Kaufman-Ionenquelle

Die Kaufman-Ionenquelle ist eine großflächige Ionenquelle mit hohem Ionenstrom bei niedrigem Arbeitsdruck. Sie wurde Ende der 1950er Jahre unter Leitung des NASA-Wissenschaftlers Harold R. Kaufman für Ionentriebwerke entwickelt. Sie wird auch in der industriellen Prozesstechnik eingesetzt.

Kaufman-Ionenquelle der
NASA-Sonde Deep Space 1[1]

Die Ionen werden durch Elektronenstoßionisation von Gasatomen oder -molekülen gebildet. Die freien Elektronen werden thermisch erzeugt (wie in einer Glühkathode, ohne deren Elektronenoptik) oder für höhere Ströme mit einer Hohlkathode. Die Anode ist ringförmig. Ein magnetisches Multipolfeld lenkt die Elektronen ab, damit sie einen längeren Weg im Gas zurücklegen, bevor sie von der Anode aufgenommen werden. Damit sind Arbeitsdrucke im Bereich des Hochvakuums möglich.[2] Ein großflächiges Steuergitter extrahiert sanft die Ionen und schirmt gleichzeitig die Ionenquelle gegen die hohe Feldstärke in der nachfolgenden Beschleunigungsstrecke ab.

Literatur

  • M. Zeuner, J. Meichsner, H. Neumann, F. Scholze, F. Bigl: Design of ion energy distributions by a broad beam ion source, J. Appl. Phys. 80, 1996, S. 611–622, doi:10.1063/1.362869.
  • H. R. Kaufman, R. S. Robinson: Ion Source Design for Industrial Applications, Am. Inst. Aeronaut. Astronaut. J. 20, 1982, S. 745–760, doi:10.2514/3.51131.

Einzelnachweise

  1. NASA Glenn Research Center: Ion Propulsion: Farther, Faster, Cheaper, 12. Juli 2004.
  2. D. J. Conolly, R. J. Sovie: The effect of background pressure and magnetic field shape on MPD thruster performance, AIAA Paper 69-243, März 1969, doi:10.2514/6.1969-243.

Auf dieser Seite verwendete Medien

Ion engine.svg

DS1 Ion Engine Diagram.

Caption from the source webpage:

The ion propulsion system (IPS), provided by NSTAR (NASA SEP Technology Application Readiness), uses a hollow cathode to produce electrons to collisionally ionize xenon. The Xe+ is electrostatically accelerated through a potential of up to 1280 V and emitted from the 30-cm thruster through a molybdenum grid. A separate electron beam is emitted to produce a neutral plasma beam. The power processing unit (PPU) of the IPS can accept as much as 2.5 kW, corresponding to a peak thruster operating power of 2.3 kW and a thrust of 92 mN. Throttling is achieved by balancing thruster and Xe feed system parameters at lower power levels, and at the lowest thruster power, 500 W, the thrust is 20 mN. The specific impulse decreases from 3100 s at high power to 1900 s at the minimum throttle level.