Kryptobiose
Unter Kryptobiose (griechisch, κρυπτός kryptós = verborgen und ὁ βίος ho bíos = das Leben, auch Anabiose) versteht man einen Zustand von Organismen, bei dem die Stoffwechselvorgänge extrem reduziert sind. Der Begriff wurde 1959 von David Keilin geprägt.[1] Kryptobiose kommt insbesondere bei Bärtierchen (Tardigrada), Fadenwürmern (Nematoda) und Rädertierchen (Rotatoria, Rotifera) vor. Insbesondere bei Tardigraden führte die Entdeckung der Kryptobiose im 19. Jahrhundert zu ausgeprägten Diskussionen über das Wesen des Lebendigen.
Man unterscheidet mehrere Formen von Kryptobiose:
- Anhydrobiose, Bildung von Dauerstadien durch Austrocknung
- Osmobiose, ausgelöst durch erhöhten osmotischen Druck
- Anoxybiose, ausgelöst durch niedrigen Sauerstoff-Gehalt der Umgebung
- Kryobiose, ausgelöst durch niedrige Temperaturen
Im Zustand der Kryptobiose sind Lebewesen in der Lage, ungünstige Lebensbedingungen über längere Zeit (zum Beispiel bei anhydrobiotischen Bärtierchen mehr als ein Jahrzehnt) zu überdauern. Bärtierchen können in diesem Zustand auch extrem niedrige Temperaturen (unter 30 K = −243,15 °C), Radioaktivität und erhöhte Temperaturen (über 350 K = 77 °C) aushalten. Der Sauerstoffverbrauch reduziert sich auf kaum noch messbare Werte.
2018 wurden Fadenwürmer nach 46.000 Jahren im Permafrost wiederbelebt.[2][3]
Ein Beispiel aus der Tierwelt, das mehrere kryptobiotische Eigenschaften vereint, sind die Larven der Zuckmücke Polypedilum vanderplanki.
Literatur
- David A. Wharton: Life at the limits – organisms in extreme environment. Cambridge Univ. Press, Cambridge 2002, ISBN 0-521-78212-0.
- A.S. Parkes, Audrey U. Smith: Transport of Life in the Frozen or Dried State. Br Med J. 1959 May 16; 1(5132): 1295–1297, PMC 1993429 (freier Volltext).
- John D. Castello: Life in ancient ice. Princeton Univ. Press, Princeton 2005, ISBN 0-691-07475-5.
Einzelnachweise
- ↑ David Keilin: The Leeuwenhoek Lecture: The Problem of Anabiosis or Latent Life: History and Current Concept. Proc. Royal Soc. London. Series B. Vol. 150, No. 939 1959, S. 149–191.
- ↑ A. V. Shatilovich, A. V. Tchesunov, T. V. Neretina, I. P. Grabarnik, S. V. Gubin, T. A. Vishnivetskaya, T. C. Onstott, E. M. Rivkina: Viable Nematodes from Late Pleistocene Permafrost of the Kolyma River Lowland. In: Doklady Biological Sciences. Band 480, Nr. 1, Mai 2018, ISSN 0012-4966, S. 100–102, doi:10.1134/S0012496618030079 (springer.com [abgerufen am 12. September 2023]).
- ↑ Anastasia Shatilovich, Vamshidhar R. Gade, Martin Pippel, Tarja T. Hoffmeyer, Alexei V. Tchesunov, Lewis Stevens, Sylke Winkler, Graham M. Hughes, Sofia Traikov, Michael Hiller, Elizaveta Rivkina, Philipp H. Schiffer, Eugene W. Myers, Teymuras V. Kurzchalia: A novel nematode species from the Siberian permafrost shares adaptive mechanisms for cryptobiotic survival with C. elegans dauer larva. In: PLOS Genetics. Band 19, Nr. 7, 27. Juli 2023, ISSN 1553-7404, S. e1010798, doi:10.1371/journal.pgen.1010798, PMID 37498820, PMC 10374039 (freier Volltext) – (plos.org [abgerufen am 12. September 2023]).
Auf dieser Seite verwendete Medien
Autor/Urheber: Halberg K, J?rgensen A, M?bjerg N, Lizenz: CC BY 4.0
Anhydrobiotic tun formation in Richtersius coronifer
The most obvious morphological changes associated with tun formation are the anterior-posterior contraction of the trunk and retraction of legs. According to our observations of the behavior of animals during entrance into anhydrobiosis, this process is initiated when the animals sense a decrease in external water potential. Entrance into and exit out of anhydrobiosis can be divided into four separate stages (I, active hydrated; II, dehydrating, ‘tucking in’; III, anhydrobiotic tun state; IV, rehydration) the completion of which is an active process orchestrated by the muscle system. The movie was made using an Infinity X Digital Camera (DeltaPix, Denmark) mounted on a Leica MZ 16 microscope (x80 magnification).