Lagrange-Multiplikator
Das Verfahren der Lagrange-Multiplikatoren (nach Joseph-Louis Lagrange) ist in der mathematischen Optimierung eine Methode zur Lösung von Optimierungsproblemen mit Nebenbedingungen. Ein Optimierungsproblem mit Nebenbedingungen ist die Aufgabe, ein lokales Extremum einer Funktion in mehreren Veränderlichen mit einer oder mehreren Nebenbedingungen zu finden, wobei die Nebenbedingungen als Nullstellen von Funktionen definiert sind. Diese Methode führt eine neue unbekannte skalare Variable für jede Nebenbedingung ein, einen Lagrange-Multiplikator, und definiert eine Linearkombination, die die Multiplikatoren als Koeffizienten einbindet. Die Lösungen der ursprünglichen Optimierungsaufgabe können dann unter gewissen Voraussetzungen als kritische Punkte dieser sogenannten Lagrange-Funktion bestimmt werden.
Beschreibung
Zunächst betrachten wir den zweidimensionalen Fall mit einer Nebenbedingung. Nehmen wir an, wir wollen eine Funktion maximieren, wobei die Nebenbedingung einzuhalten ist; manche Quellen verwenden stattdessen mit einer Konstante . Die Nebenbedingung filtert bestimmte Punkte der --Ebene heraus, die zusammengenommen Kurven bilden. Für unsere Betrachtung nehmen wir an, die Nebenbedingung sei so geartet, dass sie durch eine einzelne Kurve dargestellt werden kann (siehe nebenstehendes Bild, rote Kurve). Wenn wir uns auf dieser Kurve bewegen, berühren oder schneiden wir Höhenlinien von . Wir sehen nun, dass wir immer nur dann ein Maximum der Funktion erreichen, wenn unsere Bewegung auf der Kurve tangential zur Höhenlinie verläuft: Andernfalls könnten wir durch Vorwärts- oder Rückwärtsbewegung auf der Kurve den Funktionswert von noch weiter vergrößern, ohne die Nebenbedingung zu verletzen.
Ein bekanntes Beispiel kann den Wetterkarten mit ihren Höhenlinien für Temperaturen und Druck entnommen werden. Die Extrema unter der Nebenbedingung treten dort auf, wo sich beim Überlagern der Karten Linien berühren. Geometrisch übersetzen wir die Tangentenbedingung, indem wir sagen, dass die Gradienten von und beim Maximum parallele Vektoren sind, wobei der Gradient von nicht verschwinden darf.
Wir suchen also Punkte mit , an denen und
- .
Dabei wurden die folgenden Abkürzungen bzw. Definitionen für die zugehörigen Gradienten benutzt:
und
Der konstante Lagrange-Multiplikator wird dabei benötigt, weil die beiden Gradienten zwar parallel sein sollen, aber als Vektoren unterschiedlich lang sein können. Um alle genannten Bedingungen zu einer Gleichung zusammenzufassen, ist es nützlich, die folgende Lagrange-Funktion zu verwenden:
Die Lösung des oben beschriebenen Optimierungsproblems mit einer Nebenbedingung entspricht jetzt einem kritischen Punkt der Lagrange-Funktion, d. h.:
Die - und die -Komponente dieser Gleichung entsprechen dabei der Forderung nach Parallelität der zwei ursprünglichen Gradienten, die dritte Komponente ist identisch mit .
Punkte, bei denen der Gradient der Nebenbedingung verschwindet, müssen gesondert betrachtet werden, weil das Verfahren der Lagrange-Multiplikatoren über sie keine Aussage treffen kann.
Da im Allgemeinen nicht jeder kritische Punkt der Lagrange-Funktion das ursprüngliche Optimierungsproblem löst, liefert dieses Verfahren nur eine notwendige Bedingung für die Lösung des Optimierungsproblems.
Beispiele
Beispiel mit Nebenbedingung ohne verschwindenden Gradienten
In diesem Beispiel soll die Funktion unter der Nebenbedingung optimiert werden. Die Nebenbedingung entspricht also dem Einheitskreis. Mit Hilfe der Grafik kann das Maximum bei bestimmt werden. Das Minimum des Optimierungsproblems liegt bei .
Zunächst überprüfen wir, an welchen Punkten des Einheitskreises der Gradient der Nebenbedingungsfunktion verschwindet. Wir berechnen also
und sehen, dass dies nur im Ursprung gleich ist. Jedoch liegt dieser Punkt nicht auf dem Einheitskreis, erfüllt also nicht die Nebenbedingung und wird somit nicht in die Liste der kritischen Punkte aufgenommen.
Um die Methode der Lagrange-Multiplikatoren anwenden zu können, sei
- .
Die Bedingung ergibt die folgenden drei Gleichungen:
Die dritte Gleichung (iii) entspricht dabei wie immer der geforderten Nebenbedingung. Mit kann (i) nach aufgelöst werden. Dasselbe macht man für Gleichung (ii) und . Man erhält somit . Wird das in (iii) eingesetzt, erhält man , also . Die kritischen Punkte berechnen sich damit zu und . Die zu optimierende Funktion hat an diesen zwei Punkten die Werte , bzw. .
Beispiel mit Anwendungsbezug
Ein Grundstück soll die Form einer Ellipse mit Schwerpunkt im Ursprung und Haupt- und Nebenachse parallel zur - und -Achse aufweisen. Außerdem soll das Grundstück mit der Fläche
so klein wie möglich sein. Die Ellipse soll durch einen gegebenen Punkt gehen. Diese Nebenbedingung liegt in Form der Gleichung
vor, die eine Ellipse mit Zentrum im Ursprung, Hauptachse der Länge und Nebenachse der Länge beschreibt. Hauptachse und Nebenachse liegen parallel zur - und -Achse, weshalb die Ellipse durch die Punkte und verläuft.
Die allgemeine Lagrange-Funktion mit beliebigen Werten für und lautet
mit . Der Gradient hiervon wird auf Null gesetzt, um die kritischen Punkte zu bestimmen. Hierbei wird und vorausgesetzt. Denn für oder erhielte man eine leere Ellipse.
Die erste Gleichung wird zu umgeformt und in die zweite Gleichung eingesetzt. ergibt . Setzt man diesen Ausdruck in die dritte Gleichung ein, erhält man durch Rückeinsetzen die Lösungen
- .
Der Gradient der Nebenbedingungsfunktion
verschwindet für . Da der Punkt nicht auf der Ellipse liegt, handelt es sich bei um das gesuchte Minimum. Dies muss im Einzelfall grafisch überprüft werden, da die Lagrange-Multiplikatoren nur ein notwendiges Kriterium liefern.
Beispiel mit Nebenbedingung mit verschwindendem Gradienten
Wir betrachten die Funktion mit . Untersucht man die Funktion nun auf Extrema, so kann man mithilfe des hinreichenden Kriteriums für lokale Extremstellen alle Extrema im Inneren des Definitionsbereiches bestimmen. Die Randextrema werden jedoch mithilfe des Lagrange-Multiplikator gefunden. Dabei bildet der Rand des Definitionsbereiches die Nebenbedingung. Hier sind es die beiden positiven Koordinatenachsen und der Ursprung. Wir finden also die Nebenbedingung mit .
Wir stellen zunächst die Lagrange-Funktion auf:
Die Gleichung
führt uns auf das Gleichungssystem
Die dritte Gleichung besagt, dass oder . Angenommen es wäre , dann führt dies – in die zweite Gleichung eingesetzt – auf einen Widerspruch, denn die Gleichung
hat keine Lösung, da die -Funktion keine Nullstellen besitzt. Analog führt man den Fall mit der ersten Gleichung auf einen Widerspruch. Der Lagrange-Multiplikator liefert also keine kritischen Punkte.
Jedoch haben wir nicht überprüft, an welchen Stellen der Gradient der Nebenbedingung verschwindet. Es gilt
Im Ursprung verschwindet also der Gradient der Nebenbedingung, und dieser liegt auch auf dem Rand des Definitionsbereiches von (er erfüllt die Nebenbedingung). Wie oben beschrieben, müssen diese Punkte auch als Kandidaten für Extrema in Betracht gezogen werden. Und in der Tat ist und für alle . Der Ursprung ist also das globale Maximum der Funktion.
Das Vorhandensein von kritischen Punkten sagt jedoch nichts über das Vorhandensein von Extrema aus. Würde man in diesem Beispiel die Definitionsbereiche von und durch ersetzen, so würde man zwar denselben einzigen kritischen Punkt erhalten, jedoch wäre der Ursprung kein globales (und auch kein lokales) Maximum von (z. B. divergiert die Funktion im 3. Quadranten). In der Tat besäße dieses keine lokalen Maxima oder Minima.
Mehrere Nebenbedingungen
Es sei eine in einer offenen Teilmenge definierte Funktion. Wir definieren voneinander unabhängige Nebenbedingungen , . D. h. die Gradienten der Nebenbedingungen sind für jeden Punkt , mit für alle , linear unabhängig. Insbesondere bedeutet dies, dass keiner der Gradienten verschwindet. Sollten die Gradienten doch an einer Stelle linear abhängig sein, so wird dieser Punkt in die Liste der kritischen Punkte aufgenommen. Nun setzen wir
wobei und ist.
Wir schauen uns nun den kritischen Punkt von an
was äquivalent ist zu
Wir ermitteln die unbekannten Multiplikatoren durch Multiplikation obiger Gleichung mit der Inversen der Matrix
und haben damit einen kritischen Punkt (d. h. ) von gefunden. Dies ist eine notwendige Bedingung dafür, dass ein Extremum auf der Menge der Punkte, welche die Nebenbedingungen erfüllen, hat. D. h. auch hier müssen die Extrema aus der Liste der kritischen Punkte mit anderen Mitteln herausgefiltert werden.
Man beachte, dass es deshalb insbesondere falsch ist, davon zu sprechen, die „Lagrange-Funktion zu maximieren“. Die Lagrange-Funktion ist unbeschränkt und besitzt deshalb keine globalen Extrema und kann somit nicht maximiert werden. Lediglich die kritischen Stellen der Lagrange-Funktion geben Punkte an, an denen die Zielfunktion bezüglich der Nebenbedingungen möglicherweise ein Maximum annimmt.
Hinreichende Bedingungen
Dieses Verfahren liefert nur eine notwendige Bedingung für Extremstellen. Um die Extremstellen nachzuweisen und ihre Art zu bestimmen, gibt es verschiedene Kriterien. Generell wird die geränderte Hesse-Matrix gebildet und deren Determinante bzw. bestimmte Unterdeterminanten berechnet. Dieser Ansatz führt aber nicht immer zu einer Aussage. Alternativ kann man auch auf eine Visualisierung bzw. geometrische Überlegungen zurückgreifen, um die Art der Extremstelle festzustellen.
Bedeutung der Lagrange-Multiplikatoren in der Physik
Die Bedeutung der Lagrange-Multiplikatoren in der Physik wird bei der Anwendung in der klassischen Mechanik sichtbar. Hierfür wurden sie von Lagrange um das Jahr 1777 auch eingeführt. Die Bewegungsgleichungen der klassischen Mechanik lassen sich im Lagrange-Formalismus mit Hilfe der Euler-Lagrange-Gleichung aus der Bedingung gewinnen, dass die Wirkung – bei Variation der Koordinaten und ihrer Zeitableitungen unabhängig voneinander – ein Extremum annimmt. Eine physikalische Zwangsbedingung, die die Bewegung einschränkt, erscheint als Nebenbedingung des Extremums. Der Lagrange-Multiplikator, mit dem die Zwangsbedingung in die Lagrange-Funktion eingefügt wird, steht im engen Zusammenhang zu der physikalischen Zwangskraft, mit der das durch die Bewegungsgleichung beschriebene Objekt zur Einhaltung der Zwangsbedingung gebracht wird. Das folgende Beispiel einer freien Punktmasse , die sich in zwei Dimensionen auf einer Bahn mit konstantem Radius bewegt, macht dieses klar:
Lagrange-Funktion (kinetische Energie in Polarkoordinaten):
Zwangsbedingung:
neue Lagrange-Funktion:
Euler-Lagrange-Gleichung (hier nur für die radiale Koordinate formuliert, da die Zwangsbedingung von dieser abhängt; die Winkelkoordinate ergibt die Drehimpulserhaltung für diese Bewegung):
mit und sowie (Winkelgeschwindigkeit) folgt
Das entspricht der in Polarkoordinaten formulierten Zentripetalkraft, die die Punktmasse zur Bewegung auf eine Kreisbahn zwingt.
Verallgemeinerungen
Die Karush-Kuhn-Tucker-Bedingungen und die Fritz-John-Bedingungen sind eine Verallgemeinerung der Lagrange-Multiplikatoren für Nebenbedingungen, die auch durch Ungleichungen beschrieben werden. Beide spielen eine wichtige Rolle in der nichtlinearen Optimierung. Für konvexe Optimierungsprobleme, bei denen die Funktionen nicht stetig differenzierbar sind, gibt es außerdem die Sattelpunktkriterien der Lagrange-Funktion.
Literatur
- Otto Forster: Analysis 2. Vieweg+Teubner, Wiesbaden 2008, ISBN 978-3-8348-0575-1. S. 110ff
- Michael Sauer: Operations Research kompakt 1. Auflage, Oldenbourg, München 2009, ISBN 978-3-486-59082-1.
- Heinrich Rommelfanger: Mathematik für Wirtschaftswissenschaftler II Band 2 (2. Auflage, 1992), BI Wissenschaftsverlag, ISBN 9783860259818. S. 238ff
Weblinks
- Konzeptuelle Einleitung (englisch)
- Studienarbeit Lagrangeoptimierung (inklusive Beispielrechnung und Literaturverweisen; PDF; 474 kB)
Auf dieser Seite verwendete Medien
Autor/Urheber:
- Lagrange_very_simple.jpg: User:Jacobmelgaard
- derivative work: Zerodamage
Fig. 3. Illustration of the constrained optimization problem.
Visualization of the method of Lagrange multipliers in 2D, function displayed as 3D-plot.