Länge (Algebra)

Im mathematischen Teilgebiet der Algebra ist die Länge ein Maß für die Größe eines Moduls.

Definition

Es sei ein Modul über einem Ring . Die Länge von ist das Supremum der Längen von Ketten von Untermoduln der Form[1]

Die Länge wird oft mit oder bezeichnet.

Eigenschaften

  • Nur der Nullmodul hat Länge 0.
  • Ein Modul ist genau dann einfach, wenn seine Länge 1 ist.
  • Ein Modul hat genau dann endliche Länge, wenn er artinsch und noethersch ist.[2]
  • Die Länge ist additiv auf kurzen exakten Folgen: Ist
exakt, so ist ; sind zwei dieser Zahlen endlich, so ist es auch die dritte.
  • Eine Kompositionsreihe ist eine Kette von Untermodulen, die einfache Subquotienten besitzt. Die Länge jeder Kompositionsreihe ist gleich der Länge des Moduls.

Beispiele

  • Vektorräume haben genau dann endliche Länge, wenn sie endlichdimensional sind; in diesem Fall ist ihre Länge gleich ihrer Dimension.
  • Der -Modul hat unendliche Länge: Für jede natürliche Zahl ist
eine Kette von Untermoduln der Länge .

Literatur

  • Henning Krause, Claus Michael Ringel ed.: Infinite length modules. Birkhäuser, Basel 2000, ISBN 3-7643-6413-0.

Einzelnachweise

  1. Siegfried Bosch: Algebra, 6. Auflage 2006, Springer-Verlag, ISBN 3-540-40388-4, S. 72.
  2. Henning Krause, Claus Michael Ringel ed.: Infinite length modules. Birkhäuser, Basel 2000, ISBN 3-7643-6413-0, S. 3.