30,3″2016580 aK0 IIIA0 IV:WRH 1507486+2308240
GemHR 28961 (A/B)V6,16,50,1″2015210 aK0 IIIK + M:1,5Σ 1,5STT 17507351+3058110[125] (S, M)
2 (Ba/Bb)A6,5.2,0 aKM:1,30,2
Gruθ Gru1 (AB/C)CPM4,37,8158,9″2002JC 2023069-433140
2 (A/B)V4,56,61,5″2013JC 20
Gruι GruSB/A3,9.1,1 aiot Gru23104-451556
Gruμ1 GruSI6,75,20,2″201919,3 aG8 IIIG2,11,6CHR 18722156-412174[13] (S), [27] (M)
Gruυ GruV5,78,20,9″2009BU 77323069-385487
Herα Her (Ras Algethi)1 (α1 = A / α2 = B)V3,55,44,7″20203600 aM5 Ib–IIG8 III + A9 IV–V2,1–3,3Σ 3,7–5,3STF 214017146+1423110[3] (UBa/Bb), [126] (S, M)
2 (Ba/Bb)SB5,4.51,6 dG8 IIIA9 IV–V2,1–3,01,6–2,3
Herβ HerI/SB2,8.1,1 a2,90,9BLA 416302+212943[127] (M)
Herδ Her- (A/B)O3,18,313,7″2019A1 VnG4 IV–VSTF 312717150+245023
1 (Aa/Ab)SI3,14,40,1″1989BNU 517150+2450320
Herζ HerV3,05,41,6″201934,5 aF9 IVG7 V1,51,0STF 208416413+313610,7[24] (S), [128] (M)
Herκ HerV5,16,227,0″2019G7 IIIK0 IVSTF 201016081+1703120
Herμ Her1 (μ1 = A / μ2 = BC)CPM3,59,835,5″2015G5 IV + M4M3 + M4Σ 1,4Σ 0,8STF 222017465+27438,3[40] (SB/C), [129] (SAa/Ab, MAa/Ab), [130] (MB/C)
2 (Aa/Ab)V(IR)3,512,71,8″201599 aG5 IVM41,10,3TRN 2
2 (B/C)V10,210,70,8″201543 aM3M40,40,4AC 7
Herν HerSI4,67,50,5″1996HDS 253417585+3011260
Herρ Her1 (A/B)V4,55,44,1″2019A0 IIIB9,5 IVnSTF 216117237+3709120
2 (Aa/Ab)SI4,95,90,3″2018A0 IIIMCA 48
Herσ HerSI4,27,70,1″20087,4 aB7A93,91,8LAB 416341+422677[11] (S, M)
Herφ HerI/SB4,2.1,5 aB9:p(HgMn)3,11,6NOI 216088+445667[131] (S, M)
Herc HerV6,16,10,1″20188,1 aA9 III–IVA9 III–IVΣ 3,3 ± 0,4HU 117617080+355656[24] (S), [9] (M)
Her25 HerSI5,68,30,1″200776 aCHR 5516254+372477
Her52 Her1 (A/BC)V4,88,52,2″2018870 aA1 VpSiSrCrK–M + K–M2,2 ± 0,2Σ 1,2BU 62716492+455955[58] (SB/C, MB/C), [132] (MA)
2 (B/C)V(aO)9,59,60,3″201256 aK–MK–MΣ 1,2A 1866
Her79 HerSI5,97,30,1″200810,4 aA1 VA8 VΣ 3,1CHR 6317375+241978[38] (S, M)
Her90 HerV5,38,81,6″2009BU 13017533+4000110
Her95 HerV4,95,26,4″2019A5 IIInG5 IIISTF 226418015+2136130
Her99 HerV5,19,01,4″201856 aF7 VK4 V0,90,5AC 1518070+303416[133] (S, M)
Her100 Her1 (A/B)V5,85,814,3″2019A3 VA3 VSTF 228018078+260663
2 (Aa/Ab)SI5,98,80,0″201936 aA3 VCHR 67
Her113 HerI/SB4,86,8246 dG7 IIA0 V3,22,2MKT 918547+2239130[5] (S, M)
Her49 SerV7,47,54,0″2019950 aG8 VG8 VSTF 202116133+133224[24] (S)
HerV772 Her1 (AB/C)V7,210,628,2″2015G1 V + K6 V + G8 VK7 V + M0 VSTT 34118058+212733[3] (UAa/Ab, UCa/Cb), [21] (SAa/Ab, SCa/Cb)
2 (A/B)V/SB7,48,80,1″201920,1 aG1 V + K6 VG8 VSTT 341
2 (Ca/Cb)SB10,6.25,8 dK7 VM0 V
3 (Aa/Ab)E/SB7,4.0,88 dG1 VK6 V
HerV819 Her1 (A/B)SI6,16,40,1″20175,5 aG7 III–IVF2 V + F8 V1,8Σ 2,6MCA 4717217+395871[21] (UBa/Bb, S), [134] (M)
2 (Ba/Bb)E/SB6,4.2,23 dF2 VF8 V1,51,1
HerHR 6594V5,69,41,4″2016144 aBU 125117420+155735
HerHR 6627V6,06,90,4″20181060 aB9A23,02,3STF 221517471+1742140[11] (S, M)
HerHR 6980V6,46,60,7″2019220 aG9 IIIG7 IIISTT 35918355+2336140[24] (S)
HerFuruhjelm 46V10,010,30,3″201613,0 aM3M3,50,40,4KUI 7917121+45406,0[40] (S), [112] (M)
HerDQ HerE14,4.0,19 dM3 VeD0,40,6500[30] (V), [135] (U, S2, M)
Horδ HorSI5,27,30,1″2019HDS 53004108-420055
Horη HorSI5,56,50,1″20203,2 aA6 VF0 VTOK 18602374-523342[136] (S)
Hyaβ HyaV4,75,50,6″2015HJ 447811529-335495
Hyaε Hya1 (ABC/D)V3,412,518,1″2017G5 III + A8 IV + dF7STF 127308468+062540[3] (UCa/Cb), [13] (S)
2 (AB/C)V3,56,72,9″2020370 aG5 III + A8 IVdF7STF 1273
3 (A/B)V/SB3,55,00,2″201815,1 aG5 IIIA8 IVSP 1
3 (Ca/Cb)SB6,7.9,90 ddF7
Hyaλ HyaSB/A3,6.4,3 alam Hya10106-122133
Hyaχ1 HyaSI5,75,70,1″20207,6 aF4 VF4 VΣ 3,9 ± 0,6FIN 4711053-271844[24] (S), [53] (M)
Hyaχ2 HyaE/SB5,7.2,27 dB8 VB8 V3,62,6220[30] (V), [33] (U, S, M, d)
Hya15 Hya1 (A/B)V5,87,41,2″2017BU 58708516-0711140[3] (U)
2 (Aa/Ab)SB5,8.2,90 d
Hya17 HyaV6,76,94,0″2020kA4hF1mF2kA1hF2mF3STF 129508555-075888
Hya19 HyaV5,69,51,3″2006KUI 3809087-0835320
Hya23 Hya1 (A/B)V5,310,81,6″2019KUI 4009167-0621100[3] (U)
2 (Aa/Ab)SB/A5,3.2,5 a
Hya29 Hya1 (AB/C)V6,511,310,9″2019A 158809272-0913230
2 (A/B)V7,07,80,4″2011BU 590
Hya52 Hya1 (AB/C)V5,010,02,4″2010BU 94014282-2929120
2 (A/B)SI5,75,70,1″1989FIN 306
Hya54 HyaV5,17,38,1″2015F0 VSrG1 VH 3 9714460-252730
Hya59 HyaV6,26,80,5″2019430 aA4 VA6 VBU 23914587-2739110[24] (S)
Hya17 CrtV5,65,79,6″2015F8 VF8 VH 3 9611323-291626
HyaHR 5120V5,76,610,2″2015A7 III–IVF0 VnH N 6913368-2630100
Hyiα HyiA2,9.1,7 aF0 IValp Hyi01588-613422
Indδ IndSI4,86,00,1″202012,2 aA8 IVG0–7 IV1,8 ± 0,31,3 ± 0,2FIN 30721579-550058[16] (S, M)
Indε Ind1 (A/B)CPM4,824,0403,1″2010K5 VT1 + T60,8Σ 0,12SOZ 122034-56473,6[137] (SA, MA), [138] (SBa/Bb, MBa/Bb)
2 (Ba/Bb)V(aO)24,1> 26,60,9″200511,2 aT1T60,070,05VLK 1
Indθ Ind1 (A/B)V4,56,97,3″2015A5 IV–V + A5 VG0VHJ 525821199-532730[136] (UAa/Ab, SAb)
2 (Aa/Ab)I4,95,1≈ 1,3 aA5 IV–VA5 VMRN 3
Lac8 Lac1 (A/B)O?5,76,322,3″2018B1 IVeB1,5 VsSTF 292222359+3938550
2 (Aa/Ab)SI5,7.0,0″201842 aCHR 112
Leoα Leo (Regulus)1 (A/BC)CPM1,48,2179,2″2019B7 V + DK2 V + M4 VΣ 4,0 ± 1,5Σ ≈ 1,0STFB 610084+115824[139] (UAa/Ab), [140] (MAa/Ab), [141] (S, MB/C)
2 (Aa/Ab)SB1,4.40,1 dB7 VD3,7 ± 1,40,3 ± 0,1
2 (B/C)V8,213,22,2″2019K2 VM4 V≈ 0,8≈ 0,2HDO 127
Leoγ Leo (Algieba)V2,43,64,7″2020550 aK1 IIIG7 IIIbSTF 142410200+195040
Leoη LeoSI3,58,40,4″2015WRH 1810073+1646390
Leoι LeoV4,16,72,2″2019184 aF1 IVG3 V1,6–1,7STF 153611239+103224[24] (S), [142] (M)
Leoκ LeoV4,69,72,0″2015BU 10509247+261162
Leoο LeoI/SB3,5.14,5 dF8 IIImA7m2,11,9HMM 109412+095440[5] (S, M)
Leoχ LeoV4,711,04,9″2018KUI 5411050+072029
Leoω LeoV/SB5,77,30,9″2019118 aG1 V1,9 ± 1,00,3 ± 0,9STF 135609285+090333[9] (M)
Leo19 LeoSI6,46,90,1″201915,2 aMCA 3409474+113485
Leo49 Leo1 (A/B)V5,87,92,0″2019A2 VBSTF 145010350+0839130[21] (U, S)
2 (Aa/Ab)E/SB5,8.2,45 d
Leo54 LeoV4,56,36,8″2019A1 VA2 VnSTF 148710556+244588
Leo55 LeoV6,09,01,1″2019139 aBU 107610557+004446
Leo65 LeoV5,79,72,8″2015BU 59911069+015761
Leo73 LeoSI/SB5,57,30,1″20208,1 aMCA 3511159+1318110
Leo83 LeoV6,67,528,6″201932 000 aK0 IVK2 IV–VSTF 154011268+030118[24] (S)
Leo88 LeoV6,39,115,7″20203500 aF9,5 VK5STF 154711317+142224
Leo90 LeoV6,37,33,1″2018B6,6 IVB3,7 VSTF 155211347+1648580
Leo93 Leo1 (A/B)CPM4,69,075,5″2020G7 III + A7 IVG5Σ 4,2 ± 0,3STFB 711480+201371[143] (SAa/Ab, M)
2 (Aa/Ab)I/SB5,15,671,7 dG7 IIIA7 IV2,2 ± 0,22,0 ± 0,2MKT 7
LeoHR 4465V6,46,80,7″20191730 aSTF 155511363+274772
Lepβ LepV2,97,52,7″2017BU 32005282-204649
Lepι LepV4,59,911,9″2015B7,5 VnG8 VeSTF 65505123-115271
Lepκ LepV4,46,82,2″2008STF 66105132-1256220
LepHR 1771V5,46,63,5″2015G8–K0 II–IIIA2–3HJ 375205218-2446110
LepGliese 229V(IR)8,417,16,2″2011M1 VT6,50,70,03–0,04NAJ 106106-21525,8[115] (M1), [144] (M2)
Libα Lib (Zuben-el-dschenubi)1 (α2/1 = AB / D = KU Lib)CPM2,77,32,6°A4 IV–V + F: + F4 V + M:G8 V (k)Σ ≈ 5,7≈ 1,0CAB 114509-160323[145]AB/D, UBa/Bb, S, M), [146] (UAa/Ab)
2 (α2 = A / α1 = B)CPM2,75,2231,1″2012A4 IV–V + F:F4 V + M:Σ ≈ 3,7Σ ≈ 2,0SHJ 186
3 (Aa/Ab)SB3,33,770,3 dA4 IV–VF:≈ 2,2≈ 1,5DSG 17
3 (Ba/Bb)V(aO)/SB5,2.0,2″201816,1 aF4 VM:≈ 1,4–1,5≈ 0,5–0,6BEU 19
Libι Lib1 (A/BC)CPM4,510,957,8″2013B8 VpSi + B9 IV–VG5 IVΣ 6,1 ± 2,3H 6 4415122-1948120[13] (S), [53] (M)
2 (Aa/Ab)V/SB5,15,50,1″201923,5 aB8 VpSiB9 IV–VΣ 6,1 ± 2,3B 2351
2 (B/C)V10,911,42,4″2015G5 IVBU 618
Libμ LibV5,66,61,9″2019610 aBU 10614493-140973
Libυ LibV3,610,82,0″2002I 127115370-280869
Lib5 LibV6,510,14,7″2001HLD 2014460-1528170
Lib18 LibV6,09,819,6″2013STF 189414589-1109110
Lib47 LibV6,08,50,4″2018360 aHU 127415550-1923240
LibGliese 5701 (AB/D)CPM5,813,9259,8″1998K4 V + M1,5 V + M3 VT7,5Σ 1,6≈ 0,03H N 2814575-21256,5[1] (MBa/Bb, d), [2] (SA, SBa/Bb, MA), [147] (SD, MD)
2 (A/B)V5,98,226,2″20206500 aK4 VM1,5 V + M3 V0,7Σ 0,9H N 28
3 (Ba/Bb)I/SB8,29,8309 dM1,5 VM3 V0,50,4
LMiβ LMiV/SB4,66,00,5″201838,2 aK0 III–IVF8 VHU 87910279+364247[24] (S)
LMi11 LMiV4,812,56,7″2012240 aG8 VaM5 VHU 112809357+354911,2
Lupγ Lup1 (A/B)V3,04,50,8″2020190 aB1 V + B2 VB3 V207HJ 478615351-4110130[3] (UAa/Ab), [2] (S, M)
2 (Aa/Ab)SB4,5.2,81 dB1 VB2 V128
Lupε Lup1 (A/B)V3,65,00,1″2019740 aCOP 215227-4441160[3] (UAa/Ab)
2 (Aa/Ab)SB3,6.4,56 d
Lupζ LupCPM3,56,771,7″2020G8 IIIF6 VDUN 17615123-520636
Lupη LupV3,47,514,8″2020RMK 2116001-3824140
Lupκ LupV3,85,526,3″2020B9,5 VneA3–5 VDUN 17715119-484454
Lupλ LupV4,45,20,1″201971 aB3 VB3 V8,15,8SEE 21915088-4517170[24] (S), [68] (M, d)
Lupμ Lup1 (AB/C)V4,26,323,1″2019B7 V + B7 VA2–3 VDUN 18015185-4753100
2 (A/B)V4,95,00,7″2019770 aB7 VB7 VHJ 4753
Lupξ LupV5,15,610,2″2020A3 VB9 VPZ 415569-335865
Lupο LupSI5,34,80,0″202033 aFIN 31914516-4335120
Lupπ LupV4,64,61,6″2019B5 IVB5 VHJ 472815051-4703150
Lupτ2 LupV4,95,60,1″202026,0 aF4 IVA7:I 40214262-452398[13] (S)
Lupυ LupV5,410,91,6″2015RST 183915248-3943120
Lupd LupV4,76,52,1″2016HJ 478815359-4457130
Lyn4 LynV6,17,70,6″2016500 aSTF 88106221+5922150
Lyn12 Lyn1 (AB/C)V5,47,18,9″2019A1,5 V + A2 VkA6hF1mF1STF 94806462+592766
2 (A/B)V5,46,01,9″2019730 aA1,5 VA2 VSTF 948
Lyn14 LynV6,06,50,3″2015320 aSTF 96306531+5927150
Lyn15 LynV4,55,50,7″2017260 aSTT 15906573+582555
Lyn19 Lyn1 (AB/D)CPM5,47,6215,3″2002B8 V + B9 VA0 VSTF 106207229+5517210
2 (A/B)V5,86,713,8″2019B8 VB9 VSTF 1062
Lyn20 LynV7,57,714,9″2017A8 VA6 VSTF 106507223+5009160
Lyn38 Lyn1 (A/B)V3,96,12,6″20192800 aA1 VA4 VSTF 133409188+364838
2 (Ba/Bb)SI6,1.0,2″2004CHR 173
Lyn10 UMaV/SB4,26,50,4″201721,8 aF3 VK0 V1,40,9KUI 3709006+414716[148] (S, M)
LynHR 2486V6,36,34,5″20192000 aF6 VF4 VSTF 95806482+554243
Lyrβ Lyr1 (A/B)CPM3,46,745,7″2017B6–8 II + BB7 VΣ 16STFA 3918501+3322310[149] (SAa1/Aa2, M, d)
2 (Aa1/Aa2)E/I/SB3,64,012,9 dB6–8 IIB133CIA 3
Lyrε Lyr1 (ε1 = AB / ε2 = CD)CPM4,74,6209,5″2016≈ 340 000 aA3 V + F0 VA6 Vn + A7 VnΣ 3,9Σ 3,6STFA 3718443+394050[150] (UAB/CD, M)
2 (A/B)V5,26,12,2″20202800 aA3 VF0 V2,31,6STF 2382
2 (C/D)V5,35,42,4″2020720 aA6 VnA7 Vn1,91,7STF 2383
Lyrζ Lyr1 (ζ1 = A / ζ2 = D)CPM4,35,643,7″2018kA5hF0VmF3F1 VnnSTFA 3818448+373648[3] (U)
2 (Aa/Ab)SB4,3.4,3 d
Lyrη Lyr1 (A/B)O?4,48,628,4″2017B2,5 IVA0 IVnSTF 248719138+3909430[3] (U)
2 (Aa/Ab)SB4,4.56,4 dB2,5 IV
Lyrι LyrSI5,36,40,1″2014220 aSTA 319073+3606280
LyrHR 7162V5,38,01,3″201563 aF9 VK1 V1,10,7BU 64818570+325415[36] (M)
LyrGJ 758V(aO)4,8.1,6″201796 aG8 VT71,00,04–0,05THA 119236+331316[151] (S, M)
Lyr17 Lyr1 (A/B)V5,39,13,2″2017> 1200 aF0 VG:≈ 1,8≈ 0,8STF 246119074+323044[152] (UA/B, S, M), [3] (UAa/Ab)
2 (Aa/Ab)SB5,3.42,9 dF0 V
Micα MicO?5,010,120,2″2010HJ 522420500-3347120
Micθ2 MicV6,26,90,3″2019460 aBU 76621244-4100120
Monβ Mon1 (β1/2 = AB / C)V4,05,49,9″2019B4 Ve(shell) + B2 Vn(e)B3 V:nneSTF 91906288-0702210
1 (β1 = A / β2 = B)V4,65,07,1″2019B4 Ve(shell)B2 Vn(e)STF 919
Monε MonV4,46,612,2″2019A7 IVF4 VSTF 90006238+043641
Mon3 MonV5,08,01,9″1996BU 1606018-1036220
Mon14 MonV6,510,611,0″2012STF 93806348+0734200
Mon15 Mon1 (A/B)O?4,67,83,0″2018O7 V((f))zB2Σ 45 ± 4STF 95006410+0954720[153] (U, S, M, d)
2 (Aa/Ab)SI/SB4,75,90,1″2018108 aO7 V((f))zΣ 45 ± 4CHR 168
MonRoss 614V11,014,81,3″202016,6 aM4 VM5,5 V0,20,11B 260106293-02484,1[154] (S), [155] (M)
MonWISE 0720−0846 (Scholz’ Stern)V(aO)18,3.0,4″20198,1 aM9,5T5,50,090,06BUG 1707200-08476,8[156] (V)[157] (U, S, M, d)
Musβ MusV3,54,01,0″2019460 aB2 VB3 VR 20712463-6806100[24] (S)
Musδ MusSB/A3,6.1,2 adel Mus13023-713328
Musη Mus1 (AB/C)CPM4,87,258,2″2015B7 IIIB7 IIIDUN 13113152-6754120[3] (U)
2 (A/B)V(IR)4,8.2,5″2015B7 IIIHUB 11
3 (Aa/Ab)SB4,8.20,0 dB7 III
Musθ Mus1 (A/B)V5,77,65,5″2016WC5–6 + O6–7 V + O9,5–B0 IabO9 IIIRMK 1613081-65182300[158] (SAa1/Aa2, UAa1/Aa2, d)
2 (Aa/Ab)SI5,96,60,0″2016WC5–6 + O6–7 VO9,5–B0 IabCHR 247
3 (Aa1/Aa2)SB5,9.19,1 dWC5–6O6–7 V
Musλ MusA3,6.1,2 alam Mus11456-664439
Mus12 G. Mus1 (A/B)V5,56,60,2″201897 aK4 III + dF–GA0 V + A2 VB 170511395-6524150[21] (UAa/Ab, UBa/Bb, S)
2 (Aa/Ab)SB5,5.61 dK4 IIIdF–G
2 (Ba/Bb)E/SB6,6.2,75 dA0 VA2 V
MusHR 4401V5,46,62,5″2016B5 IVB9,5 IVHJ 443211234-6457120
Norε Nor1 (A/B)V4,56,122,9″2016B3 V + B3 VAHJ 485316272-4733160[159] (U, SAa/Ab)
2 (Aa/Ab)SB4,5.3,26 dB3 VB3 V
Norι1 Nor1 (AB/C)V4,68,011,0″2019A5 V + A6 VHJ 482516035-574739[13] (S)
2 (A/B)V5,25,80,2″202026,8 aA5 VA6 VSEE 258
Norλ NorV5,86,90,4″201868 aA4A7SEE 27116193-4240110[13] (S)
Octι OctV5,96,90,7″2019RST 281912550-8507110
Octλ OctV5,67,33,5″2008HJ 527821509-8243130
Octμ2 OctV6,57,116,6″2015DUN 23220417-752140
Octν OctSB3,7.2,8 aBLM 621415-772319
Ophα Oph (Ras Alhague)SI2,15,00,7″20188,6 aA5 IVK5–7 V2,40,9MCY 417349+123415[160] (S, M)
Ophη OphV3,13,30,5″201988 aA1 IVA1 IV3,03,5BU 111817104-154427[60] (S), [161] (M)
Ophλ Oph1 (AB/C)CPM3,811,8119,6″2013A0 V + A4 VΣ 4,8STF 205516309+015953[24] (S), [11] (M)
2 (A/B)V4,25,21,4″2019129 aA0 VA4 V2,72,1STF 2055
Ophξ OphV4,48,94,1″2015420 aF3 VK3:DON 83217210-210717
Ophο OphV5,26,610,8″2019G8 IIIF6 IV–VH 3 2517180-241786
Ophρ OphV5,15,73,0″20174200 aB2 IVB2 VH 2 1916256-2327110
Ophτ Oph1 (A/B)V5,35,91,5″2019260 aF2 VF5 VSTF 226218031-081151[3] (UAa/Ab), [13] (S)
2 (Aa/Ab)SB5,3.184 dF2 V
Ophυ Oph1 (A/B)V4,78,81,0″201976 aA3mΣ 5,0 ± 0,8RST 394916278-082241[3] (UAa/Ab), [58] (S, M)
2 (Aa/Ab)SB4,7.27,2 dA3m
Oph19 OphO6,19,723,9″2019STF 209616472+0204220
Oph21 OphV5,87,30,8″2019990 aSTT 31516514+0113120
Oph24 OphV6,36,31,0″20151100 aBU 111716568-2309120
Oph36 Oph1 (AB/C)CPM4,46,5731,6″2000K0 V + K1 VK5 VΣ 1,6SHJ 24317153-26365,9[162] (S, M)
2 (A/B)V5,15,15,1″2017470 aK0 VK1 V0,80,8SHJ 243
Oph41 OphV4,97,50,7″2019141 aA 298417166-002762
Oph47 OphI/SB4,95,826,3 d1,51,2MKT 1417266-050531[163] (S, M, d)
Oph61 OphV6,16,520,8″2019A0 IVA0 IVSTF 220217446+023597
Oph68 OphV4,57,50,4″2018210 aBU 112518018+011890
Oph70 OphV/SB4,26,26,4″201988 aK0 VK5 V0,90,7STF 227218055+02305,1[49] (S, M)
Oph73 OphV6,07,50,8″2019290 aA8F61,71,2STF 228118096+040055[11] (S, M)
OphHR 6367V6,37,80,7″2018200 aA1 VF3 VA 114517082-010581[24] (S)
OphHR 6516V6,16,20,4″201946,4 aG9 IV–VG9 IV–V1,00,9STF 217317304-010416[1] (S, M, d)
OphV1054 Oph1 (ABC/F)CPM9,016,9230,7″2005M3,5 Ve + M + M + M3,5 VM7 VeΣ 1,20,08WNO 5516555-08206,2[164] (UBa/Bb, SBa/Bb, M)
2 (AB/C)CPM9,411,872,2″2014M3,5 Ve + M + MM3,5 VΣ 1,00,2LDS 573
3 (A/B)V/SB9,79,80,2″20191,7 aM3,5 VeM + M0,4Σ 0,6KUI 75
4 (Ba/Bb)SB9,8.2,97 dMM0,30,3
OphRS OphSB10,8.1,2 aM0–2 IIID0,7–0,81,2–1,42400[30] (V), [165] (U, S, M)
Oriβ Ori (Rigel)1 (A/BC)V0,36,810,3″2020B8 IaeB9 + B9STF 66805145-0812260[3] (U)
2 (B/C)V7,57,60,1″2005B9B9BU 555
3 (Ba/Bb)SB7,5.9,86 dB9
Oriδ Ori (Mintaka)1 (Aa/Ab)V2,43,80,3″2019350 aO9,5 II + B0 VB0 IVΣ 32,322,5HEI 4205320-0018380[5] (UAa1/Aa2, SAa1/Aa2, MAa1/Aa2), [166] (SAb, MAb, d)
2 (Aa1/Aa2)E/SB2,55,65,73 dO9,5 IIB0 V23,29,1
Oriζ Ori (Alnitak)1 (A/B)V1,93,72,4″20171510 aO9,5 Ib + B0,5 IVB0 IIIΣ 47 ± 13STF 77405407-0157390[167] (S, M, d)
2 (Aa/Ab)I/SB2,04,07,4 aO9,5 IbB0,5 IV33 ± 1014 ± 3NOI 1
Oriη Ori1 (A/B)V3,64,91,9″2020B1 V + B3 V + B2 VB2:DA 505245-0224300[3] (UAa1/Aa2), [21] (SAa/Ab, SAa1/Ab2)
2 (Aa/Ab)SI/SB3,85,30,0″20199,4 aB1 V + B3 VB2 VMCA 18
3 (Aa1/Aa2)E/SB3,8.7,98 dB1 VB3 V
Oriθ1 Ori A1 (Aa/Ab)SI6,69,80,2″2018≈ 210 aB0,5Σ ≈ 18,54PTR 105353-0523410[168] (U, S, M), [169] (d)
2 (Aa1/Aa2)E6,6.65,1 dB0,5≈ 16≈ 2,5
Oriθ1 Ori B1 (Ba,Bc,Be/
Bb,Bd)
SI7,58,50,9″2012≈ 1920–
11 000 a
B1 V + A + B:Σ ≈ 15Σ 7SMN 505353-0523410[168] (U, S, M), [169] (d)
1? (Ba,Be/Bc)SI7,510,50,6″20122000 aB1 V + A + B:Σ ≈ 14≈ 1SMN 5
2? (Bb/Bd)SI> 10> 10,80,1″2012≈ 200 a43PTR 1
3? (Ba/Be)I7,5> 7,3B1 V + AB:Σ ≈ 94–6GVT 1
4? (Ba1/Ba2)E7,5.6,47 dB1 VA≈ 7≈ 2
Oriθ1 Ori C1 (Ca/Cb)I/SB5,36,711,4 aO6 VpB0 VΣ 33 ± 511 ± 5WGT 105353-0523410[170] (SCa/Cb, MCa/Cb), [168] (UCa1/Ca2, MCa1/Ca2), [169] (d)
2 (Ca1/Ca2)SB5,3.61,5 dO6 Vp311
Oriθ1 Ori DI/SB6,4> 6,953,0 dB1,5 VB166GVT 105353-0523410[168] (U, S, M), [169] (d)
Oriι Ori1 (A/B)V2,87,712,5″2018O9 III + B1 III–IV + B2: IV:B2 VΣ > 36STF 75205354-0555410[171] (U, SAa1/Aa2, MAa1/Aa2), [81] (SAa/Ab, SB, d)
2 (Aa/Ab)SI3,06,30,1″2016O9 III + B1 III–IVB2: IV:Σ 36CHR 250
3 (Aa1/Aa2)SB3,0.29,1 dO9 IIIB1 III–IV2313
Oriλ OriV3,55,54,3″2019O8 IIIfB0,5 VSTF 73805351+0956340
Oriμ Ori1 (A/B)V4,36,30,0″202018,6 aA5 V + G5 VF5 V: + F5 V:Σ 3,0Σ 2,7A 271506024+093946[33][134] (S, M, d)
2 (Aa/Ab)SB/A4,4.4,45 dA5 VG5 V2,40,7
2 (Ba/Bb)SB/A6,3.4,78 dF5 V:F5 V:1,41,4
Oriρ Ori1 (A/B)V4,68,56,4″2018STF 65405133+0252110
2 (Aa/Ab)SB/A4,5.2,8 a
Oriσ Ori1 (A/B)V4,15,30,3″2015160 aO9 VB0,5 VΣ 3011,5 ± 1,5BU 103205387-0236390[24] (S), [172] (UAa/Ab, M)
2 (Aa/Ab)I/SB4,1.143 dO9 V1712,8NOI 6
Oriχ1 OriSI/SB4,57,50,0″201914,1 aG0 V1,00,15KNG 105544+20178,7[173] (S, M)
Ori14 OriV5,76,61,0″2020198 aAmAm1,81,5STT 9805079+083062[13] (S), [107] (M)
Ori23 OriV5,06,832,0″2019B2 IV–VB8–9STF 69605228+0333370
Ori32 OriV4,55,81,3″2017610 aB5 IVB7 V4,43,3STF 72805308+055793[24] (S), [11] (M)
Ori33 OriV5,76,71,8″2017STF 72905312+0318350
Ori42 Ori1 (A/B)V4,67,51,2″2020B1 VDA 405354-0450400[174] (S, d)
2 (Aa/Ab)SI4,96,30,2″2020
Ori52 OriV6,06,01,0″20191260 aA5 VF0STF 79505480+0627140[13] (S)
Ori64 Ori1 (A/B)SI/SB5,16,10,1″201913,2 aB7–8 IV–V + B7–8 IV–VB5–6 IV–VΣ 8,2 ± 0,73,8 ± 0,3MCA 2406035+1941270[3] (UAa/Ab), [175] (S, M)
2 (Aa/Ab)SB5,1.14,6 dB7–8 IV–VB7–8 IV–V4,3 ± 0,43,9 ± 0,3
Ori75 OriSI6,16,10,1″20189,2 aFIN 33106171+095778
OriV1031 Ori1 (A/B)SI6,37,80,2″201931 aA8 III–IV + A5 IV–VA6 IV–VΣ 4,8≈ 2,2MCA 2205474-1032460[21] (UAa/Ab, S), [176] (M)
2 (Aa/Ab)E/SB6,3.3,41 dA8 III–IVA5 IV–V2,52,3
OriHR 2174V5,76,729,1″2019B9 VA2 IVSTF 85506090+0230180
Pavξ Pav1 (A/B)V4,58,13,7″2016GLE 218232-6130140
2 (Aa/Ab)SB/A4,5.6,1 a
PavHR 7278V6,16,40,5″2019157 aA5 VA8 VGLE 319172-664092[13] (S)
PavSCR 1845-6357V(aO)17,4.1,2″2006M8,5T60,04–0,05BIL 118451-63583,9[30] (V), [177] (S, M, d)
Pegη Peg (Matar)SI/SB4,16,90,1″20052,2 aG2 II–IIIA5 V3,2 ± 0,42,0 ± 0,2BLA 1122430+301373[178] (S, M)
Pegι PegI/SB3,55,710,2 dF5 VG8 V1,30,8PTI 122070+252111,5[33] (S, M)
Pegκ Peg1 (A/B)V/SB4,95,00,2″201111,6 aF5 IVF5 IV + G–K1,5Σ 2,5BU 98921446+253934[179] (S, M)
2 (Ba/Bb)SB/A5,0.5,97 dF5 IVG–K1,70,8
Pegψ PegSI4,7.0,1″199555 aMCA 7623578+2508150
Peg1 Peg1 (A/B)CPM4,29,336,6″202017 500 aK1 IIIK0 VSTFB 1121221+194848[3] (UBa/Bb)
2 (Ba/Bb)SB9,3.3,0 aK0 V
Peg3 PegCPM6,27,538,7″2020A2 VF0 VSTFA 5621377+063788
Peg13 PegV5,76,90,2″201426,3 aF2 III–IV2,7 ± 0,3COU 1421501+171733[9] (M)
Peg33 PegV6,39,21,0″2017410 aF7 IVSTF 290022237+205133
Peg34 Peg1 (A/B)V5,812,54,1″2015420 aF7 VK4BU 29022266+042440[13] (S)
2 (Aa/Ab)SB/A5,8.2,4 aF7 V
Peg37 Peg1 (A/B)V5,87,30,2″2020124 aF4 IVF7 IV1,7Σ 2,3STF 291222300+042653[24] (S), [180] (U, M)
2 (Ba/Bb)SI/SB7,88,20,0″20202,1 aF4 IV1,21,1STF 2912
Peg52 PegV6,17,30,5″2016250 aA8 VF6 VSTT 48322592+114494[24] (S)
Peg57 Peg- (A/B)O?5,210,132,6″2015M4S III + A6 VΣ ≈ 4,9STF 298223095+0841240[181] (U, SAb, M)
1 (Aa/Ab)SI/SB5,28,20,2″2014100–500 aM4S IIIA6 V≈ 3≈ 1,9YSC 1623095+0841240
Peg64 PegV5,47,80,4″2002BU 71823219+3149170
Peg72 PegV5,76,10,6″2018490 aK3 IIIK5 III≈ 2≈ 2BU 72023340+3120170[24] (S), [36] (M)
Peg78 PegV5,18,10,8″2016640 aAGC 1423440+292269
Peg85 PegV5,88,90,4″201526,3 aG3 VK6 V0,90,7BU 73300022+270513[49] (S, M)
PegIK PegSB6,114,421,7 dA8 VDA1,51,51,247[46] (V, U, S, M)
PegEQ PegV10,512,45,4″2017230 aM4M5WIR 123317+19566,2
Perβ Per (Algol)1 (Aa/Ab)SI/SB2,14,60,1″20101,9 aB8 V + K2 IVAmΣ 3,91,8LAB 203082+405728[182] (S, M)
2 (Aa1/Aa2)E/I/SB2,1.2,87 dB8 VK2 IV3,20,7CSI 1
Perγ PerE/SI/SB3,63,80,1″200714,6 aG8 IIIaA2 IV2,51,4WRH 2903048+533075[5] (S, M)
Perε Per1 (A/B)V2,98,98,8″2020B1,5 IIIA2 VΣ ≈ 15STF 47103579+4001200[183] (U, M)
2 (Aa/Ab)SB2,9.14,1 dB1,5 III13,5 ± 2,00,9–1,8
Perζ Per1 (A/E)CPM2,910,0120,0″2012B1 Ib + B9 VA2VSTF 46403541+3153230
2 (A/B)V2,99,212,8″2020B1 IbB9 VSTF 464
Perη Per (Miram)CPM3,88,528,7″2018K3 Ib–IIaB9 VSTF 30702507+5554270
Perθ PerV4,210,021,2″20202700 aF7 VM1 VSTF 29602442+491411,1[24] (S)
Perο Per1 (A/B)V3,96,71,1″2015B1 III + B2 VΣ 24BU 53503443+3217340[184] (U, S), [185] (M)
2 (Aa/Ab)SB3,9.4,42 dB1 IIIB2 V1410
Perτ PerE/SI/SB4,25,94,1 aG8 IIIaA6 V2,11,8LAB 102543+524664[5] (S, M)
Perφ PerSI/SB4,17,80,0″2013127 dBesdOCIA 601437+5041220[60] (S)
Per12 PerSI/SB5,55,90,0″2016331 dF8 VG1,5 V1,41,2MCA 802422+401224[33] (S, M, d)
Per20 Per1 (AB/C)V5,49,714,0″2014F3 IV–V + F6 IV–VΣ 3,9 ± 0,6STF 31802537+382071[24] (S), [9] (M)
2 (A/B)V5,86,80,2″200831,6 aF3 IV–VF6 IV–VΣ 3,9 ± 0,6BU 524
Per34 PerV4,77,30,6″2016BU 117903294+4931170
Per56 Per1 (A/B)V5,89,34,2″20171890 aF4 V + DA3,1F2Σ 2,4STT 8104246+335841[46] (UAa/Ab, SAa/Ab, M)
2 (Aa/Ab)V(HST)5,815,00,4″199947 aF4 VDA3,11,50,9BAS 5
2 (Ba/Bb)V(HST)9,611,30,6″2002F2BAS 5
Per57 PerO6,16,8121,4″2013F0 VF0SHJ 4404334+430461
Per58 PerSB/A4,3.28,8 aK0 II–IIIB9 V58 Per04367+4116240
PerHR 890V5,26,212,0″2019B7 VB9 VSTF 33103009+5221140
Pheα PheSB/A2,4.10,5 aalp Phe00262-421726
Pheβ PheV4,14,20,6″2018171 aSLR 101061-464350[186] (d)
Pheγ PheSB/A3,4.194 dgam Phe01284-431972
Pheζ Phe1 (AB/C)V4,08,26,8″2016B6 V + B8 V + A7 VF1 VΣ 8,1RMK 201084-551592[21] (UAa/Ab, SB, MB), [33] (SAa/Ab, MAa/Ab)
2 (A/B)V4,06,80,6″2020290 aB6 VA7 VΣ 6,41,7RST 1205
3 (Aa/Ab)E/SB4,0.1,67 dB6 VB8 V3,92,5
Pheη Phe1 (A/B)V4,411,520,1″1999A0 IV + G:–K:HJ 339100434-572876[136] (U, S, M)
2 (Aa/Ab)I/A4,48,5≈ 10 aA0 IVG:–K:2,8MRN 1
Pheξ PheV5,710,013,1″2015HJ 338700418-563068
Pheυ PheV5,56,90,3″202028,4 aA2 IVA4 IVΣ 3,2 ± 0,4RST 335201078-412962[13] (S), [58] (M)
Picα PicA3,3.4,2 aalp Pic06482-615630
Picθ Pic1 (AB/C)CPM6,26,738,3″2008A0 VA2 VDUN 2005248-5219160
2 (A/B)V6,87,40,3″2019123 aA0 VI 345
Picι PicV5,66,212,8″2009DUN 1804509-532840
Picμ PicV5,69,32,5″2019B9I VnA8 V:pHJ 387406320-5845190
PsAα PsA (Fomalhaut)1 (AB/C)CPM1,212,65,7°A3 Va + K4eM4 VΣ 2,60,2MAM 122577-29377,7[187]AB/C, ρA/B, S, M)
2 (A / B = TW PsA)CPM1,26,62,0°A3 VaK4e1,90,7SHY 106
PsAβ PsAV4,37,130,4″2015A1 VaG1 VPZ 722315-322144
PsAγ PsAV4,58,24,0″2010A0 VpSrCrEuF5 VHJ 536722525-325362
PsAδ PsAV4,39,24,9″2015HWE 9122559-323253
PsAη PsAV5,76,81,9″2017B8(shell) IIIB8,5 IVBU 27622008-2827250
PsAθ PsASI5,85,80,1″202020,0 aA1 VA1 V2,3 ± 0,42,3 ± 0,4FIN 33021477-305490[16] (S, M, d)
Pscα Psc (Alrescha)V4,15,21,9″20191950 akA0hA7SrkA2hF2mF2STF 20202020+024646
Pscζ Psc1 (A/BC)V5,26,323,1″2020A7 IVF7 V + G7 VSTF 10001137+073540[3] (U, SBa/Bb)
2 (B/C)V6,312,22,0″2015F7 V + G7 VBU 1029
3 (Ba/Bb)SB6,3.9,08 dF7 VG7 V
Pscη PscV3,87,50,6″2008850 aBU 50601315+1521110
Pscψ1 Psc1 (A/B)V5,35,529,9″2020A0 IV–VnnB9 IVnSTF 8801057+212884
2 (Aa/Ab)SI5,76,60,1″201714,4 aA0 IV–VnnYR 6
Psc24 PscSI6,76,70,1″202022,8 aG9 IIIA0 VΣ 2,9 ± 0,8FIN 35923529-0309170[20] (S, M)
Psc27 PscV4,98,90,7″2018930 aBU 73023587-033372
Psc33 PscSB/A4,6.72,9 d1,7 ± 0,40,8 ± 0,233 Psc00053-054239[188] (M)
Psc34 PscV5,59,47,6″2015B9 VnG5 VeSTF 500100+110993
Psc35 Psc1 (A/B)V6,17,511,2″2019F1 IV–V + F1 IV–VA7STF 1200150+084975[3] (U, SAa/Ab)
2 (Aa/Ab)E/SB6,1.0,84 dF1 IV–VF1 IV–V
Psc51 PscSI5,88,00,2″202027,5 aMCA 100324+065789
Psc55 PscV5,68,56,6″2015K2 IIIaF3 VSTF 4600399+2126130
Psc64 PscSB5,76,013,8 dF8 VF8 V1,21,264 Psc00490+165623[18] (V), [33] (S, M, d)
Psc65 PscV6,36,34,4″2020F5 IIIF4 IIISTF 6100499+274389
Psc66 PscV6,17,20,6″2018340 aA0 VA4 VSTT 2000546+191177[24] (S)
Psc77 Psc1 (A/B)V6,47,333,2″2020F5 VF5–7 VSTF 9001058+045545
Psc103 PscV7,09,20,6″2008BU 501393+1638180
Pupπ Pup1 (A/B)CPM2,97,966,5″2009K4 III + B5B9–A0 VDUN 4307171-3706250
2 (Aa/Ab)2,96,50,7″1991K4 IIIB5HDS 1008
Pupσ Pup1 (A/B)V3,38,822,1″2015K5 III + A:G5 VΣ ≈ 7DUN 5107292-431859[189] (S, M)
2 (Aa/Ab)SB/A3,3.258 dK5 IIIA:≈ 5≈ 2sig Pup
Pupd2 PupV5,88,61,2″1996I 16007397-3808180
Pupf PupSI4,86,10,1″202081 aFIN 32407374-3458110
PupG PupV5,98,11,0″1999I 15606257-4811180
Pupk Pup (HR 2949 / 2948)O4,44,69,9″2016B5 IVB6 VH 3 2707388-2648120
Pupn PupV5,85,99,9″2015F5 VF6 VH N 1907343-232832
Pupt PupSI5,17,60,0″202052 aHDS 97006584-3407170
Pup2 Pup1 (A/B)V6,06,716,7″2019A2 VA8 V + A8 V≈ 2Σ 3,2STF 113807455-144186[21] (U, S), [190] (M)
2 (Ba/Bb)E/SB6,7.1,66 dA8 VA8 V1,61,6
Pup5 PupV5,77,31,0″2020570 aF5G3STF 114607479-121229[13] (S)
Pup9 PupV/SB5,66,50,4″201923,3 aF9 VG4 V1,20,9BU 10107518-135417[13] (S), [68] (M)
Pup171 G. Pup1 (A/B)CPM5,314,7871,1″2010F9 VDC10RAG 607456-341015
2 (Aa/Ab)SI5,39,00,8″202023,1 aF9 VTOK 193
Pup188 G. PupSI5,66,80,0″20202,4 aG1,5 IIIFeA:Σ ≈ 5,9TOK 19407490-2455110[191] (SB, M)
PupHR 26681 (AB/C)CPM5,38,8185,0″2015K0,5 V + G1,5 VK6 VDUN 3807040-433717
2 (A/B)V5,66,721,2″2015K0,5 VG1,5 VDUN 38
2 (Ca/Cb)SI/SB8,813,00,2″20204,6 aK6 VTOK 390
PupHR 3143CPM6,26,216,3″2010B2–3B2–3DUN 5907592-4959430
Pyxε Pyx1 (A/BC)V5,69,517,6″2015H N 9609099-302265
2 (B/C)V10,510,80,2″2020B 1113
PyxXY Pyx1 (Aa/Ab)SI6,17,00,1″201866 aB2 VFIN 31408280-3507620[60] (UAa1/Aa2)
2 (Aa1/Aa2)E6,1.0,92 dB2 V
PyxHR 3367V5,86,70,4″2019260 aI 48908315-1935110
PyxHR 3430V5,46,80,7″2018123 aG3 VK0 VBU 20808391-224019[24] (S)
Retβ RetSI/SB4,06,80,1″20195,2 aTOK 19103442-644831
Retε RetV4,412,513,0″2015K2 IVDA3,3JSP 5604165-591818[46] (S)
Retζ RetCPM5,35,6309,1″2015G2,5 VG1 V1,01,0ALB 103182-623012[192] (M)
Retθ RetV6,07,74,1″201526 000 aB9 IVkA2hA5VmA7RMK 304177-6315140
Sclε SclV5,48,55,0″20172200 aF0 VG9 VHJ 346101456-250328[24] (S)
Sclκ1 SclV6,16,21,3″2017580 aF4 IIIF3 IIIBU 39100094-275977[13] (S)
Sclλ1 SclV6,67,00,7″2017HDO 18200427-3828150
Sclτ SclV6,07,40,8″2020680 a1,91,4HJ 344701361-295454[11] (M)
Scoα Sco (Antares)V1,05,42,8″20192700 aM0,5 IabB3 V:127GNT 116294-2626170[193] (M1), [194] (M2)
Scoβ Sco (Akrab)1 (β1 = AB / β2 = CE)V2,64,513,4″2019B1 VB2 V + B8pMnΣ 33H 3 716054-1948140[195] (UEa/Eb, SEa), [196] (MAa/Ab, MC, MEa, SAa/Ab), [197] (MB)
2 (A/B)V2,610,60,3″2019640 aB1 VΣ 258BU 947
2 (C/E)SI4,56,60,1″201919 aB2 VB8pMn8MCA 42
3 (Aa/Ab)SB2,94,16,83 dB0,5 IV–VB1,5 V1510OCC 1958
3 (Ea/Eb)SB6,6.11,1 dB8pMn3,5
Scoδ ScoSI/SB2,44,60,2″201910,8 aB0,3 IV138,2LAB 316003-2237150[198] (S, M)
Scoλ Sco1 (A/B)I/SB2,12,72,9 aB1,5 IVB2 IVΣ 12,2 ± 1,58,1 ± 1,0TNG 117336-3706110[199] (UAa/Ab, S, M, d)
2 (Aa/Ab)SB2,1.6 dB1,5 IV10,4 ± 1,31,8 ± 0,2
Scoθ ScoV2,05,46,5″1991SEE 51017373-430092
Scoν Sco1 (AB/CD)CPM4,06,141,3″2019B2 VB8 V + B9 VpSiΣ 23Σ 8,4H 5 616120-1928150[3] (UAa/Ab), [13] (SC/D), [200] (M)
2 (A/B)V4,45,31,3″2019B2 VΣ 176BU 120
2 (C/D)V6,67,22,4″2019B8 VB9 VpSi3Σ 5,4MTL 2
3 (Aa,Ab/Ac)SI4,56,80,1″2019B2 VΣ 116CHR 146
4 (Aa/Ab)SB4,5.5,6 dB2 V10≈ 1
Scoξ Sco1 (ABC/DE)CPM4,17,4282,0″≈ 300 000 aF5 IV + F5 IV + G1 VG8 V + K0 VΣ 4,0Σ 1,923[24] (SA/B), [201]ABC/DE, UABC/DE, UAB/C, UD/E, SC, SD/E, M)
2 (AB/C)V4,27,37,2″20191510 aF5 IV + F5 IVG1 VΣ 3,01,0STF 199816044-1122
2 (D/E)V7,48,011,9″2019≈ 4500 aG8 VK0 V1,00,9STF 199916044-1127
3 (A/B)V4,84,91,2″202045,9 aF5 IVF5 IV1,51,5STF 199816044-1122
Scoπ ScoE/SB2,9.1,57 dB1 VB2: V:15589-2607180[3] (U)
Scoρ ScoSB3,9.4,00 dB2 IV–V15569-2913140[3] (U, S)
Scoσ Sco1 (A/B)CPM2,98,420,5″2019B1 III + B1 V + B7 VB9,5 VH 4 12116212-2536210[202] (S, M)
2 (Aa/Ab)SI3,15,20,4″2019B1 III + B1 VB7 VΣ 22,2  +1,6−2,6BLM 4
3 (Aa1/Aa2)I/SB3,34,133,0 dB1 IIIB1 V13,5  +0,5−1,48,7  +0,6−1,2NOR 1
Sco2 ScoV4,77,02,0″2019BU 3615536-2520150
Sco11 ScoV5,89,83,3″2015BU 3916076-1245120
Sco12 ScoV5,88,13,8″2016B9 VF3 VHJ 483916123-282593
ScoHR 6077V5,66,923,6″2018F5 IVF9 VBSO 1216195-305444
ScoGliese 6671 (AB/C)V6,010,332,7″2019K3 V + K5 VM1,5 VHJ 493517190-34596,8
2 (A/B)V6,47,40,7″201942,2 aK3 VK5 VMLO 4
Sctβ SctI/SB4,38,12,3 aG4 IIaB9 V4,62,6NOI 518472-0445220[203] (V), [204] (S, M)
Serβ SerV3,710,029,4″2019A2 IVK3 VSTF 197015462+152548
Serδ SerV4,25,24,0″20201150 aF0 IVF0 IVSTF 195415348+103270
Serθ SerV4,64,922,4″2019A5 VA5 VnSTF 241718562+041240
Serι SerV5,45,20,2″201221,9 aB9 VA1 V2,0 ± 0,42,0 ± 0,4HU 58015416+194058[112] (S, M)
Serμ SerSI3,85,40,4″201871 aCHR 25915496-032652
Serψ Ser1 (A/B)V6,012,04,6″2013730 aG3 VM3 + M3A 223015440+023115[60] (S)
2 (Ba/Bb)V(aO)12,712,80,1″2020M3M3RDR 6
Ser36 SerSI5,27,80,4″201865 aA7G0Σ 3,1 ± 0,5CHR 5115513-030550[20] (S, M)
Ser59 SerV5,47,63,9″2018A0 VsG: IIISTF 231618272+0012140
SerHR 7048 („Tweedledum and Tweedledee“)1 (A/B)V6,36,72,6″2019A1 V + AA2 V + AΣ 10–12STF 237518455+0530190[205] (SAb, SBb, M)
2 (Aa/Ab)SI6,97,30,0″202028 aA1 VAΣ 5–6FIN 332
2 (Ba/Bb)SI7,57,50,1″202040 aA2 VAΣ 5–6FIN 332
Sexγ SexV5,46,40,5″201978 aA1 VA4 VAC 509525-080685[24] (S)
Sex35 SexV6,27,16,8″2019K2 II–IIIK1 II–IIISTF 146610433+0445170
Sex40 SexV7,17,82,4″2017STF 147610493-040186
Sgeδ SgeSI/SB4,35,00,1″199110,1 aM2 IIabB9,5 V3,93,5BLA 619474+1832130[5] (S, M)
Sgeζ Sge1 (AB/C)V5,09,08,3″2016A1 V + A3 VF5Σ 4,7 ± 1,2STF 258519490+190978[206] (S), [9] (M)
2 (A/B)V5,66,00,2″200723,2 aA1 VA3 VΣ 4,7 ± 1,2AGC 11
Sgeθ Sge- (AB/C)O6,47,591,3″2017F3 V + G5 VK2 IIISTF 263720099+205545
1 (A/B)V6,68,911,7″2019F3 VG5 VSTF 263720099+2055260
Sgrβ1 SgrO?4,07,228,4″2010B9 VF0 VDUN 22619226-442880
Sgrζ SgrV3,33,50,3″202021,0 aA2 IIIA4 IVΣ 5,3 ± 0,4HDO 15019026-295327[13] (S), [58] (M)
Sgrη SgrV3,38,03,5″2016BU 76018176-364645
Sgrκ2 SgrV5,77,30,4″2017700 aBU 76320239-422596
Sgrτ SgrA3,3.69,3 dtau Sgr19069-274036
Sgrυ SgrSB/A4,6.138 dB8pF2peups Sgr19217-1557550[3] (S)
Sgrχ1 SgrSI5,85,80,1″20205,7 aA8A6–F0FIN 32719253-243177[13] (S)
Sgrψ Sgr1 (A/B)V5,55,70,1″201920,0 aK2 IIIA9 III + A3 V3,1 ± 0,6Σ 4,4 ± 0,7B 43019155-251591[3] (UBa/Bb), [2] (S, M)
2 (Ba/Bb)SB5,7.10,8 dA9 IIIA3 V2,4 ± 0,12,0 ± 0,6
Sgr17 SgrSI7,28,90,1″2020119 aMCA 5118166-2033210
Sgr21 SgrV5,07,41,7″2008JC 618254-2033140
Sgr52 SgrV4,79,22,4″1999BU 65419367-245358
SgrW Sgr1 (Aa/Ab)SI4,7.0,2″2002≈ 173 aG0 Ib–II + F5A0 VΣ ≈ 7≈ 2,2BLM 518050-2935850[19][207] (U, SAa1/Aa2, SAb, M)
2 (Aa1/Aa2)SB/A4,7.4,3 aG0 Ib–IIF5≈ 5,8≤ 1,4W Sgr
SgrGliese 783V5,311,54,3″2013K2,5 VM3,5HJ 517320112-36066,0
SgrWR 1041 (WR,OB/B)V(HST)13,615,41,0″1998≈ 47 aWC9 + B0,5 VO8–5 VΣ 302600[208] (V, ρ, Ep.), [209] (U, S, M, d)
2 (WR/OB)13,6.242 dWC9B0,5 V1020
Tauδ3 TauV4,37,91,8″2010KUI 1704255+175646
Tauθ Tau1 (θ2 = A / θ1 = B)CPM3,43,8347,9″2016K0 IIIbA7 III5,1Σ 4,2 ± 1,1STFA 1004287+155248[210] (SAa/Ab, MAa/Ab), [211] (SBa/Bb, MBa/Bb, d)
2 (Aa/Ab)I/SB3,74,9141 dA7 III2,92,2MKT 13
2 (Ba/Bb)SI/SB3,87,30,2″202016,3 aK0 IIIb2,9 ± 0,91,3 ± 0,2MCA 15
Tauκ TauCPM4,25,3339,4″2016A7 IV–VF0 VnSTF 54104254+221847
Tauξ Tau1 (A/B)SI3,77,60,6″202051 aB9 V + B9 V + B5 VF5 VΣ 8,30,9HDS 43303272+094461[212] (S, M)
2 (Aa/Ab)I/SB4,84,3145 dB9 V + B9 VB5 VΣ 4,43,9MKT 15
3 (Aa1/Aa2)E/SB4,8.7,15 dB9 VB9 V2,32,1
Tauσ TauCPM4,75,1444,0″2014STFA 1104393+155548
Tauτ Tau1 (A/B)CPM4,27,062,5″2017B3 VA2S 45504422+225793
2 (Aa/Ab)SI4,37,00,3″200758 aB3 VMCA 16
Tauχ Tau1 (A/B)V5,48,519,4″2016B9 VF8 + G6 + K4: + K4:2,6Σ 3,6STF 52804226+253891[213] (U, S, M)
2 (Ba,Bb/Bc)SB8,5.9,4 aF8 + G6K4: + K4:Σ 2,2Σ 1,4
3 (Ba/Bb)SB8,5.17,6 dF8G61,21,0
Tau7 Tau1 (AB/C)V5,99,922,4″2014A3 V + A3 VΣ 4,7STF 41203344+2428130[13] (S), [11] (M)
2 (A/B)V6,66,80,8″2019520 aA3 VA3 V2,42,3STF 412
Tau19 Tau (Taygeta)SB/A4,66,12,0 aB6 IVOCC 23503453+2428130
Tau27 Tau (Atlas)I/SB3,85,5291 dB8 III4,73,4MKT 1203492+2403130[214] (M, d)
Tau28 Tau (Pleione)SI/SB5,1.0,2″1991218 dB8 Vne2,9< 0,4CHR 12503492+2408130[215] (U, M)
Tau30 TauV5,19,89,2″2015B3 VF3 VnSTF 45203483+1109130
Tau31 TauV6,36,60,8″2019870 aKUI 1503520+0632220
Tau36 TauSI/SB5,55,50,0″20147,9 aK1 IIB7,5 IV:MCA 1304044+2406340
Tau46 TauV/SB5,76,70,1″20207,2 aF3 VF3 V1,4 ± 0,30,8 ± 0,2A 193804136+074340[24] (S), [9] (M)
Tau47 TauV5,17,31,3″2016480 aG5 IIIA7 V:BU 54704139+0916100
Tau51 TauSI/SB5,68,10,2″200511,4 aA8 VG0 V1,9 ± 0,21,6 ± 0,2MCA 1404184+213557[1] (S, M, d)
Tau55 TauV7,38,60,6″201890 aF7 VG6 VSTT 7904199+163147[24] (S)
Tau62 TauCPM6,47,929,1″2019BA0 VSTF 53404240+2418220
Tau66 TauV5,85,90,3″201855 aA0A1Σ ≈ 5HU 30404239+0928120[12] (S, M)
Tau70 TauSI/SB7,07,70,1″20186,3 aF7 VF1,41,3FIN 34204256+155647[216] (S, M, d)
Tau80 TauV5,78,11,4″2018173 aA8 VG2 VSTF 55404301+153846[24] (S)
Tau88 Tau1 (A/B)CPM4,37,869,2″2017A6m + F5 + G2–3 + G2–3F8 V + M:Σ 5,6Σ > 1,4SHJ 4504357+101053[217] (UAa1/Aa2, UAb1/Ab2, SAa1/Aa2, SAb1/Ab2, MAa1/Aa2, MAb1/Ab2), [218] (UBa/Bb, SBa/Bb, MBa/Bb)
2 (Aa/Ab)SI4,46,60,2″201918,0 aA6m + F5G2–3 + G2–3Σ 3,5Σ 2,1CHR 18
2 (Ba/Bb)SB7,8.3,7 aF8 VM:1,2> 0,15
3 (Aa1/Aa2)SB/A4,4.3,57 dA6mF52,11,4
3 (Ab1/Ab2)SB/A6,6.7,89 dG2–3G2–31,11,0
Tau104 TauV5,85,80,1″19881,2 aG4 VG4 V1,01,0A 301005074+183916[24] (S), [11] (M)
Tau108 TauV6,312,51,9″2004COU 15805155+2217160
Tau115 Tau1 (A/BC)V5,410,610,1″2016STT 10705272+1758200
2 (B/C)V11,111,87,0″2015STT 107
3 (Aa/Ab)SI5,86,80,1″202015,9 aMCA 19
Tau118 Tau1 (A/B)V5,86,74,6″2020B8,5 VA0 VnSTF 71605293+2509130
2 (Aa/Ab)V(aO)5,812,11,8″2003RBR 1
2 (Ba/Bb)V(aO)6,710,11,0″2003RBR 1
Tau126 TauV5,06,60,2″2011111 aB8B7Σ ≈ 9BU 100705413+1632190[12] (S, M)
Tau131 TauSI6,26,90,2″2016CHR 16005472+1429100
TauV711 Tau1 (A/B)V6,08,96,7″20161210 aF8 V + G5 VK4 V + K8 VΣ 2,0Σ 1,3STF 42203368+003530[3] (UAa/Ab, UBa/Bb), [2] (S, M)
2 (Aa/Ab)SB6,0.2,84 dF8 VG5 V1,10,9
2 (Ba/Bb)SB8,9.3,2 aK4 VK8 V0,70,6
TauHR 1188V5,76,50,4″201761 aA2 VA5 VΣ 4,2 ± 0,4STT 6503503+253556[13] (S), [58] (M)
TauHR 1902V6,56,61,1″2019770 aB8 IVB8 IVΣ 3,4STF 74905371+2655150[24] (S), [219] (M)
TauHR 1997V6,37,60,1″2018230 aB9 Vn2,72,0STT 11805484+2052200[90] (S, M)
TelHR 7549V5,86,423,0″2015A1–3 VG8–K0 IIIDUN 22719526-5458130
Triβ TriI/SB3,64,031,4 dA5 III3,5 ± 0,31,4 ± 0,1MKT 402095+345941[1] (S, M, d)
Triδ TriI/SB5,06,910,0 dG0,5 VFeK:1,00,7MKT 502171+341311,0[18] (M)
Triε TriV5,411,44,2″1990STF 20102030+3317110
Triι Tri1 (A/B)V5,36,74,0″20195200 aG0 III + G5 IIIF5 VSTF 22702124+301889[3] (UAa/Ab, UBa/Bb)
2 (Aa/Ab)SB5,3.14,7 dG0 IIIG5 III
2 (Ba/Bb)SB6,7.2,24 dF5 V
Tucα TucSB/A2,9.11,5 aalp Tuc22185-601661
Tucβ Tuc1 (β1/2 = ABCD / β3 = E)CPM3,65,1548,9″2000B9,5 Va + A3 IV + A7 VA0 VSHY 11400315-625741
2 (β1 = AB / β2 = CD)V4,34,527,2″2017B9,5 VaA3 IV + A7 VLCL 119
2 (Ea/Eb)V5,86,00,1″1964A0 VB 8
3 (A/B)V4,413,52,6″1932B9,5 VaB 7
3 (C/D)V4,66,50,4″201744,7 aA3 IVA7 VI 260
Tucκ Tuc1 (AB/CD)CPM4,87,2319,2″2010≈ 300 000 aF6 IV + G5 VK2 V + K3 VΣ 2,4Σ 1,7HJ 342301158-685321[201] (UAB/CD, UAa/Ab, S, M)
2 (A/B)V4,97,54,6″20171200 aF6 IVG5 VΣ 1,50,9HJ 3423
2 (C/D)V7,88,31,0″201885 aK2 VK3 V0,90,8I 27
3 (Aa/Ab)A4,9.22? aF6 IV1,30,2?
Tucλ1 TucV6,77,420,4″2015580 000 aF7 IV–VG0–2 VDUN 200524-693061
UMaα UMa (Dubhe)1 (AB/C)CPM1,87,2370,0″2015K1 II–III + F0 VF7 VΣ ≈ 6BU 107711037+614538[24] (SA/B), [220] (M), [221] (UCa/Cb)
2 (A/B)V/SB2,05,00,8″201744 aK1 II–IIIF0 V4,3 ± 0,3≈ 1,6BU 1077
2 (Ca/Cb)SB7,2.6,04 dF7 V
UMaγ UMa (Phecda)A2,4.20,5 aA0 VeK2 V2,90,8gam UMa11538+534226[148] (S, M)
UMaζ UMa / 80 UMa (Mizar/Alkor)1 (ζ1/2 = AB / 80 = C)CPM2,04,0707,7″2017A2 V + A2 V + kA1h(eA)mA7 IV–VA5 Vn + M2 VΣ ≈ 7,2Σ 2,1STF 174413239+545625[33] (SAa/Ab, MAa/Ab, d), [18] (MBa/Bb), [3] (UBa/Bb), [222] (UCa/Cb, SCa/Cb, MCa/Cb)
2 (ζ1 = A / ζ2 = B)V2,33,914,6″2019A2 V + A2 VkA1h(eA)mA7 IV–VΣ 4,9Σ ≈ 2,3STF 1744
2 (Ca/Cb)V(IR)4,0> 81,0″2009≈ 100 aA5 VnM2 V1,80,3PSF 1
3 (Aa/Ab)I/SB3,03,020,5 dA2 VA2 V2,52,4PEA 1
3 (Ba/Bb)SB3,9.176 dkA1h(eA)mA7 IV–V1,8≈ 0,2–0,7
UMaι UMa1 (A/BC)V3,19,22,4″2017490 aF0 IV–V + D:M3 V + M4 VΣ 2,7 ± 0,4Σ 0,7HJ 247708592+480315[223] (UAa/Ab, S, M)
2 (Aa/Ab)SB3,1.12,2 aF0 IV–VD:1,7 ± 0,11,0 ± 0,3
2 (B/C)V9,910,10,9″201739 aM3 VM4 V0,40,3HU 628
UMaκ UMaV4,24,50,3″201935,6 aA0 IV–VA0 VΣ 6,3 ± 1,0A 158509036+4709110[24] (S), [9] (M)
UMaμ UMaSB/A3,1.230 dM0 III2,2≈ 1,6mu UMa10223+413071[224] (S, M)
UMaν UMaV3,610,17,0″2020STF 152411185+3306120
UMaξ UMa1 (A/B)V4,34,82,1″201959,9 aF8,5: V + M:G2 V + M:Σ 1,4Σ 1,0STF 152311182+31328,8[3] (UAa/Ab, UBa/Bb), [18] (SAb, SBb, M)
2 (Aa/Ab)SB4,3.1,8 aF8,5: VM:1,00,4
2 (Ba/Bb)SB4,8.3,98 dG2 VM:0,90,1
UMaσ2 UMaV4,98,94,3″2016920 aF6 IV–VK2 V1,3≈ 0,7STF 130609104+670820[24] (S), [18] (M)
UMaφ UMaV5,35,40,4″2019105 aA3 IVA3 IVSTT 20809521+5404160[24] (S)
UMa16 UMaSB/A5,28,916,2 dG0 VM:1,10,616 UMa09143+612520[18] (S2, M)
UMa55 UMa1 (A/B)SI4,85,30,1″20075,1 aA1 V + A2 VA1 VΣ 3,82,1CHR 13311191+381160[225] (UAa/Ab, S, M)
2 (Aa/Ab)SB4,8.2,55 dA1 VA2 V2,01,8
UMa62 UMaSI/SB5,76,70,0″2015268 dF51,31,2BNU 311416+314541[226] (M)
UMa65 UMa1 (ABC/D)CPM6,57,062,5″2018A3 V + A3 V + A8–9A1p + FSTF 157911551+462987[21] (UAa/Ab, SAa/Ab, SB), [60] (SDa/Db)
2 (AB/C)V6,78,33,9″2019A3 V + A3 V + A8–9STF 1579
2 (Da/Db)SI7,19,20,1″2018A1pFBAG 46
3 (A/B)V6,59,20,3″2019118 aA3 V + A3 VA8–9A 1777
4 (Aa/Ab)E/SB6,5.1,73 dA3 VA3 V
UMa78 UMaV5,07,90,7″2019105 aF1 VG6 VBU 108213007+562225[24] (S)
UMaHR 4098V6,412,64,0″201581 aKUI 5010281+484723
UMaHR 4439V5,77,60,9″201773 aF4 VG3 V1,30,9STT 23511323+610529[24] (S), [11] (M)
UMaHR 4486V6,58,28,9″20191580 aG0 VK2 VSTF 156111387+450723
UMaW UMa1 (A/B)V8,012,46,4″2019F8 V + F8 VΣ 1,7ES 182509438+555752[3] (U, S), [227] (M)
2 (Aa/Ab)E/SB7,9.0,33 dF8 VF8 V1,10,6
UMaGliese 338V7,87,916,9″2019980 aK7 VM0 VSTF 132109144+52416,3
UMaGliese 412CPM8,814,632,0″2017M1 VeM6 VVBS 1811055+43324,8
UMaWinnecke 4 (M 40)O9,710,253,2″2017G0F8WNC 412222+5805320
UMiα UMi (Polarstern)1 (A/B)V2,09,118,4″2016F8 Ib + A5F3 VΣ 5,1 ± 1,3≈ 1,4STF 9302318+8916130[3] (SAa/Ab), [228] (M)
2 (Aa/Ab)SI/SB2,34,30,1″201429,6 aF8 IbA53,5 ± 0,81,6 ± 0,5WRH 39
UMiπ2 UMiV7,38,20,7″2013172 aSTF 198915396+7959120
Velγ Vel1 (γ2 = A / γ1 = B)CPM1,84,141,2″2017WC8 + O7,5 III–VB2 IIIΣ 37,5 ± 1,7DUN 6508095-4720340[229] (U, M, d)
2 (γ2 Vel A/B)SB1,8.78,5 dWC8O7,5 III–V9,0 ± 0,628,5 ± 1,1
Velδ Vel1 (A/B)V2,05,60,8″2019147 aA2 IV + A4 VF8 VΣ 4,71,4I 1008447-544325[230] (M, d)
2 (Aa/Ab)E/I/SB2,0.45,2 dA2 IVA4 V2,42,3KEL 1
Velμ VelV2,85,72,3″2019143 aG5 IIIG2 VR 15510468-492536[24] (S)
Velψ VelV3,95,11,0″201934,1 aF3 IVF0 IVCOP 109307-402819[13] (S)
VelB VelV5,16,10,9″2008I 6708225-4829530
Velp Vel1 (A/B)V4,15,80,1″201916,7 aF3 IV + F0 VA6 VΣ 3,92,4SEE 11910373-481427[231] (UAa/Ab, S, M)
2 (Aa/Ab)SB4,1.10,2 dF3 IVF0 V2,11,8
Vels VelV5,66,013,2″2010B8–A0B8 II:PZ 310320-4504260
Vel33 G. Vel1 (A/B)V5,57,23,5″2008B1,5 VB4 VHJ 410408291-4756480
2 (Aa/Ab)SI5,96,40,1″2018340 aB1,5 VFIN 315
VelHR 3817V5,56,22,0″2008HJ 422009337-4900250
VelHR 3840V6,16,30,7″2015SEE 11509372-534072
VelHR 3976V5,37,11,0″2019187 aK1 IVG5 VI 17310062-472274[24] (S)
VelLuhman 16V(aO)16,2.0,3″201627,4 aL7,5T0,50,030,03LUH 1610493-53192,0[30] (V), [232] (S, M, d)
Virα Vir (Spica)SB1,34,54,01 dB1 III–IVB2 V11,4 ± 1,27,2 ± 0,8OCC 41813252-111077[13] (S), [233] (M)
Virγ Vir (Porrima)V3,53,52,5″2020169 aF0 VF0 V1,41,4STF 167012417-012712,1[13] (S), [234] (M, d)
Virη Vir1 (A/B)SI3,95,90,1″202013,1 aA2 IV + A8–F0 VΣ 4,41,7MCA 3712199-004079[235][236] (UAa/Ab, S, M)
2 (Aa/Ab)SB3,9.71,8 dA2 IVA8–F0 V2,51,9
Virθ Vir1 (A/B)V4,49,47,0″2015STF 172413099-053283
2 (Aa/Ab)SI4,56,80,4″2019700 aMCA 38
Virι VirA4,1.55 aiot Vir14160-060022
Virλ VirI/SB4,5.207 dA1mA1m1,91,7IOT 114191-132253[33] (S, M)
Virφ VirV4,910,04,8″2015G2 IIIG4 VSTF 184614282-021437[24] (S)
Vir46 VirV6,28,80,6″2016900 aAGC 513006-0322100
Vir48 VirV7,17,70,4″2018440 aBU 92913039-0340160
Vir54 VirV6,87,25,4″2018B9 VA2 VpSrSHJ 15113134-1850190
Vir84 VirV5,68,32,7″2015G8 IIIG3 IVSTF 177713431+033273
Vir86 Vir1 (AB/CD)CPM5,611,927,3″2000STF 178013459-1226110
2 (A/B)V5,78,51,0″2001BU 935
2 (C/D)V11,913,12,4″1958STF 1780
VirHR 4935V6,36,50,2″202059 aBU 34113038-203528
VirHR 5106V6,37,30,4″2019178 aBU 93213347-1313150
VirWolf 424V12,612,60,7″202015,8 aM5,5 VM7 V0,140,13REU 112335+09014,4[40] (S), [237] (M)
Volγ VolV3,95,414,2″2020K0 IIIF0–3DUN 4207087-703040
Volε Vol1 (A/B)V4,47,35,7″2020RMK 708079-6837230[3] (U)
2 (Aa/Ab)SB4,4.14,2 d
Volζ VolV4,09,316,0″2020DUN 5707418-723643
Volκ Vol1 (κ1/2 = AB / C)CPM4,77,798,4″2020B9 III–IV + B9–A0 IVBSO 1708198-7131130
1 (κ1 = A / κ2 = B)CPM5,35,664,0″2020B9 III–IVB9–A0 IVBSO 17
Vul2 VulV5,48,81,8″2015BU 24819177+2302570
Vul13 VulV4,67,41,4″2016620 aDJU 419535+240595
Vul16 VulV5,86,20,7″20191200 aSTT 39520020+245668
Vul23 VulSI4,86,50,0″200725,3 aCHR 9420158+2749100

Häufige Entdeckercodes

Nachfolgend findet sich eine Auswahl der Bedeutung von einigen häufigen Entdeckercodes:

Quellen

Allgemeine Quellen

Solange in der Spalte „Quelle“ nichts anderes angegeben ist, stammen:

  • die Helligkeiten (V1, V2), Abstände (ρ) und Epochen (Ep.) aus dem Washington Double Star Catalog (Vers. 2021-08-09),
  • die Umlaufzeiten aus dem 6th Orbit Catalog (Last Update 2021-08-02),
  • die Spektralklassen aus der SIMBAD-Datenbank,
  • die Entfernungen von der in der SIMBAD-Datenbank hinterlegten Parallaxe (meistens aus den Katalogen Hipparcos, the New Reduction (van Leeuwen 2007) und Gaia DR2 (Gaia Collaboration 2018)).

Einzelnachweise

Alle Massen und alle nicht aus den allgemeinen Quellen entnommenen Daten stammen aus folgenden Quellen:

  1. a b c d e f g h i Dimitri Pourbaix: Resolved double-lined spectroscopic binaries: A neglected source of hypothesis-free parallaxes and stellar masses. In: Astronomy & Astrophysics Supplement Series. Bd. 145, 2000, S. 215–222, bibcode:2000A&AS..145..215P, doi:10.1051/aas:2000237.
  2. a b c d e f g h i j k l José A. Docobo, Manuel Andrade: A Methodology for the Description of Multiple Stellar Systems with Spectroscopic Subcomponents. In: The Astrophysical Journal. Bd. 652 (1), 2006, S. 681–695, bibcode:2006ApJ...652..681D, doi:10.1086/508053.
  3. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi Dimitri Pourbaix et al.: 9th Catalogue of Spectroscopic Binary Orbits. VizieR-Datenkatalog B/sb9 (elektronisch veröffentlicht). 2009, bibcode:2009yCat....102020P.
  4. Michael Bottom et al.: Resolving the Delta Andromedae Spectroscopic Binary with Direct Imaging. In: The Astrophysical Journal. Bd. 809 (1), 2015, Artikel-ID 11, bibcode:2015ApJ...809...11B, doi:10.1088/0004-637X/809/1/11, arxiv:1506.07517.
  5. a b c d e f g h i j k l m Peter P. Eggleton, Kadri Yakut: Models for Sixty Double-Lined Binaries containing Giants. In: Monthly Notices of the Royal Astronomical Society. Bd. 468 (3), 2017, S. 3533–3556, bibcode:2017MNRAS.468.3533E, doi:10.1093/mnras/stx598, arxiv:1611.05041.
  6. G. M. Hill et al.: Omicron Andromedae is Quadruple. In: Publications of the Astronomical Society of the Pacific. Bd. 100, 1988, S. 243–250, bibcode:1988PASP..100..243H, doi:10.1086/132161.
  7. R. Ya. Zhuchkov et al.: Physical parameters and dynamical properties of the multiple star o And. In: Astronomy Reports. Bd. 54 (12), 2010, S. 1134 ff., bibcode:2010ARep...54.1134Z, doi:10.1134/S1063772910120061.
  8. Christian A. Hummel et al.: Orbits of Small Angular Scale Binaries Resolved with the Mark III Interferometer. In: The Astronomical Journal. Bd. 110, 1995, 376–390, bibcode:1995AJ....110..376H, doi:10.1086/117528.
  9. a b c d e f g h i j k Matthew W. Muterspaugh et al.: The Phases Differential Astrometry Data Archive. II. Updated Binary Star Orbits and a Long Period Eclipsing Binary. In: The Astronomical Journal. Bd. 140 (6), S. 1623–1630, bibcode:2010AJ....140.1623M, doi:10.1088/0004-6256/140/6/1623, arxiv:1010.4043.
  10. a b Christopher D. Farrington et al.: Separated Fringe Packet Observations with the CHARA Array. II. ω Andromeda, HD 178911, and ξ Cephei. In: The Astronomical Journal. Bd 148 (3), 2014, Artikel-ID 48, bibcode:2014AJ....148...48F, doi:10.1088/0004-6256/148/3/48, arxiv:1407.0639.
  11. a b c d e f g h i j k l m n o p q r s t u Z. Cvetković, S. Ninković: Masses of visual binaries. VizieR-Datenkatalog J/other/Ser/180.71 (elektronisch veröffentlicht). 2011, bibcode:2011yCatp042018001C.
  12. a b c d e Theo A. ten Brummelaar et al.: Binary Star Differential Photometry Using the Adaptive Optics System at Mount Wilson Observatory. In: The Astronomical Journal. Bd. 119 (5), 2000, S. 2403–2414, bibcode:2000AJ....119.2403T, doi:10.1086/301338.
  13. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad Dorrit Hoffleit, Wayne H. Warren, Jr.: Bright Star Catalogue, 5th Revised Ed. VizieR-Datenkatalog V/50 (elektronisch veröffentlicht). 1995, bibcode:1995yCat.5050....0H. Die Spektralklassen stammen entweder direkt aus dem Katalog oder aus dem Bereich Note/Remarks.
  14. Jesus Maldonado et al.: HADES RV Programme with HARPS-N at TNG. III. Flux-flux and activity-rotation relationships of early-M dwarfs. In: Astronomy & Astrophysics. Bd. 598, 2017, Artikel-ID A27, bibcode:2017A&A...598A..27M, doi:10.1051/0004-6361/201629223, arxiv:1610.05906.
  15. Matteo Pinamonti et al.: The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: a multiple wide planetary system sculpted by binary interaction. In: Astronomy & Astrophysics. Bd. 617, 2018, Artikel-ID A104, bibcode:2018A&A...617A.104P, doi:10.1051/0004-6361/201732535, arxiv:1804.03476.
  16. a b c d e f José A. Docobo, Manuel Andrade: Dynamical and physical properties of 22 binaries discovered by W. S. Finsen. In: Monthly Notices of the Royal Astronomical Society. Bd. 428 (1), 2013, S. 321–339, bibcode:2013MNRAS.428..321D, doi:10.1093/mnras/sts045.
  17. Sandy K. Leggett et al.: The Physical Properties of Four ~600 K T Dwarfs. In: The Astrophysical Journal. Bd. 695 (2), 2009, S. 1517–1526, bibcode:2009ApJ...695.1517L, doi:10.1088/0004-637X/695/2/1517, arxiv:0901.4093.
  18. a b c d e f g h i j k Klaus Fuhrmann: Nearby stars of the Galactic disc and halo – IV. In: Monthly Notices of the Royal Astronomical Society. Bd. 384 (1), 2008, S. 173–224, bibcode:2008MNRAS.384..173F, doi:10.1111/j.1365-2966.2007.12671.x.
  19. a b c Nancy Remage Evans et al.: Binary Cepheids: Separations and Mass Ratios in 5 M Binaries. In: The Astronomical Journal. Bd. 146 (4), 2013, Artikel-ID 93, bibcode:2013AJ....146...93E, doi:10.1088/0004-6256/146/4/93, arxiv:1307.7123.
  20. a b c d e Brian D. Mason et al.: Binary Star Orbits. IV. Orbits of 18 Southern Interferometric Pairs. In: The Astronomical Journal. Bd. 140 (3), 2010, S. 735–743, bibcode:2010AJ....140..735M, doi:10.1088/0004-6256/140/3/735.
  21. a b c d e f g h i j k l m Petr Zasche et al.: A Catalog of Visual Double and Multiple Stars With Eclipsing Components. In: The Astronomical Journal. Bd. 138 (2), 2009, S. 664–679, bibcode:2009AJ....138..664Z, doi:10.1088/0004-6256/138/2/664, arxiv:0907.5172.
  22. Jeffrey L. Linsky et al.: Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10. In: The Astrophysical Journal. Bd. 455, 1995, S. 670–676, bibcode:1995ApJ...455..670L, doi:10.1086/176614.
  23. Olivier Absil et al.: Searching for faint companions with VLTI/PIONIER. I. Method and first results. In: Astronomy & Astrophysics. Bd. 535, 2011, Artikel-ID A68, bibcode:2011A&A...535A..68A, doi:10.1051/0004-6361/201117719, arxiv:1110.1178.
  24. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv Terry W. Edwards: MK classification for visual binary components. In: The Astronomical Journal. Bd. 81, 1976, S. 245–249, bibcode:1976AJ.....81..245E, doi:10.1086/111879.
  25. Andrei A. Tokovinin: The Triple System Zeta Aquarii. In: The Astrophysical Journal. Bd. 831 (2), 2016, Artikel-ID 151, bibcode:2016ApJ...831..151T, doi:10.3847/0004-637X/831/2/151, arxiv:1608.08564.
  26. Ellyn K. Baines et al.: Fundamental Parameters of 87 Stars from the Navy Precision Optical Interferometer. In: The Astronomical Journal. Bd. 155 (1), 2018, Artkikel-ID 30, bibcode:2018AJ....155...30B, doi:10.3847/1538-3881/aa9d8b, arxiv:1712.08109.
  27. a b Rene A. Mendez et al.: Orbits for 18 Visual Binaries and Two Double-line Spectroscopic Binaries Observed with HRCAM on the CTIO SOAR 4 m Telescope, Using a New Bayesian Orbit Code Based on Markov Chain Monte Carlo. In: The Astronomical Journal. Bd. 154 (5), 2017, Artikel-ID 187, bibcode:2017AJ....154..187M, doi:10.3847/1538-3881/aa8d6f, arxiv:1709.06582.
  28. Andrei A. Tokovinin: New Orbits Based on Speckle Interferometry at SOAR. II. In: The Astronomical Journal. Bd. 154 (3), 2017, Artikel-ID 110, bibcode:2017AJ....154..110T, doi:10.3847/1538-3881/aa8459, arxiv:1708.01300.
  29. José A. Docobo et al.: Visual Orbit and Individual Masses of the Single-lined Spectroscopic Binary 94 AQR A (HD 219834A; MCA 74). In: The Astronomical Journal. Bd. 156 (3), 2018, Artikel-ID 85, bibcode:2018AJ....156...85D, doi:10.3847/1538-3881/aad179.
  30. a b c d e f g h i j k V-Helligkeit aus der SIMBAD-Datenbank entnommen.
  31. M. Gromadzki, Joanna Mikołajewska: The spectroscopic orbit and the geometry of R Aquarii. In: Astronomy & Astrophysics. Bd. 495 (3), 2009, S. 931–936, bibcode:2009A&A...495..931G, doi:10.1051/0004-6361:200810052, arxiv:0804.4139.
  32. Xavier Delfosse et al.: Accurate masses of very low mass stars. II. The very low mass triple system GL 866. In: Astronomy & Astrophysics. Bd. 350, 1999, L39–L42, bibcode:1999A&A...350L..39D, arxiv:astro-ph/9909409.
  33. a b c d e f g h i j k l m n o p Guillermo Torres, J. Andersen, A. Giménez: Accurate masses and radii of normal stars: modern results and applications. In: The Astronomy & Astrophysics Review. Bd. 18 (1–2), 2010, S. 67–126, bibcode:2010A&ARv..18...67T, doi:10.1007/s00159-009-0025-1, arxiv:0908.2624.
  34. Hicran Bakıș et al.: Active binary R Arae revisited: Bringing the secondary component to light and physical modelling of the circumstellar material. In: Monthly Notices of the Royal Astronomical Society. Bd. 458 (1), 2016, S. 508–516, bibcode:2016MNRAS.458..508B, doi:10.1093/mnras/stw320.
  35. Brian D. Mason: Binary Star Orbits from Speckle Interferometry. XI. Orbits of Twelve Lunar Occultation Systems. In: The Astronomical Journal. Bd. 114, 1997, S. 808–818, bibcode:1997AJ....114..808M, doi:10.1086/118514.
  36. a b c Matthew W. Muterspaugh et al.: The Phases Differential Astrometry Data Archive. V. Candidate Substellar Companions to Binary Systems. In: The Astronomical Journal. Bd. 140 (6), 2010, S. 1657–1671, bibcode:2010AJ....140.1657M, doi:10.1088/0004-6256/140/6/1657, arxiv:1010.4048.
  37. Lewis C. Roberts, Jr. et al.: Know the Star, Know the Planet. III. Discovery of Late-Type Companions to Two Exoplanet Host Stars. In: The Astronomical Journal. Bd. 149 (4), 2015, Artikel-ID 118, bibcode:2015AJ....149..118R, doi:10.1088/0004-6256/149/4/118, arxiv:1503.01211.
  38. a b José A. Docobo et al.: Improved orbits and parallaxes for eight visual binaries with unrealistic previous masses using the Hipparcos parallax. In: Monthly Notices of the Royal Astronomical Society. Bd. 459 (2), 2016, S. 1580–1585, bibcode:2016MNRAS.459.1580D, doi:10.1093/mnras/stw709, arxiv:1609.03392.
  39. Guillermo Torres et al.: Capella (α Aurigae) Revisited: New Binary Orbit, Physical Properties, and Evolutionary State. In: The Astrophysical Journal. Bd. 807 (1), 2015, Artikel-ID 26, bibcode:2015ApJ...807...26T, doi:10.1088/0004-637X/807/1/26, arxiv:1505.07461.
  40. a b c d e Wilhelm Gliese, Hartmut Jahreiß: Preliminary Version of the Third Catalogue of Nearby Stars. VizieR-Datenkatalog V/70A (elektronisch veröffentlicht). 1991, bibcode:1991adc..rept.....G.
  41. Donald W. Hoard et al.: Taming the Invisible Monster: System Parameter Constraints for epsilon Aurigae from the Far-ultraviolet to the Mid-infrared. In: The Astrophysical Journal. Bd. 714 (1), 2010, S. 549–560, bibcode:2010ApJ...714..549H, doi:10.1088/0004-637X/714/1/549, arxiv:1003.3694.
  42. Sean M. Carroll: Interpreting Epsilon Aurigae. In: The Astrophysical Journal. Bd. 367, 1991, S 278–287, bibcode:1991ApJ...367..278C, doi:10.1086/169626.
  43. E. F. Guinan: Large distance of ε Aurigae inferred from interstellar absorption and reddening. In: Astronomy & Astrophysics. Bd. 546, 2012, Artikel-ID A123, bibcode:2012A&A...546A.123G, doi:10.1051/0004-6361/201118567.
  44. Z. Cvetković, B. Novaković: Orbits For Sixteen Binaries. In: Serbian Astronomical Journal. Bd. 173, 2006, S. 73–82, bibcode:2006SerAJ.173...73C, doi:10.2298/SAJ0673073C.
  45. Martin Adrian Barstow et al.: Resolving Sirius-like binaries with the Hubble Space Telescope. In: Monthly Notices of the Royal Astronomical Society. Bd. 322 (4), 2001, S. 891–900, bibcode:2001MNRAS.322..891B, doi:10.1046/j.1365-8711.2001.04203.x, arxiv:astro-ph/0010645.
  46. a b c d e f g Jay B. Holberg et al.: Where are all the Sirius-like binary systems? In: Monthly Notices of the Royal Astronomical Society. Bd. 435 (3), 2013, S. 2077–2091, bibcode:2013MNRAS.435.2077H, doi:10.1093/mnras/stt1433, arxiv:1307.8047.
  47. F. M. Rica Romero: Orbital Elements for BU 1240 AB. Nature of the C and D Components. In: Revista Mexicana de Astronomía y Astrofísica. Bd. 44, 2008, S. 137–147, bibcode:2008RMxAA..44..137R.
  48. R. K. Barry et al.: A Precise Physical Orbit for the M-dwarf Binary Gliese 268. In: The Astrophysical Journal. Bd. 760 (1), 2012, Artikel-ID 55, bibcode:2012ApJ...760...55B, doi:10.1088/0004-637X/760/1/55.
  49. a b c d J. Fernandes et al.: Fundamental stellar parameters for nearby visual binary stars: η Cas, ξ Boo, 70 Oph and 85 Peg. Helium abundance, age and mixing length parameter for low mass stars. In: Astronomy & Astrophysics, Bd. 338, 1998, S. 455–464, bibcode:1998A&A...338..455F.
  50. Francesco Borsa et al.: The GAPS programme with HARPS-N at TNG. VII. Putting exoplanets in the stellar context: magnetic activity and asteroseismology of τ Bootis A. In: Astronomy & Astrophysics. Bd. 578, 2015, Artikel-ID A64, bibcode:2015A&A...578A..64B, doi:10.1051/0004-6361/201525741, arxiv:1504.00491.
  51. Graham Hill et al.: Studies of late-type binaries. I – The physical parameters of 44ι Bootis ABC. In: Astronomy & Astrophysics. Bd. 211 (1), 1989, S. 81–98, bibcode:1989A&A...211...81H.
  52. Zackery W. Briesemeister et al.: High Spatial Resolution Thermal Infrared Spectroscopy with ALES: Resolved Spectra of the Benchmark Brown Dwarf Binary HD 130948BC. In: The Astronomical Journal. Bd. 157 (6), 2019, Artikel-ID 244, bibcode:2019AJ....157..244B, doi:10.3847/1538-3881/ab1901, arxiv:1904.07892.
  53. a b c Brian D. Mason et al.: Binary Star Orbits from Speckle Interferometry. I. Improved Orbital Elements of 22 Visual Systems. In: The Astronomical Journal. Bd. 117 (2), 1999, S. 1023–1036, bibcode:1999AJ....117.1023M, doi:10.1086/300748.
  54. Douglas S. Hall et al.: A Spectroscopic and Photometric Study of 12 BM Camelopardalis. In: The Astronomical Journal. Bd 109, 1995, S. 1277–1288, bibcode:1995AJ....109.1277H, doi:10.1086/117360.
  55. Kailash C. Sahu et al.: Relativistic deflection of background starlight measures the mass of a nearby white dwarf star. In: Science. Bd. 356 (6342), 2017, S. 1046–1050, bibcode:2017Sci...356.1046S, doi:10.1126/science.aal2879, arxiv:1706.02037.
  56. David S. Evans, Francis C. Fekel, Jr.: Beta Capricorni: fundamental parameters from occultation astrometry and spectroscopy. In: The Astrophysical Journal. Bd. 228, 1979, S. 497–508, bibcode:1979ApJ...228..497E, doi:10.1086/156872.
  57. Swetlana Hubrig et al.: New insights into the nature of the peculiar star θ Carinae. In: Astronomy & Astrophysics. Bd. 488 (1), 2008, S. 287–296, bibcode:2008A&A...488..287H, doi:10.1051/0004-6361:200809972, arxiv:0807.2067.
  58. a b c d e f Robert J. De Rosa et al.: The Volume-limited A-Star (VAST) survey – II. Orbital motion monitoring of A-type star multiples. In: Monthly Notices of the Royal Astronomical Society. Bd. 422 (4), 2012, S. 2765–2785, bibcode:2012MNRAS.422.2765D, doi:10.1111/j.1365-2966.2011.20397.x, arxiv:1112.3666.
  59. Myron A. Smith et al.: The relationship between γ Cassiopeiae’s X-ray emission and its circumstellar environment. In: Astronomy & Astrophysics. Bd. 540, 2012, Artikel-ID A53, bibcode:2012A&A...540A..53S, doi:10.1051/0004-6361/201118342, arxiv:1201.6415.
  60. a b c d e f g h Brian D. Mason et al.: The Washington Visual Double Star Catalog. VizieR-Datenkatalog B/wds (elektronisch veröffentlicht). 2021, bibcode:2021yCat....102026M.
  61. Julian C. Christou, Jack D. Drummond: Measurements of Binary Stars, Including Two New Discoveries, with the Lick Observatory Adaptive Optics System. In: The Astronomical Journal. Bd. 131 (6), 2006, S. 3100–3108, bibcode:2006AJ....131.3100C, doi:10.1086/503255.
  62. Jack D. Drummond et al.: ι Cassiopeiae: Orbit, Masses, and Photometry from Adaptive Optics Imaging in the I and H Bands. In: The Astrophysical Journal. Bd. 585 (2), 2003, S. 1007–1014, bibcode:2003ApJ...585.1007D, doi:10.1086/346224.
  63. Howard E. Bond et al.: Hubble Space Telescope Astrometry of the Metal-poor Visual Binary μ Cassiopeiae: Dynamical Masses, Helium Content, and Age. In: The Astrophysical Journal. Bd. 904 (2), 2020, Arikel-ID 112, bibcode:2020ApJ...904..112B, doi:10.3847/1538-4357/abc172, arxiv:2010.06609.
  64. Robert J. De Rosa et al.: The VAST Survey – III. The multiplicity of A-type stars within 75 pc. In: Monthly Notices of the Royal Astronomical Society. Bd. 437 (2), 2014, S. 1216–1240, bibcode:2014MNRAS.437.1216D, doi:10.1093/mnras/stt1932, arxiv:1311.7141.
  65. David E. Holmgren et al.: Search for forced oscillations in binaries. III. Improved elements and the detection of line-profile variability of the B4V + A6V: system AR Cassiopeiae. In: Astronomy & Astrophysics. Bd. 345, 1999, S. 855–868, bibcode:1999A&A...345..855H.
  66. Pierre Kervella et al.: Proxima's orbit around α Centauri. In: Astronomy & Astrophysics. Bd. 598, 2017, Artikel-ID L7, bibcode:2017A&A...598L...7K, doi:10.1051/0004-6361/201629930, arxiv:1611.03495.
  67. Andrzej Pigulski et al.: Massive pulsating stars observed by BRITE-Constellation. I. The triple system β Centauri (Agena). In: Astronomy & Astrophysics. Bd. 588, 2016, Artikel-ID A55, bibcode:2016A&A...588A..55P, doi:10.1051/0004-6361/201527872, arxiv:1602.02806.
  68. a b c d Andrei A. Tokovinin: Speckle Interferometry and Orbits of "Fast" Visual Binaries. In: The Astronomical Journal. Bd. 144 (2), 2012, Artikel-ID 56, bibcode:2012AJ....144...56T, doi:10.1088/0004-6256/144/2/56, arxiv:1206.1882.
  69. E. Budding et al.: Absolute parameters of young stars – II. V831 Centauri. In: Monthly Notices of the Royal Astronomical Society. Bd. 403 (3), 2010, S. 1448–1456, bibcode:2010MNRAS.403.1448B, doi:10.1111/j.1365-2966.2010.16209.x.
  70. Hugh Wheelwright et al.: The close Be star companion of β Cephei. In: Astronomy & Astrophysics. Bd. 497 (2), 2009, S. 487–495, bibcode:2009A&A...497..487W, doi:10.1051/0004-6361/200811105, arxiv:0902.4356.
  71. Ralph Neuhäuser et al.: Direct detection of exoplanet host star companion γ Cep B and revised masses for both stars and the sub-stellar object. In: Astronomy & Astrophysics. Bd. 462 (2), 2007, S. 777–780, bibcode:2007A&A...462..777N, doi:10.1051/0004-6361:20066581, arxiv:astro-ph/0611427.
  72. George Gatewood et al.: Hipparcos and MAP Studies of the Triple Star π Cephei. In : The Astrophysical Journal. Bd. 549 (2), 2001, S. 1145–1150, bibcode:2001ApJ...549.1145G, doi:10.1086/319458.
  73. K. O. Wright: The System of VV Cephei Derived from an Analysis of the Hα Line. In: Journal of the Royal Astronomical Society of Canada. Bd. 71, 1977, S. 152–193, bibcode:1977JRASC..71..152W.
  74. L. Leedjärv et al.: The 1997/1998 eclipse of VV Cephei was late. In: Astronomy & Astrophysics. Bd. 349, 1999, S. 511–514, bibcode:1999A&A...349..511L.
  75. Wendy Hagen Bauer et al.: Spatial Extension in the Ultraviolet Spectrum of VV Cephei. In: The Astronomical Journal. Bd. 136 (3), 2008, S. 1312–1324, bibcode:2008AJ....136.1312H, doi:10.1088/0004-6256/136/3/1312.
  76. a b Xavier Delfosse et al.: Accurate masses of very low mass stars. IV. Improved mass-luminosity relations. In: Astronomy & Astrophysics. Bd. 364, 2000, S. 217–224, bibcode:2000A&A...364..217D, arxiv:astro-ph/0010586.
  77. S. P. Wyatt, J. H. Cahn: Kinematics and ages of Mira variables in the greater solar neighborhood. In: The Astrophysical Journal. Bd. 275, 1983, S. 225–239, bibcode:1983ApJ...275..225W, doi:10.1086/161527.
  78. a b G. Fritz Benedict et al.: The Solar Neighborhood. XXXVII: The Mass-Luminosity Relation for Main-sequence M Dwarfs. In: The Astronomical Journal. Bd. 152 (5), 2016, Artikel-ID 141, bibcode:2016AJ....152..141B, doi:10.3847/0004-6256/152/5/141, arxiv:1608.04775.
  79. César Briceño, Andrei A. Tokovinin: New Binaries in the ɛ Cha Association. In: The Astronomical Journal. Bd. 154 (5), 2017, Artikel-ID 195, bibcode:2017AJ....154..195B, doi:10.3847/1538-3881/aa8e9b, arxiv:1709.05044.
  80. Howard E. Bond et al.: The Sirius System and Its Astrophysical Puzzles: Hubble Space Telescope and Ground-based Astrometry. In: The Astrophysical Journal. Bd. 840 (2), 2017, Artikel-ID 70, bibcode:2017ApJ...840...70B, doi:10.3847/1538-4357/aa6af8, arxiv:1703.10625.
  81. a b Jesús Maíz Apellániz, R. H. Barbá: Spatially resolved spectroscopy of close massive visual binaries with HST/STIS. I. Seven O-type systems. In: Astronomy & Astrophysics. Bd. 636, 2020, Artikel-ID A28, bibcode:2020A&A...636A..28M, doi:10.1051/0004-6361/202037730, arxiv:2002.12149.
  82. William G. Bagnuolo, Jr. et al.: Tomographic Separation of Composite Spectra. II. The Components of 29 UW Canis Majoris. In: The Astrophysical Journal. Bd. 423, 1994, S. 446–455, bibcode:1994ApJ...423..446B, doi:10.1086/173822.
  83. James Liebert et al.: The Age and Stellar Parameters of the Procyon Binary System. In: The Astrophysical Journal. Bd. 769 (1), 2013, Artikel-ID 7, bibcode:2013ApJ...769....7L, doi:10.1088/0004-637X/769/1/7, arxiv:1305.0587.
  84. J. B. Hutchings et al.: Direct Observation of the Fourth Star in the ζ Cancri System. In: Publications of the Astronomical Society of the Pacific. Bd. 112 (772), 2000, S. 833–836, bibcode:2000PASP..112..833H, doi:10.1086/316587, arxiv:astro-ph/0004284.
  85. Adam J. Burgasser et al.: Multiplicity among Widely Separated Brown Dwarf Companions to Nearby Stars: Gliese 337CD. In: The Astronomical Journal. Bd. 129 (6), 2005, S. 2849–2855, bibcode:2005AJ....129.2849B, doi:10.1086/430218, arxiv:astro-ph/0503379.
  86. Roxanne Ligi et al.: Radii, masses, and ages of 18 bright stars using interferometry and new estimations of exoplanetary parameters. In: Astronomy & Astrophysics. Bd. 586, 2016, Artikel-ID A94, bibcode:2016A&A...586A..94L, doi:10.1051/0004-6361/201527054, {{arXiv:1511.03197}}.
  87. a b Elisabeth R. Newton et al.: The Hα Emission of Nearby M Dwarfs and its Relation to Stellar Rotation. In: The Astrophysical Journal. Bd. 834 (1), 2017, Artikel-ID 85, bibcode:2017ApJ...834...85N, doi:10.3847/1538-4357/834/1/85, arxiv:1611.03509.
  88. a b Maciej Konacki et al.: High-precision Orbital and Physical Parameters of Double-lined Spectroscopic Binary Stars – HD78418, HD123999, HD160922, HD200077, and HD210027. In: The Astrophysical Journal. Bd. 719 (2), 2010, S. 1293–1314, bibcode:2010ApJ...719.1293K, doi:10.1088/0004-637X/719/2/1293, arxiv:0910.4482.
  89. Gijs H. A. Roelofs et al.: Spectroscopic Evidence for a 5.4 Minute Orbital Period in HM Cancri. In: The Astrophysical Journal Letters. Bd. 711 (2), 2010, L138–L142, bibcode:2010ApJ...711L.138R, doi:10.1088/2041-8205/711/2/L138, arxiv:1003.0658.
  90. a b N. Todorović, R. Pavlović: Orbits of Seven Edge-On Visual Double Stars. In: Serbian Astronomical Journal. Bd. 170, 2005, S. 73–78, bibcode:2005SerAJ.170...73P, doi:10.2298/SAJ0570073P.
  91. John M. Brewer et al.: Spectral Properties of Cool Stars: Extended Abundance Analysis of 1,617 Planet-search Stars. In: The Astrophysical Journal Supplement Series. Bd. 225 (2), 2016, Artikel-ID 32, bibcode:2016ApJS..225...32B, doi:10.3847/0067-0049/225/2/32, arxiv:1606.07929.
  92. J. Tomkin, D. M. Popper: Rediscussion of eclipsing binarties. XV. Alpha Coronae Borealis, a main-sequence system with components of types A and G. In: The Astronomical Journal. Bd. 91, 1986, S. 1428–1437, bibcode:1986AJ.....91.1428T, doi:10.1086/114121.
  93. Hans Bruntt et al.: The radius and effective temperature of the binary Ap star β CrB from CHARA/FLUOR and VLT/NACO observations. In: Astronomy & Astrophysics. Bd. 512, 2010, Artikel-ID A55, bibcode:2010A&A...512A..55B, doi:10.1051/0004-6361/200913405, arxiv:0912.3215.
  94. Deepak Raghavan et al.: The Visual Orbit of the 1.1 Day Spectroscopic Binary σ2 Coronae Borealis from Interferometry at the Chara Array. In: The Astrophysical Journal. Bd. 690 (1), 2009, S. 394–406, bibcode:2009ApJ...690..394R, doi:10.1088/0004-637X/690/1/394, arxiv:0808.4015.
  95. Carlos A. Hernández, Elida B. de Hernández: The orbital elements of 25 G CRU (HD 108250). In: Revista Mexicana de Astronomía y Astrofísica. Bd. 4, 1979, S. 297–300, bibcode:1979RMxAA...4..297H.
  96. Francis C. Fekel et al.: Absolute Properties of the Eclipsing Binary VV Corvi. In: The Astronomical Journal. Bd. 146 (6), 2013, Artikel-ID 146, bibcode:2013AJ....146..146F, doi:10.1088/0004-6256/146/6/146.
  97. Zeki Eker, L. R. Doherty: Hα region spectroscopy of the RS CVn system HR 5110. In: Monthly Notices of the Royal Astronomical Society. Bd. 228, 1987, S. 869–881, bibcode:1987MNRAS.228..869E, doi:10.1093/mnras/228.4.869.
  98. Ronald Drimmel et al.: A celestial matryoshka: dynamical and spectroscopic analysis of the Albireo system. In: Monthly Notices of the Royal Astronomical Society. Bd. 502 (1), 2021, S. 328–350, bibcode:2021MNRAS.502..328D, doi:10.1093/mnras/staa4038, arxiv:2012.01277.
  99. Fang Xia, Yanning Fu: The Dynamical State and Long-term Stability of HIP 102589. In: The Astrophysical Journal. Bd. 814 (1), 2015, Artikel-ID 64, bibcode:2015ApJ...814...64X, doi:10.1088/0004-637X/814/1/64.
  100. a b Joel A. Eaton et al.: Orbits and Pulsations of the Classical ζ Aurigae Binaries. In: The Astrophysical Journal. Bd. 679 (2), 2008, S. 1490–1498, bibcode:2008ApJ...679.1490E, doi:10.1086/587452, arxiv:0802.2238.
  101. Francis C. Fekel: The Spectroscopic Orbit of φ Cygni, a System with Two Late-Type Giants. In: Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias). Bd. 21, 2004, S. 63–64, bibcode:2004RMxAC..21...63F.
  102. Heather M. Hauser, Geoffrey W. Marcy: The Orbit of 16 Cygni AB. In: Publications of the Astronomical Society of the Pacific. Bd. 111 (757), 1999, S. 321–334, bibcode:1999PASP..111..321H, doi:10.1086/316328.
  103. Marcelo Tucci Maia et al.: Revisiting the 16 Cygni planet host at unprecedented precision and exploring automated tools for precise abundances. In: Astronomy & Astrophysics. Bd. 628, 2019, Artikel-ID A126, bibcode:2019A&A...628A.126M, doi:10.1051/0004-6361/201935952, arxiv:1906.04195.
  104. Pierre Kervella et al.: The radii of the nearby K5V and K7V stars 61 Cygni A & B. CHARA/FLUOR interferometry and CESAM2k modeling. In: Astronomy & Astrophysics. Bd. 488 (2), 2008, S. 667–674, bibcode:2008A&A...488..667K, doi:10.1051/0004-6361:200810080, arxiv:0806.4049.
  105. Nicholas Law et al.: The LuckyCam survey for very low mass binaries – II. 13 new M4.5-M6.0 binaries. In: Monthly Notices of the Royal Astronomical Society. Bd. 384 (1), 2008, S. 150–160, bibcode:2008MNRAS.384..150L, doi:10.1111/j.1365-2966.2007.12675.x, arxiv:0704.1812.
  106. a b Tyler Gardner et al.: ARMADA. I. Triple Companions Detected in B-type Binaries α Del and ν Gem. In: The Astronomical Journal. Bd. 161 (1), 2021, Artikel-ID 40, bibcode:2021AJ....161...40G, doi:10.3847/1538-3881/abcf4e, arxiv:2012.00778.
  107. a b James W. Davidson, Jr. et al.: A Photometric Analysis of Seventeen Binary Stars Using Speckle Imaging. In: The Astronomical Journal. Bd. 138 (5), 2009, S. 1354–1364, bibcode:2009AJ....138.1354D; doi:10.1088/0004-6256/138/5/1354.
  108. Tyler Gardner et al.: Precision Orbit of δ Delphini and Prospects for Astrometric Detection of Exoplanets. In: The Astrophysical Journal. Bd. 855 (1),2018, Artikel-ID 1, bibcode:2018ApJ...855....1G, doi:10.3847/1538-4357/aaac80, arxiv:1802.00468.
  109. Jiří Kubát et al.: Spectroscopy of close visual binary components of the stable shell star 1 Delphini. In: Astronomy & Astrophysics. Bd. 587, 2016, Artikel-ID A22, bibcode:2016A&A...587A..22K, doi:10.1051/0004-6361/201526414, arxiv:1601.05236.
  110. Einzelhelligkeiten aus scheinbarer Gesamthelligkeit V = 3,65 mag (Bright Star Catalogue) und Helligkeitsdifferenz ΔmV = 1,8 (Don Hutter et al.: Surveying the Bright Stars by Optical Interferometry. I. A Search for Multiplicity among Stars of Spectral Types F-K. In: The Astrophysical Journal Supplement Series. Bd. 227 (1), 2016, Artikel-ID 4, bibcode:2016ApJS..227....4H, doi:10.3847/0067-0049/227/1/4, arxiv:1609.05254) berechnet.
  111. a b Bradford B. Behr et al.: Stellar Astrophysics with a Dispersed Fourier Transform Spectrograph. I. Instrument Description and Orbits of Single-lined Spectroscopic Binaries. In: The Astrophysical Journal. Bd. 705 (1), 2009, S. 543–553, bibcode:2009ApJ...705..543B, doi:10.1088/0004-637X/705/1/543, arxiv:0909.3241.
  112. a b c C. Martin et al.: Mass determination of astrometric binaries with Hipparcos. III. New results for 28 systems. In: Astronomy & Astrophysics Supplement. Bd. 133, 1998, S. 149–162, bibcode:1998A&AS..133..149M, doi:10.1051/aas:1998459.
  113. Rachael M. Roettenbacher et al.: Detecting the Companions and Ellipsoidal Variations of RS CVn Primaries. II. o Draconis, a Candidate for Recent Low-mass Companion Ingestion. In: The Astrophysical Journal. Bd. 809 (2), 2015, Artikel-ID 159, bibcode:2015ApJ...809..159R, doi:10.1088/0004-637X/809/2/159, arxiv:1507.03601.
  114. Andrei A. Tokovinin et al.: Fundamental parameters and origin of the very eccentric binary 41 Dra. In: Astronomy & Astrophysics. Bd. 409, 2003, S. 245–250, bibcode:2003A&A...409..245T, doi:10.1051/0004-6361:20031064.
  115. a b c Pierre Kervella et al.: Stellar and substellar companions of nearby stars from Gaia DR2. Binarity from proper motion anomaly. In: Astronomy & Astrophysics. Bd. 623, 2019, Artikel-ID A72, bibcode:2019A&A...623A..72K, doi:10.1051/0004-6361/201834371, arxiv:1811.08902.
  116. Beate Stelzer et al.: Search of X-ray emission from roAp stars: the case of γ Equulei. In: Astronomy & Astrophysics. Bd. 529, 2011, Artikel-ID A29, bibcode:2011A&A...529A..29S, doi:10.1051/0004-6361/201016265, arxiv:1103.0739.
  117. Birgitta Nordström et al.: Geneva-Copenhagen Survey of Solar neighbourhood. VizieR-Datenkatalog V/117A (elektronisch veröffentlicht). 2008, bibcode:2008yCat.5117....0N.
  118. Brian D. Mason et al.: Binary Star Orbits. V. The Nearby White Dwarf/Red Dwarf Pair 40 Eri BC. In: The Astronomical Journal. Bd. 154 (5), 2017, Artikel-ID 200, bibcode:2017AJ....154..200M, doi:10.3847/1538-3881/aa803e, arxiv:1707.03635.
  119. Daryl W. Willmarth et al.: Spectroscopic Orbits for 15 Late-type Stars. In: The Astronomical Journal. Bd. 152 (2), 2016, Artikel-ID 46, doi:10.3847/0004-6256/152/2/46, bibcode:2016AJ....152...46W.
  120. Andrei A. Tokovinin: Kappa Fornaci, A Triple Radio Star. In: The Astronomical Journal. Bd. 145 (3), 2013, Artikel-ID 76, bibcode:2013AJ....145...76T, doi:10.1088/0004-6256/145/3/76, arxiv:1301.1352.
  121. Manuel Andrade, José A. Docobo: The Dynamical Evolution of the Multiple Stellar System α Gem. In: Living Together: Planets, Host Stars and Binaries. ASP Conference Series, Astronomical Society of the Pacific, Bd. 496, 2015, S. 94–98, bibcode:2015ASPC..496...94A.
  122. Aurore Blazère et al.: Discovery of a very weak magnetic field on the Am star Alhena. In: Monthly Notices of the Royal Astronomical Society: Letters. Bd. 459 (1), 2016, L81–L84, bibcode:2016MNRAS.459L..81B, doi:10.1093/mnrasl/slw050, arxiv:1603.06486.
  123. Benjamin F. Lane et al.: The Orbits of the Triple-star System 1 Geminorum from Phases Differential Astrometry and Spectroscopy. In: The Astrophysical Journal. Bd. 783 (1), 2014, Artikel-ID 3, bibcode:2014ApJ...783....3L, doi:10.1088/0004-637X/783/1/3.
  124. Samantha C. Searle et al.: Quantitative studies of the optical and UV spectra of Galactic early B supergiants. I. Fundamental parameters. In: Astronomy & Astrophysics. Bd. 481 (3), 2008, S. 777–797, bibcode:2008A&A...481..777S, doi:10.1051/0004-6361:20077125, arxiv:0801.4289.
  125. a b Matthew W. Muterspaugh et al.: The Phases Differential Astrometry Data Archive. IV. The Triple Star Systems 63 Gem A and HR 2896. In: The Astronomical Journal. Bd. 140 (6), 2010, S. 1646–1656, bibcode:2010AJ....140.1646M, doi:10.1088/0004-6256/140/6/1646, arxiv:1010.4045.
  126. Ehsan Moravveji et al.: The age and mass of the α Herculis triple-star system from a MESA grid of rotating stars with 1.3 ≤ M/M ≤ 8.0. In: The Astronomical Journal. Bd. 146 (3), 2013, Artikel-ID 148, bibcode:2013AJ....146..148M, doi:10.1088/0004-6256/146/6/148, arxiv:1308.1632.
  127. Xiaopei P. Pan et al.: The Visual Orbit, the Stellar Diameter and the Magnitude Difference of the Spectroscopic Binary β Herculis. In: Bulletin of the American Astronomical Society. Bd. 22, 1990, S. 1335, bibcode:1990BAAS...22R1335P.
  128. Pierre Morel et al.: The ζ Herculis binary system revisited. Calibration and seismology. In: Astronomy & Astrophysics. Bd. 379, 2001, S. 245–256, bibcode:2001A&A...379..245M, doi:10.1051/0004-6361:20011336, arxiv:astro-ph/0110004.
  129. Lewis C. Roberts, Jr. et al.: Characterization of the Companion μ Her. In: The Astronomical Journal. Bd. 151 (6), 2016, Artikel-ID 169, bibcode:2016AJ....151..169R, doi:10.3847/0004-6256/151/6/169, arxiv:1604.06494.
  130. J.-L. Prieur et al.: Speckle observations with PISCO in Merate: XIII. Astrometric measurements of visual binaries in 2012, and new orbits for ADS 10786 BC, 12144, 12515, 16314 and 16539. In: Astronomische Nachrichten. Bd. 335 (8), 2014, S. 817 ff., bibcode:2014AN....335..817P, doi:10.1002/asna.201412054.
  131. Guillermo Torres: Astrometric-Spectroscopic Determination of the Absolute Masses of the HgMn Binary Star φ Herculis. In: The Astronomical Journal. Bd. 133 (6), 2007, S. 2684–2695, bibcode:2007AJ....133.2684T, doi:10.1086/516756, arxiv:astro-ph/0703193.
  132. James Sikora et al.: A volume-limited survey of mCP stars within 100 pc – I. Fundamental parameters and chemical abundances. In: Monthly Notices of the Royal Astronomical Society. Bd. 483 (2), 2019, S. 2300–2324, bibcode:2019MNRAS.483.2300S, doi:10.1093/mnras/sty3105, arxiv:1811.05633.
  133. Grant M. Kennedy et al.: 99 Herculis: host to a circumbinary polar-ring debris disc. In: Monthly Notices of the Royal Astronomical Society. Bd. 421 (3), 2012, S. 2264–2276, bibcode:2012MNRAS.421.2264K, doi:10.1111/j.1365-2966.2012.20448.x, arxiv:1201.1911.
  134. a b Matthew W. Muterspaugh et al.: Masses, Luminosities, and Orbital Coplanarities of the μ Orionis Quadruple-Star System from Phases Differential Astrometry. In: The Astronomical Journal. Bd. 135 (3), 2008, S. 766–776, bibcode:2008AJ....135..766M, doi:10.1088/0004-6256/135/3/766, arxiv:0710.2126.
  135. E. Zhang et al.: The 71 Second Oscillation in the Light Curve of the Old Nova DQ Herculis. In: The Astrophysical Journal. Bd. 454, 1995, S. 447–462, bibcode:1995ApJ...454..447Z, doi:10.1086/176496.
  136. a b c Lindsay Marion et al.: Searching for faint companions with VLTI/PIONIER. II. 92 main sequence stars from the Exozodi survey. In: Astronomy & Astrophysics. Bd. 570, 2014, Artikel-ID A127, bibcode:2014A&A...570A.127M, doi:10.1051/0004-6361/201424780, arxiv:1409.6105.
  137. Brice-Olivier Demory et al.: Mass-radius relation of low and very low-mass stars revisited with the VLTI. In Astronomy & Astrophysics. Bd. 505 (1), 2009, S. 205–215, bibcode:2009A&A...505..205D, doi:10.1051/0004-6361/200911976, arxiv:0906.0602.
  138. Robert King et al.: ɛ Indi Ba, Bb: a detailed study of the nearest known brown dwarfs. In: Astronomy & Astrophysics. Bd. 510, 2010, Artikel-ID A99, bibcode:2010A&A...510A..99K, doi:10.1051/0004-6361/200912981, arxiv:0911.3143.
  139. Douglas R. Gies et al.: A Spectroscopic Orbit for Regulus. In: The Astrophysical Journal Letters. Bd. 682 (2), 2008, L117–L120, bibcode:2008ApJ...682L.117G, doi:10.1086/591148, arxiv:0806.3473.
  140. Douglas R. Gies et al.: Spectroscopic Detection of the Pre-White Dwarf Companion of Regulus. In: The Astrophysical Journal. Bd. 902 (1), 2020, Artikel-ID 25, bibcode:2020ApJ...902...25G, doi:10.3847/1538-4357/abb372, arxiv:2009.02409.
  141. Saul Rappaport et al.: The Past and Future History of Regulus. In: The Astrophysical Journal. Bd. 698 (1), 2009, S. 666–675, bibcode:2009ApJ...698..666R, doi:10.1088/0004-637X/698/1/666, arxiv:0904.0395.
  142. S.-L. Bi et al.: Seismological Analysis of the Stars γ Serpentis and ι Leonis: Stellar Parameters and Evolution. In: The Astrophysical Journal. Bd. 673 (2), 2008, S. 1093–1105, bibcode:2008ApJ...673.1093B, doi:10.1086/521575.
  143. R. E. M. Griffin, R. F. Griffin: Composite spectra Paper 13: 93 Leonis, a chromospherically-active binary. In: Monthly Notices of the Royal Astronomical Society. Bd. 350 (2), 2004, S. 685–706, bibcode:2004MNRAS.350..685G, doi:10.1111/j.1365-2966.2004.07680.x.
  144. Tadashi Nakajima et al.: Physical Properties of Gliese 229B Based on Newly Determined Carbon and Oxygen Abundances of Gliese 229A. In: The Astronomical Journal. Bd. 150 (2), 2015, Artikel-ID 53, bibcode:2015AJ....150...53N, doi:10.1088/0004-6256/150/2/53, arxiv:1506.03178 .
  145. José A. Caballero: Reaching the boundary between stellar kinematic groups and very wide binaries . II. α Librae + KU Librae: a common proper motion system in Castor separated by 1.0 pc. In: Astronomy & Astrophysics. Bd. 514, 2010, Artikel-ID A98, bibcode:2010A&A...514A..98C, doi:10.1051/0004-6361/200913986, arxiv:1001.5432.
  146. Klaus Fuhrmann et al.: On the bright A-type star Alpha Librae A. In: Monthly Notices of the Royal Astronomical Society. Bd. 437 (3), 2014, S. 2303–2306, bibcode:2014MNRAS.437.2303F, doi:10.1093/mnras/stt2046.
  147. Michael R. Line et al.: Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs. I. Characterizing Benchmarks, Gl 570D and HD 3651B. In: The Astrophysical Journal. Bd. 807 (2), 2015, Artikel-ID 183, bibcode:2015ApJ...807..183L, doi:10.1088/0004-637X/807/2/183, arxiv:1504.06670.
  148. a b Siegfried Eggl et al.: Circumstellar habitable zones of binary-star systems in the solar neighbourhood. In: Monthly Notices of the Royal Astronomical Society. Bd. 428 (4), 2013, S. 3104–3113, bibcode:2013MNRAS.428.3104E, doi:10.1093/mnras/sts257, arxiv:1210.5411.
  149. Ming Zhao et al.: First Resolved Images of the Eclipsing and Interacting Binary β Lyrae. In: The Astrophysical Journal Letters. Bd. 684 (2), 2008, L95–L98, bibcode:2008ApJ...684L..95Z, doi:10.1086/592146, arxiv:0808.0932.
  150. Andrei A. Tokovinin: Comparative statistics and origin of triple and quadruple stars. In: Monthly Notices of the Royal Astronomical Society. Bd. 389 (2), 2008, S. 925–938, bibcode:2008MNRAS.389..925T, doi:10.1111/j.1365-2966.2008.13613.x, arxiv:0806.3263.
  151. Ricky Nilsson et al.: Project 1640 Observations of Brown Dwarf GJ 758 B: Near-infrared Spectrum and Atmospheric Modeling. In: The Astrophysical Journal. Bd. 838 (1), 2017, Artikel-ID 64, bibcode:2017ApJ...838...64N, doi:10.3847/1538-4357/aa643c, arxiv:1703.01023.
  152. Ján Budaj, Ilian Kh. Iliev: Abundance analysis of Am binaries and search for tidally driven abundance anomalies – I. HD 33254, HD 178449 and HD 198391. In: Monthly Notices of the Royal Astronomical Society. Bd. 346 (1), 2003, S. 27–36, bibcode:2003MNRAS.346...27B, doi:10.1046/j.1365-2966.2003.07071.x.
  153. Jesús Maíz Apellániz: Gaia DR2 distances to Collinder 419 and NGC 2264 and new astrometric orbits for HD 193 322 Aa,Ab and 15 Mon Aa,Ab. In: Astronomy & Astrophysics. Bd. 630, 2019, Artikel-ID A119, bibcode:2019A&A...630A.119M, doi:10.1051/0004-6361/201935885, arxiv:1908.02040.
  154. Don R. Chance, John L. Hershey: Separate Spectra of the Components of the Low-Mass Binaries Ross 614A,B and L722-22A,B. In: Publications of the Astronomical Society of the Pacific. Bd. 110 (746), 1998, S. 425–432, bibcode:1998PASP..110..425C, doi:10.1086/316146.
  155. George Gatewood et al.: An Astrometric Study of the Low-Mass Binary Star Ross 614. In: The Astronomical Journal. Bd. 125 (3), 2003, S. 1530–1536, bibcode:2003AJ....125.1530G, doi:10.1086/346143.
  156. Eric E. Mamajek et al.: The Closest Known Flyby of a Star to the Solar System. In: The Astrophysical Journal Letters. Bd. 800 (1), 2015, Artikel-ID L17, bibcode:2015ApJ...800L..17M, doi:10.1088/2041-8205/800/1/L17, arxiv:1502.04655.
  157. Trent J. Dupuy et al.: WISE J072003.20-084651.2B is a Massive T Dwarf. In: The Astronomical Journal. Bd. 158 (5), 2019, Artikel-ID 174, bibcode:2019AJ....158..174D, doi:10.3847/1538-3881/ab3cd1, arxiv:1908.06994.
  158. Yasuharu Sugawara et al.: Redshifted emission lines and radiative recombination continuum from the Wolf-Rayet binary θ Muscae: evidence for a triplet system? In: Astronomy & Astrophysics. Bd. 490 (1), 2008, S. 259–264, bibcode:2008A&A...490..259S, doi:10.1051/0004-6361:20079302, arxiv:0810.1208.
  159. A. D. Thackeray: Orbits of two double-lined spectroscopic binaries HD 147971 and 75759. In: Monthly Notices of the Royal Astronomical Society. Bd. 134, 1966, S. 97–106, bibcode:1966MNRAS.134...97T, doi:10.1093/mnras/134.1.97.
  160. Sasha Hinkley et al.: Establishing α Oph as a Prototype Rotator: Improved Astrometric Orbit. In: The Astrophysical Journal. Bd. 726 (2), 2011, Artikel-ID 104, bibcode:2011ApJ...726..104H, doi:10.1088/0004-637X/726/2/104, arxiv:1010.4028.
  161. José A. Docobo, J. F. Ling: Orbits and System Masses of 14 Visual Double Stars with Early-Type Components. In: The Astronomical Journal. Bd. 133 (4), 2007, S. 1209–1216, bibcode:2007AJ....133.1209D, doi:10.1086/511070.
  162. Alan W. Irwin et al.: 36 Ophiuchi AB: Incompatibility of the Orbit and Precise Radial Velocities. In: Publications of the Astronomical Society of the Pacific. Bd. 108, 1996, S. 580–590, bibcode:1996PASP..108..580I, doi:10.1086/133768.
  163. Xiaoli Wang et al.: The Three-dimensional Orbit and Physical Parameters of 47 Oph. In: The Astronomical Journal. Bd. 149 (3), 2015, Artikel-ID 110, bibcode:2015AJ....149..110W, doi:10.1088/0004-6256/149/3/110.
  164. Tsevi Mazeh et al.: Studies of multiple stellar systems – IV. The triple-lined spectroscopic system Gliese 644. In: Monthly Notices of the Royal Astronomical Society. Bd. 325 (1), 2001, S. 343–357, bibcode:2001MNRAS.325..343M, doi:10.1046/j.1365-8711.2001.04419.x, arxiv:astro-ph/0102451.
  165. Joanna Mikołajewska, Michael M. Shara: The Massive CO White Dwarf in the Symbiotic Recurrent Nova RS Ophiuchi. In: The Astrophysical Journal. Bd. 847 (2), 2017, Artikel-ID 99, bibcode:2017ApJ...847...99M, doi:10.3847/1538-4357/aa87b6, arxiv:1702.08732.
  166. Tomer Shenar et al.: A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. IV. A Multiwavelength, Non-LTE Spectroscopic Analysis. In: The Astrophysical Journal. Bd. 809 (2), 2015, Artikel-ID 135, bibcode:2015ApJ...809..135S, doi:10.1088/0004-637X/809/2/135, arxiv:1503.03476.
  167. Christian A. Hummel et al.: Dynamical mass of the O-type supergiant in ζ Orionis A. In: Astronomy & Astrophysics. Bd. 554, 2013, Artikel-ID A52, bibcode:2013A&A...554A..52H, doi:10.1051/0004-6361/201321434, arxiv:1306.0330.
  168. a b c d GRAVITY Collaboration (Martina Karl et al.): Multiple star systems in the Orion nebula. In: Astronomy & Astrophysics. Bd. 620, 2018, Artikel-ID A116, bibcode:2018A&A...620A.116G, doi:10.1051/0004-6361/201833575, arxiv:1809.10376.
  169. a b c d Stefan Kraus et al.: Tracing the young massive high-eccentricity binary system θ1 Orionis C through periastron passage. In: Astronomy & Astrophysics. Bd. 497 (1), 2009, S. 195–207, bibcode:2009A&A...497..195K, doi:10.1051/0004-6361/200810368, arxiv:0902.0365.
  170. Yu. Yu. Balega et al.: Young massive binary θ1 Ori C: Radial velocities of components. In: Astrophysical Bulletin. Bd. 69 (1), 2014, S. 46–57, bibcode:2014AstBu..69...46B, doi:10.1134/S1990341314010052.
  171. Herbert Pablo et al.: The most massive heartbeat: an in-depth analysis of ι Orionis. In: Monthly Notices of the Royal Astronomical Society. Bd. 467 (2), 2017, S. 2494–2503, bibcode:2017MNRAS.467.2494P, doi:10.1093/mnras/stx207, arxiv:1703.02086.
  172. Gail Schaefer et al.: Orbits, Distance, and Stellar Masses of the Massive Triple Star σ Orionis. In: The Astronomical Journal. Bd. 152 (6), 2016, Artikel-ID 213, bibcode:2016AJ....152..213S, doi:10.3847/0004-6256/152/6/213, arxiv:1610.01984.
  173. B. König et al.: Direct detection of the companion of χ1 Orionis. In: Astronomy & Astrophysics. Bd. 394, 2002, S. L43–L46, doi:10.1051/0004-6361:20021377, arxiv:astro-ph/0209404, bibcode:2002A&A...394L..43K.
  174. Jinyoung Serena Kim et al.: Proplyds Around a B1 Star: 42 Orionis in NGC 1977. In: The Astrophysical Journal Letters. Bd. 826 (1), 2016, Artikel-ID L15, bibcode:2016ApJ...826L..15K, doi:10.3847/2041-8205/826/1/L15, arxiv:1606.08271.
  175. C. D. Scarfe et al.: 64 Orionis: Three-Dimensional Orbit and Physical Parameters. In: The Astronomical Journal. Bd. 119 (5), 2000, S. 2415–2421, bibcode:2000AJ....119.2415S, doi:10.1086/301366.
  176. J . Andersen et al.: Absolute dimensions of eclipsing binaries. XVI. V1031 Orionis In: Astronomy & Astrophysics. Bd. 228, 1990, S. 365–378, bibcode:1990A&A...228..365A.
  177. Markus Kasper et al.: The very nearby M/T dwarf binary SCR 1845-6357. In: Astronomy & Astrophysics. Bd. 471 (2), 2007, S. 655–659, bibcode:2007A&A...471..655K, doi:10.1051/0004-6361:20077881, arxiv:0706.3824.
  178. Christian A. Hummel et al.: Navy Prototype Optical Interferometer Observations of the Double Stars Mizar A and Matar. In: The Astronomical Journal. Bd. 116 (5), 1998, S. 2536–2548. bibcode:1998AJ....116.2536H, doi:10.1086/300602.
  179. Matthew W. Muterspaugh et al.: PHASES Differential Astrometry and Iodine Cell Radial Velocities of the κ Pegasi Triple Star System. In: The Astrophysical Journal. Bd. 636 (2), 2006, S. 1020–1032, bibcode:2006ApJ...636.1020M, doi:10.1086/498209, arxiv:astro-ph/0509406.
  180. Andrei A. Tokovinin: Inner and Outer Orbits in 13 Resolved Hierarchical Stellar Systems. In: Astronomical Journal. Bd. 161 (3), 2021, Artikel-ID 144, bibcode:2021AJ....161..144T, doi:10.3847/1538-3881/abda42, arxiv:2101.02976.
  181. Alain Jorissen et al.: Barium and related stars, and their white-dwarf companions. I. Giant stars. In: Astronomy & Astrophysics. Bd. 626, 2019, Artikel-ID A127, bibcode:2019A&A...626A.127J, doi:10.1051/0004-6361/201834630, arxiv:1904.03975.
  182. Fabien Baron et al.: Imaging the Algol Triple System in the H Band with the CHARA Interferometer. In: The Astrophysical Journal. Bd. 752 (1), 2012, Artikel-ID 20, bibcode:2012ApJ...752...20B, doi:10.1088/0004-637X/752/1/20, arxiv:1205.0754.
  183. Jiri Libich et al.: The new orbital elements and properties of ε Persei. In: Astronomy & Astrophysics. Bd. 446 (2), 2006, S. 583–589, bibcode:2006A&A...446..583L, doi:10.1051/0004-6361:20053032.
  184. D. J. Stickland, C. Lloyd: Spectroscopic binary orbits from ultraviolet radial velocities. Paper 28: ο Persei. In: The Observatory. Bd. 118, 1998, S 138–144, bibcode:1998Obs...118..138S.
  185. L. S. Lyubimkov et al.: The binary system o Per: Orbital elements, component parameters, and helium abundance. In: Astronomy Reports. Bd. 41 (5), 1997, S. 630–638, bibcode:1997ARep...41..630L.
  186. William Foster van Altena et al.: Yale Trigonometric Parallaxes, Fourth Edition. VizieR-Datenkatalog I/238A (elektronisch veröffentlicht). 2001, bibcode:2001yCat.1238....0V.
  187. Eric E. Mamajek et al.: The Solar Neighborhood. XXX. Fomalhaut C. In: The Astronomical Journal. Bd. 146 (6), 2013, Artikel-ID 154, bibcode:2013AJ....146..154M, doi:10.1088/0004-6256/146/6/154, arxiv:1310.0764.
  188. Dimitri Pourbaix, H. M. J. Boffin: Reprocessing the Hipparcos Intermediate Astrometric Data of spectroscopic binaries. II. Systems with a giant component. In: Astronomy & Astrophysics. Bd. 398, 2003, S. 1163–1177, bibcode:2003A&A...398.1163P, doi:10.1051/0004-6361:20021736, arxiv:astro-ph/0211483.
  189. Gilles Duvert et al.: Phase closure nulling of HD 59717 with AMBER/VLTI . Detection of the close faint companion. In: Astronomy & Astrophysics. Bd. 509, 2010, Artikel-ID A66, bibcode:2010A&A...509A..66D, doi:10.1051/0004-6361/200811037, arxiv:1001.5010.
  190. L. P. R. Vaz, J. Andersen: Absolute dimensions of eclipsing binaries. IV. PV Puppis, a detached late A-type system with equal, intrinsically variable components. In: Astronomy & Astrophysics. Bd. 132, 1984, S. 219–228, bibcode:1984A&A...132..219V.
  191. Andrei Tokovinin et al.: Speckle Interferometry at SOAR in 2014. In: The Astronomical Journal. Bd. 150 (2), 2015, Artikel-ID 50, bibcode:2015AJ....150...50T, doi:10.1088/0004-6256/150/2/50, arxiv:1506.05718.
  192. Genya Takeda et al.: Stellar parameters of nearby cool stars. VizieR-Datenkatalog J/ApJS/168/297 (elektronisch veröffentlicht). 2008, bibcode:2008yCat..21680297T.
  193. Mounib F. El Eid: CNO isotopes in red giants: theory versus observations. In: Astronomy & Astrophysics. Bd. 285, 1994, S. 915–928, bibcode:1994A&A...285..915E.
  194. R. P. Kudritzki, D. Reimers: On the absolute scale of mass-loss in red giants. II. Circumstellar absorption lines in the spectrum of alpha Sco B and mass-loss of alpha Sco A. In: Astronomy & Astrophysics. Bd. 70, 1978, S. 227–239, bibcode:1978A&A....70..227K.
  195. María Eugenia Veramendi, Jorge Federico González: Spectroscopic study of early-type multiple stellar systems. I. Orbits of spectroscopic binary subsystems. In: Astronomy & Astrophysics. Bd. 563, 2014, Artikel-ID A138, bibcode:2014A&A...563A.138V, doi:10.1051/0004-6361/201322840.
  196. Gianni Catanzaro: First spectroscopic analysis of β Scorpii C and β Scorpii E. Discovery of a new HgMn star in the multiple system β Scorpii. In: Astronomy & Astrophysics. Bd. 509, 2010, Artikel-ID A21, bibcode:2010A&A...509A..21C, doi:10.1051/0004-6361/200913332.
  197. Thomas C. Van Flandern, Peter Espenschied: Lunar occultations of Beta Scorpii in 1975 and 1976. In: The Astronomical Journal. Bd. 200, 1975, S. 61–67, bibcode:1975ApJ...200...61V, doi:10.1086/153760.
  198. Anatoly Miroshnichenko et al.: The 2011 Periastron Passage of the Be Binary δ Scorpii. In: The Astrophysical Journal. Bd. 766 (2), 2013, Artikel-ID 119, bibcode:2013ApJ...766..119M, doi:10.1088/0004-637X/766/2/119, arxiv:1302.4021.
  199. William Tango et al.: Orbital elements, masses and distance of λ Scorpii A and B determined with the Sydney University Stellar Interferometer and high-resolution spectroscopy. In: Monthly Notices of the Royal Astronomical Society. Bd. 370 (2), 2006, S. 884–890, bibcode:2006MNRAS.370..884T, doi:10.1111/j.1365-2966.2006.10526.x, arxiv:astro-ph/0605311.
  200. Rebekka Grellmann et al.: New constraints on the multiplicity of massive young stars in Upper Scorpius. In: Astronomy & Astrophysics. Bd. 578, 2015, Art.-ID A84, bibcode:2015A&A...578A..84G, doi:10.1051/0004-6361/201219577.
  201. a b Andrei Tokovinin: Nearby Quintuple Systems κ Tucanae and ξ Scorpii. In: The Astronomical Journal. Bd. 159 (6), 2020, Artikel-ID 265, bibcode:2020AJ....159..265T, doi:10.3847/1538-3881/ab8af1, arxiv:2005.04057.
  202. Andrew Tkachenko et al.: Modelling of σ Scorpii, a high-mass binary with a β Cep variable primary component. In: Monthly Notices of the Royal Astronomical Society. Bd. 442 (1), 2014, S. 616–628, bibcode:2014MNRAS.442..616T, doi:10.1093/mnras/stu885, arxiv:1405.0924.
  203. Einzelhelligkeiten aus scheinbarer Gesamthelligkeit V = 4,22 mag (Bright Star Catalogue) und Helligkeitsdifferenz ΔmV = 3,8 (Don Hutter et al.: Surveying the Bright Stars by Optical Interferometry. I. A Search for Multiplicity among Stars of Spectral Types F-K. In: The Astrophysical Journal Supplement Series. Bd. 227 (1), 2016, Artikel-ID 4, bibcode:2016ApJS..227....4H, doi:10.3847/0067-0049/227/1/4, arxiv:1609.05254) berechnet.
  204. Sidney B. Parsons et al.: The Fine Guidance Sensor Orbit of the G4 Bright Giant HD 173764. In: The Astronomical Journal. Bd. 129 (3), 2005, S. 1700–1705, bibcode:2005AJ....129.1700P, doi:10.1086/427853.
  205. Brian D. Mason et al.: Binary Star Orbits. III. Revisiting the Remarkable Case of Tweedledum and Tweedledee. In: The Astronomical Journal. Bd. 140 (1), 2010, S. 242–252, bibcode:2010AJ....140..242M, doi:10.1088/0004-6256/140/1/242, arxiv:1006.2674.
  206. James W. Christy, R. L. Walker, Jr.: MK Classification of 142 Visual Binaries. In: Publications of the Astronomical Society of the Pacific. Bd. 81 (482), 1969, S. 643–649, bibcode:1969PASP...81..643C, doi:10.1086/128831.
  207. Nancy Remage Evans et al.: Massive Star Multiplicity: The Cepheid W Sgr. In: The Astronomical Journal. Bd. 137 (3), 2009, S. 3700–3705, bibcode:2009AJ....137.3700E, doi:10.1088/0004-6256/137/3/3700, arxiv:0902.3281.
  208. Debra J. Wallace et al.: Hubble Space Telescope Detection of Binary Companions Around Three WC9 Stars: WR 98a, WR 104, and WR 112. In: Interacting Winds from Massive Stars. ASP Conference Proceedings. Edited by Anthony F. J. Moffat and Nicole St-Louis. San Francisco: Astronomical Society of the Pacific. Bd. 260, 2002, S. 407–416, bibcode:2002ASPC..260..407W.
  209. Anthony Soulain et al.: SPHERE view of Wolf-Rayet 104. Direct detection of the Pinwheel and the link with the nearby star. In: Astronomy & Astrophysics. Bd. 618, 2018, Artikel-ID A108, bibcode:2018A&A...618A.108S, doi:10.1051/0004-6361/201832817, arxiv:1806.08525.
  210. Guillermo Torres et al.: The Hyades Binaries θ1 Tauri and θ2 Tauri: The Distance to the Cluster and the Mass-Luminosity Relation. In: The Astrophysical Journal. Bd. 485 (1), 1997, S. 167–181, bibcode:1997ApJ...485..167T, doi:10.1086/304422.
  211. K. B. V. Torres et al.: Spectra disentangling applied to the Hyades binary θ2 Tauri AB: new orbit, orbital parallax and component properties. In: Astronomy & Astrophysics. Bd. 525, 2011, Artikel-ID A50, bibcode:2011A&A...525A..50T, doi:10.1051/0004-6361/201015166, arxiv:1010.5643.
  212. J. A. Nemravová et al.: ξ Tauri: a unique laboratory to study the dynamic interaction in a compact hierarchical quadruple system. In: Astronomy & Astrophysics. Bd. 594, 2016, Artikel-ID A55, bibcode:2016A&A...594A..55N, doi:10.1051/0004-6361/201628860.
  213. Guillermo Torres: The Multiple System HD 27638. In: The Astronomical Journal. Bd. 131 (3), 2006, S. 1702–1711, bibcode:2006AJ....131.1702T, doi:10.1086/500355, arxiv:astro-ph/0512254.
  214. N. Zwahlen et al.: A purely geometric distance to the binary star Atlas, a member of the Pleiades. In: Astronomy & Astrophysics. Bd. 425, 2004, S. L45–L48, bibcode:2004A&A...425L..45Z, doi:10.1051/0004-6361:200400062, arxiv:astro-ph/0408430.
  215. Jana Alexandra Nemravová et al.: Properties and nature of Be stars. 27. Orbital and recent long-term variations of the Pleiades Be star Pleione = BU Tauri. In: Astronomy & Astrophysics. Bd. 516, 2010, Artikel-ID A80, bibcode:2010A&A...516A..80N, doi:10.1051/0004-6361/200913885, arxiv:1003.5625.
  216. Guillermo Torres et al.: The Hyades Binary Finsen 342 (70 Tauri): A Double-lined Spectroscopic Orbit, the Distance to the Cluster, and the Mass-Luminosity Relation. In: The Astrophysical Journal. Bd. 479 (1), 1997, S. 268–278, bibcode:1997ApJ...479..268T, doi:10.1086/303879.
  217. Benjamin F. Lane et al.: The Orbits of the Quadruple Star System 88 Tauri A from PHASES Differential Astrometry and Radial Velocity. In: The Astrophysical Journal. Bd. 669 (2), 2007, S. 1209–1219, bibcode:2007ApJ...669.1209L, doi:10.1086/520877, arxiv:0710.2127.
  218. Andrei A. Tokovinin, N. A. Gorynya: New spectroscopic components in multiple systems. IV. In: Astronomy & Astrophysics. Bd. 374 (1), 2001, S. 227–237, bibcode:2001A&A...374..227T, doi:10.1051/0004-6361:20010714.
  219. Marco Scardia et al.: Speckle observations with PISCO in Merate – III. Astrometric measurements of visual binaries in 2005 and scale calibration with a grating mask. In: Monthly Notices of the Royal Astronomical Society. Bd. 374 (3), 2007, S. 965–978, bibcode:2007MNRAS.374..965S, doi:10.1111/j.1365-2966.2006.11206.x.
  220. D. B. Guenther et al.: Evolutionary Model and Oscillation Frequencies for α Ursae Majoris: A Comparison with Observations. In: The Astrophysical Journal. Bd. 530 (1), 2000, S. L45–L48, bibcode:2000ApJ...530L..45G, doi:10.1086/312473.
  221. R. M. Petrie: The spectroscopic binary HD 95638. In: Publications of the Dominion Astrophysical Observatory Victoria. Bd. 11, 1960, S. 259, bibcode:1960PDAO...11..259P.
  222. Eric E. Mamajek et al.: Discovery of a Faint Companion to Alcor Using MMT/AO 5 μm Imaging. In: The Astronomical Journal. Bd. 139 (3), 2010, S. 919–925, bibcode:2010AJ....139..919M, doi:10.1088/0004-6256/139/3/919, arxiv:0911.5028.
  223. R. Ya. Zhuchkov et al.: Physical parameters and dynamical properties of the multiple system ι UMa (ADS 7114). In: Astronomy Reports. Bd. 56 (7), 2012, S. 512–523, bibcode:2012ARep...56..512Z, doi:10.1134/S1063772912070074.
  224. Byeong-Cheol Lee et al.: Long-period Variations in the Radial Velocity of Spectroscopic Binary M Giant μ Ursae Majoris. In: The Astronomical Journal. Bd. 151 (4), 2016, Artikel-ID 106, bibcode:2016AJ....151..106L, doi:10.3847/0004-6256/151/4/106, arxiv:1602.07011.
  225. Ning Liu et al.: Tomographic Separation of Composite Spectra. V. The Triple Star System 55 Ursae Majoris In: The Astrophysical Journal. Bd. 485 (1), 1997, S. 350–358, bibcode:1997ApJ...485..350L, doi:10.1086/304418.
  226. Yanning Fu, Shulin Ren: Orbit Determination of Double-lined Spectroscopic Binaries by Fitting the Revised Hipparcos Intermediate Astrometric Data. In: The Astronomical Journal. Bd. 139 (5), 2010, S. 1975–1982, bibcode:2010AJ....139.1975R, doi:10.1088/0004-6256/139/5/1975.
  227. Albert P. Linnell: A Light Synthesis Study of W Ursae Majoris. In: The Astrophysical Journal. Bd. 374, 1991, S. 307–318, bibcode:1991ApJ...374..307L, doi:10.1086/170120.
  228. Nancy Remage Evans et al.: The Orbit of the Close Companion of Polaris: Hubble Space Telescope Imaging, 2007 to 2014. In: The Astrophysical Journal. Bd. 863 (2), 2018, Artikel-ID 187, bibcode:2018ApJ...863..187E, doi:10.3847/1538-4357/aad410, arxiv:1807.06115.
  229. Julian R. North et al.: γ2 Velorum: orbital solution and fundamental parameter determination with SUSI. In: Monthly Notices of the Royal Astronomical Society. Bd. 377 (1), 2007, S. 415–424, bibcode:2007MNRAS.377..415N, doi:10.1111/j.1365-2966.2007.11608.x, arxiv:astro-ph/0702375.
  230. Antoine Mérand et al.: The nearby eclipsing stellar system δ Velorum. III. Self-consistent fundamental parameters and distance. In: Astronomy & Astrophysics. Bd. 532, 2011, Artikel-ID A50, bibcode:2011A&A...532A..50M, doi:10.1051/0004-6361/201116896, arxiv:1106.2383.
  231. David S. Evans: A rediscussion of p Velorum. In: Monthly Notices of the Royal Astronomical Society. Bd. 142, 1969, S. 523–541, bibcode:1969MNRAS.142..523E, doi:10.1093/mnras/142.4.523.
  232. E. Victor Garcia et al.: Individual, Model-independent Masses of the Closest Known Brown Dwarf Binary to the Sun. In: The Astrophysical Journal. Bd. 846 (2), 2017, Artikel-ID 97, bibcode:2017ApJ...846...97G, doi:10.3847/1538-4357/aa844f, arxiv:1708.02714.
  233. Andrew Tkachenko et al.: Stellar modelling of Spica, a high-mass spectroscopic binary with a β Cep variable primary component. In: Monthly Notices of the Royal Astronomical Society. Bd. 458 (2), 2016, S. 1964–1976, bibcode:2016MNRAS.458.1964T, doi:10.1093/mnras/stw255, arxiv:1601.08069.
  234. Marco Scardia et al.: The orbit of the visual binary ADS 8630 (γ Vir). In: Astronomische Nachrichten. Bd. 328 (2), 2007, S. 146 ff., bibcode:2007AN....328..146S, doi:10.1002/asna.200610710.
  235. Christian A. Hummel et al.: First Observations with a Co-phased Six-Station Optical Long-Baseline Array: Application to the Triple Star η Virginis. In: The Astronomical Journal. Bd. 125 (5), 2003, S. 2630–2644, bibcode:2003AJ....125.2630H, doi:10.1086/374572.
  236. Bradford B. Behr et al.: Stellar Astrophysics with a Dispersed Fourier Transform Spectrograph. II. Orbits of Double-lined Spectroscopic Binaries. In: The Astronomical Journal. Bd. 142 (1), 2011, Artikel-ID 6, bibcode:2011AJ....142....6B, doi:10.1088/0004-6256/142/1/6, arxiv:1104.1447.
  237. Guillermo Torres et al.: The Nearby Low-Mass Visual Binary Wolf 424. In: The Astronomical Journal. Bd. 117 (1), 1999, S. 562–573, bibcode:1999AJ....117..562T, doi:10.1086/300708.

Auf dieser Seite verwendete Medien

Sort both small.svg
Table sort icon: both/neutral (cropped to narrow); not a Unicode glyph