Kongruenzuntergruppe
In der Mathematik sind Kongruenzuntergruppen eine Klasse arithmetisch definierter diskreter Untergruppen der allgemeinen linearen Gruppe.
In der Theorie der Modulformen werden häufig Kongruenzuntergruppen zur Modulgruppe betrachtet.
Definition
Sei
eine über definierte algebraische Gruppe und eine natürliche Zahl. Dann ist
eine Kongruenzuntergruppe. (Hierbei bezeichnet die Einschränkung der „Reduktion modulo N“ auf .)
Arithmetische Gruppen
Kongruenzuntergruppen sind (nach Konstruktion) arithmetische Gruppen. Für enthält jede arithmetische Gruppe eine Kongruenzuntergruppe.[1][2]
Allgemeine Ringe
Sei ein kommutativer Ring. Eine Kongruenzuntergruppe ist der Kern des Homomorphismus
für ein Ideal .
Congruence subgroup problem
Das congruence subgroup problem fragt, ob für einen kommutativen Ring jeder Normalteiler in eine Kongruenzuntergruppe ist.
Literatur
- ↑ Madabusi S. Raghunathan: The congruence subgroup problem. In: Sundararaman Ramanan (Hrsg.): Proceedings of the Hyderabad Conference on Algebraic Groups (December 1989). Manoj Prakashan, Madras 1991, ISBN 81-231-0090-6, S. 465–494.
- ↑ Madabusi S. Raghunathan: The congruence subgroup problem. In: Proceedings of the Indian Academy of Sciences. Mathematical Sciences. Bd. 114, Nr. 4, 2004, S. 299–308, doi:10.1007/BF02829437.