Kerimasit

Kerimasit
Allgemeines und Klassifikation
IMA-Nummer

2009-029[1]

IMA-Symbol

Kms[2]

Chemische FormelCa3Zr2Fe3+2SiO12
Mineralklasse
(und ggf. Abteilung)
Silikate und Germanate
System-Nummer nach
Lapis-Systematik
(nach Strunz und Weiß)

VIII/A.08-185
Kristallographische Daten
Kristallsystemkubisch
Kristallklasse; Symbolhexakisoktaedrisch; 4/m32/m
RaumgruppeIa3d (Nr. 230)Vorlage:Raumgruppe/230[3]
Gitterparametera = 12,598 (synthetisch)[4]
12,549 (natürlich) Å[3]
FormeleinheitenZ = 8[3]
Häufige KristallflächenDeltoidikositetraeder {211}
Physikalische Eigenschaften
Mohshärte7
Dichte (g/cm3)berechnet: 4,105[3]
Spaltbarkeitnicht beobachtet
Farbehell- bis dunkelbraun[3], synthetisches Endglied ist gelblich[4]
Strichfarbehellbraun
TransparenzBitte ergänzen!
GlanzGlasglanz[3]
Kristalloptik
Brechungsindexn = 1,945 (gemessen)[3]
Doppelbrechungisotrop, teilweise doppelbrechend[3]

Das Mineral Kerimasit, vor 2010 auch Kimzeyit, Kimzeyit-Fe oder Ferri-Kimzeyit, ist ein seltenes Silikat aus der Obergruppe der Granate mit der idealisierten chemischen Zusammensetzung Ca3Zr2Fe3+2SiO12. Es kristallisiert im kubischen Kristallsystem mit der Struktur von Granat. Die dunkelbraunen Kristalle sind selten größer als 0,1 mm und zeigen Deltoidikositetraederflächen.[3]

Außer in seiner Typlokalität, den Karbonatiten vom Vulkan Kerimasi im Distrikt Ngorongoro, Region Arusha von Tansania, wurde Kerimasit bislang (Stand 2017) nur an sieben weiteren Fundorten beschrieben.[5] Bei vielen der vor 2010 als Kimzeyit beschriebenen Granate handelt es sich ebenfalls um Kerimasit, darunter Vorkommen in Karbonatiten, basischen bis ultrabasischen Magmatiten sowie Skarnen.[6]

Etymologie und Geschichte

Zirkoniumreiche Granate sind seit den 1960er Jahren weltweit, wenn auch nur an wenigen Fundorten unter dem Namen Kimzeyit beschrieben worden. Die meisten dieser Kimzeyite enthielten mehr Eisen als Aluminium doch das Fe3+-Endglied Kerimasit wurde erst im Jahre 2010 von Zaitsev und Mitarbeitern als neues Mineral beschrieben und von der International Mineralogical Association (IMA) anerkannt. Benannt wurde es nach dem Fundort, dem Vulkan Kerimasi im Distrikt Ngorongoro, Region Arusha in Tansania.[3]

Im Zuge systematischer Untersuchungen des Mischungsverhaltens von Granaten der Schorlomitgruppe wurde Kerimasit 1967 durch Ito und Frondel[7] sowie 1993 durch Yamakawa und seine Mitarbeiter synthetisiert.[4]

Aktuelle Arbeiten untersuchen Kerimasit, Elbrusit und andere Hafnium- und Zirkonium-haltige Granate in Hinblick auf ihre Tauglichkeit zur Endlagerung hochradioaktiver Abfälle aus Kernkraftwerken.[8][9][10]

Klassifikation

Die aktuelle Klassifikation der International Mineralogical Association (IMA) zählt den Kerimasit zur Granat-Obergruppe, wo er zusammen mit Irinarassit, Hutcheonit, Schorlomit, Kimzeyit und Toturit die Schorlomit-Gruppe mit 10 positiven Ladungen auf der tetraedrisch koordinierten Gitterposition bildet.[11]

Die seit 2001 gültige und von der (IMA) verwendete 9. Auflage der Strunz’schen Mineralsystematik führt den Kerimasit nicht auf. Hier würde er in die Abteilung der „Inselsilikate (Nesosilikate)“ eingeordnet werden. Diese ist weiter unterteilt nach der möglichen Anwesenheit weiterer Anionen und der Koordination der beteiligten Kationen, so dass das Mineral entsprechend seiner Zusammensetzung in der Unterabteilung „Inselsilikate ohne zusätzliche Anionen; Kationen in oktaedrischer [6]er- und gewöhnlich größerer Koordination“ zu finden wäre, wo es zusammen mit Almandin, Andradit, Calderit, Goldmanit, Grossular, Henritermierit, Holtstamit, Katoit, Kimzeyit, Knorringit, Majorit, Morimotoit, Pyrop, Schorlomit, Spessartin und Uwarowit die „Granatgruppe“ mit der System-Nr. 9.AD.25 bildete. Ebenfalls zu dieser Gruppe gezählt wurden die mittlerweile nicht mehr als Mineral angesehenen Granatverbindungen Blythit, Hibschit, Hydroandradit und Skiagit. Wadalit, damals noch bei den Granaten eingruppiert, erwies sich als strukturell unterschiedlich und wird heute mit Chlormayenit und Fluormayenit einer eigenen Gruppe zugeordnet.[11] Die nach 2001 beschriebenen Granate Irinarassit, Hutcheonit, Toturit, Menzerit-(Y) und Eringait wären hingegen in die Granatgruppe einsortiert worden.

Auch die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana würde den Kerimasit in die Abteilung der „Inselsilikatminerale“ einordnen. Hier wäre er zusammen mit Schorlomit, Kimzeyit und Morimotoit in der „Granatgruppe (Schorlomit-Kimzeyit-Reihe)“ mit der System-Nr. 51.04.03c innerhalb der Unterabteilung „Inselsilikate: SiO4-Gruppen nur mit Kationen in [6] und >[6]-Koordination“ zu finden.

Chemismus

Kerimasit ist das Zr-Analog von Schorlomit und bildet komplexe Mischkristalle vor allem mit Kimzeyit, Schorlomit und Andradit. Die gemessene Zusammensetzung aus der Typlokalität ist [X](Ca3,00Mn0,01Ce0,01Nd0,01)[Y](Zr4+1,72Nb5+0,14Ti4+0,08Mg2+0,02)[Z](Fe3+1,23Si0,86Al0,82).[3]

Die Al-Gehalte auf der Z-Position gehen auf die Mischkristallbildung mit Kimzeyit ([X]Ca3[Y]Zr4+2[Z](Al3+2Si)O12) zurück, entsprechend der Austauschreaktion[4][3]

  • [Z]Al3+ = [Z]Fe3+

Bei Temperaturen oberhalb von 700 °C besteht eine lückenlose Mischbarbeit von synthetischen Kimzeyit und Kerimasit. Bei tieferen Temperaturen ist die Mischbarkeit dieser Komponenten begrenzt und es bilden sich zwei koexistierende Granate, ein Kimzeyitreicher und ein Kerimasitreicher.[4] Diese Entmischung wurde auch bei natürlichen Kerimasiten aus der Typlokalität beobachtet.[12]

Die Ti-Gehalte auf der Y-Position können als Beimischung von Schorlomit [X]Ca3[Y]Ti4+2[Z](Fe3+2Si)O12 entsprechend der Austauschreaktion

  • [Y]Zr4+ + [Z]Al3+ = [Y]Ti4+ + [Z]Fe3+

beschrieben werden.[3] Weiterhin bildet Kerimasit Mischkristalle mit Andradit [X]Ca3[Y]Fe3+2[Z]Si3O12 entsprechend der Austauschreaktion[7][3]

  • [Y]Zr4+ + [Z]Al3+ = [Y]Fe3+ + [Z]Si4+

und mit einem hypothetischen Nb5+-Analog von Usturit [X]Ca3[Y](Nb5+Zr4+)[Z]Fe3+3O12 entsprechend der Austauschreaktion

  • [Y]Zr4+ + [Z]Si4+ = [Y]Nb5+ + [Z]Fe3+[3]

Kerimasit kann bis zu 24 Gew-% UO3 enthalten. Die Zusammensetzungen natürlicher Uranhaltiger Kermesite folgen einem linearen Trend, der einer Mischkristallbildung von Kerimasit mit einem U5+-Analog von Usturit ([X]Ca3[Y](U5+Zr4+)[Z]Fe3+3O12) entspricht. Für die bislang untersuchten natürlichen Granate wird jedoch angenommen, dass Uran als U6+ eingebaut wird über die Kombination von zwei Austauschreaktionen:[13][11]

Einbau einer U6+-Fe2+-Yafsoanit-Komponente entsprechend

  • [Y]Zr4+ + 2[Z]Fe3+ = [Y]U6+ + 2[Z]Fe2+

und Mischkristallbildung mit Elbrusit ([X]Ca3[Y](U6+0,5R4+1,5)[Z]Fe3+3O12) entsprechend

  • 0,5[Y]Zr4+ + [Z]Si4+ = 0,5[Y]U6+ + [Z]Fe3+

Untersuchungen an synthetischen Uranhaltigen Granaten ergaben, dass der Uraneinbau in Kermesit bis zur Zusammensetzung von Elbrusit als U6+ erfolgt. Bei Urangehalten über 0,5 apfu wird Uran als U5+-Analog von Usturit eingebaut entsprechend der Austauschreaktion[10]

  • [Y]Zr4+ + [Z]Si4+ = [Y]U5+ + [Z]Fe3+

Kristallstruktur

Kerimasit kristallisiert mit kubischer Symmetrie in der Raumgruppe Ia3d (Raumgruppen-Nr. 230)Vorlage:Raumgruppe/230 mit 8 Formeleinheiten pro Elementarzelle. Das synthetische Endglied hat dem Gitterparameter a = 12,598 Å[4], der natürliche Mischkristall aus der Typlokalität a = 12,549 Å.[3]

Die Struktur ist die von Granat. Calcium (Ca2+) besetzt die dodekaedrisch von 8 Sauerstoffionen umgebenen X-Positionen, Zirkonium (Zr4+) die oktaedrisch von 6 Sauerstoffionen umgebene Y-Position und die tetraedrisch von 4 Sauerstoffionen umgebenen Z-Position ist mit Eisen (Fe3+) und Silicium (Si4+) besetzt.[3][8][12]

Bildung und Fundorte

Kerimasit bildet sich bei niedrigem Druck und hohen Temperaturen vorwiegend in ultrabasischen Magmatiten und Karbonatiten. Auch in kontaktmetamorphen Skarnen wurden Kerimasitreiche Granate gefunden.[5]

Karbonatite

Die Typlokalität von Kerimasit ist ein Karbonatit vom Vulkan Kerimasi im Distrikt Ngorongoro, Region Arusha von Tansania. Begleitminerale sind Calcit Apatit, Magnesioferrit und Baddeleyit.[3]

Im Polino-Karbonatit nahe Terni in Umbrien, Italien tritt Kerimasit, damals noch als Kimzeyit bezeichnet, in Form 10–25 µm großer, rundlicher Kriställchen in feinkörnigen Calcit zusammen mit Phlogopit, Perowskit, Monticellit und Fe-Ti-Oxiden auf.[14]

Basische Magmatite

Die carbonatreichen Bereiche der Lamprophyre der Marathon Dikes bei McKellar Harbour, Ontario, Kanada führen Kerimasitreiche Melanite zusammen mit Olivin, Phlogopit, Andradit, Calcit, Perowskit, Apatit und Spinell, die damals noch als Kimzeyit bezeichnet wurden. Bis auf wenige Ausnahmen liegen die publizierten Analysen im Zusammensetzungsbereich von Kerimasit.[15]

Skarne

Im Ca-Mg-Skarn am Kontakt eines Granodiorites mit triassischen Dolomiten in den Schemnitzer Bergen, Slowakei tritt Kerimasit zusammen mit Andradit, Monticellit, Clintonit, Magnetit, Perowskit und Brucit.[16]

Sonstige

In einem Auswürfling aus einem pyroklastischen Strom nahe Anguillara Sabazia am Braccianosee nördlich von Rom in Latium, Mittelitalien tritt Kerimasit, damals noch als Kimzeyit bezeichnet, zusammen mit Gehlenit, Hercynit und Pyrit auf.[17]

Siehe auch

Einzelnachweise

  1. Malcolm Back, Cristian Biagioni, William D. Birch, Michel Blondieau, Hans-Peter Boja und andere: The New IMA List of Minerals – A Work in Progress – Updated: January 2023. (PDF; 3,7 MB) In: cnmnc.main.jp. IMA/CNMNC, Marco Pasero, Januar 2023, abgerufen am 26. Januar 2023 (englisch).
  2. Laurence N. Warr: IMA–CNMNC approved mineral symbols. In: Mineralogical Magazine. Band 85, 2021, S. 291–320, doi:10.1180/mgm.2021.43 (englisch, cambridge.org [PDF; 320 kB; abgerufen am 5. Januar 2023]).
  3. a b c d e f g h i j k l m n o p q A. N. Zaitsev, C. T. Williams, S. N. Britvin, I. V. Kuznetsova, J. S. Pratt, S. V. Petrov and J. Keller: Kerimasite, Ca3Zr2(Fe3+2Si)O12, a new garnet from carbonatites of Kerimasi volcano and surrounding explosion craters, northern Tanzania. In: Mineralogical Magazine. Band 74, Nr. 5, 2010, S. 803–820 (Online [PDF; 1,8 MB; abgerufen am 26. August 2017]).
  4. a b c d e f Junji Yamakawa, Chiyoko Henmi, Akira Kawahara: Syntheses and X-ray studies of Kimzeyite, Ca3Zr2(Al,Fe)2SiO12. In: Mineralogical Journal. Band 16, Nr. 7, 1993, S. 371–377 (Online [PDF; 659 kB; abgerufen am 5. August 2017]).
  5. a b Fundortliste für Kerimasit beim Mineralienatlas und bei Mindat
  6. Fundortliste für Kimzeyit beim Mineralienatlas und bei Mindat
  7. a b Jun Ito and Clifford Frondel: Synthetic zirconium and titanium garnets. In: American Mineralogist. Band 52, Nr. 5–6, 1967, S. 773–781 (Online [PDF; 545 kB; abgerufen am 8. Juli 2017]).
  8. a b Karl R. Whittle, Gregory R. Lumpkin, Frank J. Berry, Gordon Oates, Katherine L. Smith, Sergey Yudintsev, Nestor J. Zaluzec: The structure and ordering of zirconium and hafnium containing garnets studied by electron channelling, neutron diffraction and Mössbauer spectroscopy. In: Journal of Solid State Chemistry. Band 180, 2007, S. 785–791 (Online [PDF; 524 kB; abgerufen am 5. August 2017]).
  9. F.A. Caporuscio, B.L. Scott, H. Xu, R.K. Feller: Garnet nuclear waste forms – Solubility at repository conditions. In: Nuclear Engineering and Design. Band 266, 2014, S. 180–185 (Online [PDF; 1,5 MB; abgerufen am 8. Juli 2017]).
  10. a b Xiaofeng Guo, Alexandra Navrotsky, Ravi K. Kukkadapu, Mark H. Engelhard, Antonio Lanzirotti, Matthew Newville, Eugene S. Ilton, Stephen R. Sutton, Hongwu Xu: Structure and thermodynamics of uranium-containing iron garnets. In: Geochimica et Cosmochimica Acta. Band 189, 2016, S. 269–281 (Online [PDF; 1,4 MB; abgerufen am 3. September 2017]).
  11. a b c Edward S. Grew, Andrew J. Locock, Stuart J. Mills, Irina O. Galuskina, Evgeny V. Galuskin and Ulf Hålenius: IMA Report - Nomenclature of the garnet supergroup. In: American Mineralogist. Band 98, 2013, S. 785–811 (Online [PDF; 2,3 MB; abgerufen am 8. Juli 2017]).
  12. a b S. M. Antao and L. A. Cruickshank: Two cubic phases in kimzeyite garnet from the type locality Magnet Cove, Arkansas. In: Acta Crystallographica Section B. Band 72, 2016, S. 846–854 (Online [abgerufen am 5. August 2017]).
  13. Irina O. Galuskina, Evgeny V. Galuskin, Thomas Armbruster, Biljana Lazic, Joachim Kusz, Piotr Dzierżanowski, Viktor M. Gazeev, Nikolai N. Pertsev, Krystian Prusik, Aleksandr E. Zadov, Antoni Winiarski, Roman Wrzalik, and Anatoly G. Gurbanov: Elbrusite-(Zr) - A new uranium garnet from the the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. In: American Mineralogist. Band 95, Nr. 7, 2010, S. 1172–1181 (Online [PDF; 2,0 MB; abgerufen am 29. Juli 2017]).
  14. L. Lupini, C. T. Williams, A. R. Woolley: Zr-rich garnet and Zr- and Th-rich perovskite from the Polino carbonatite, Italy. In: Mineralogical Magazine. Band 56, 1992, S. 581–586 (Online [PDF; 370 kB; abgerufen am 8. Juli 2017]).
  15. R. Grath Platt and Roger H. Mitchell: The Marathon Dikes. I: Zirconium-rich titanian garnets and manganoan magnesian ulviispinel-magnetite spinel. In: American Mineralogist. Band 64, 1979, S. 546–550 (Online [PDF; 479 kB; abgerufen am 8. Juli 2017]).
  16. UHER, PAVEL; KODERA, PETER; OZDÍN, DANIEL: Kerimasit Ca3Zr2(Fe3+2Si)O12 - vzácny granát z Ca-Mg skarnovo-porfýrového ložiska Vysoká-Zlatno, štiavnický stratovulkán (stredné Slovensko). In: Bulletin Mineralogicko-Petrologickeho Oddeleni Narodniho Muzea v Praze. Band 20, Nr. 1, 2012, S. 59–62 (Online [abgerufen am 3. März 2017]).
  17. Emanuela Schingaro, Fernando Scordari, Flavio Capitanio, Giancarlo Parodi, David C. Smith, Annibale Mottana: Crystal chemistry of kimzeyite from Anguillara, Mts. Sabatini, Italy. In: European Journal of Mineralogy. Band 13, Nr. 4, 2001, doi:10.1127/0935-1221/2001/0013-0749.