Künstliche Bauchspeicheldrüse

Schema einer künstlichen Pankreas mit bihormonaler (Insulin und Glukagon) Steuerung. Ferner werden Mahlzeiten (als Störgröße) separat erfasst (siehe Text: Hybridsystem)

Als künstliche Bauchspeicheldrüse, künstliches Pankreas oder künstliche Betazelle wird ein medizintechnisches Gerät bezeichnet, das Patienten mit Diabetes mellitus in Abhängigkeit von kontinuierlichen Messungen des Blutzuckerspiegels mit Insulin versorgt. Sie simuliert damit die Funktionsweise der in den Langerhans-Inseln der Bauchspeicheldrüse vorkommenden Betazellen, die im Körper die Insulinproduktion und -freisetzung realisieren und die bei Diabetikern zerstört oder in ihrer Funktion eingeschränkt sind. Die Funktion einer künstlichen Bauchspeicheldrüse entspricht damit der natürlichen Insulinfreisetzung mehr als die konventionelle Insulintherapie oder die Behandlung mit Hilfe einer Insulinpumpe.

Die wesentlichen Komponenten einer künstlichen Bauchspeicheldrüse sind ein kontinuierlich messender Glucosesensor zur Bestimmung des Blutzuckers, eine Pumpe zur gesteuerten Insulinabgabe sowie ein miniaturisierter Computer, der die Messdaten des Sensors auswertet und durch einen Algorithmus zur Simulation des Glukose-Insulin-Regelkreises die Pumpe steuert. Die künstliche Bauchspeicheldrüse befindet sich seit etwa 1970 in der Entwicklung, ab dem Ende der 1970er Jahre wurden erstmals entsprechende Systeme am Menschen getestet. Ziel ist der Langzeiteinsatz als Implantat oder als ein vom Patienten tragbares Gerät. Gegenwärtig ist die künstliche Bauchspeicheldrüse noch immer Gegenstand der Forschung. Kommerzielle Systeme und Do-it-Yourself-Systeme sind seit etwa 2018 im Umlauf.

Geschichte

Erstmals wurde 1964 von Kadish[1] ein Regelkreis beschrieben. Ab 1974 versuchten weltweit mehrere Forschergruppen dem Ziel einer geregelten Insulininfusion näher zu kommen, darunter Albisser (USA), Kreagen (Australien), Mirouze (Frankreich) und Shishiri (Japan). In Deutschland wurde durch E.F. Pfeiffer († 23. Januar 1997) in Ulm an der Entwicklung gearbeitet.[2] In Karlsburg in der DDR wurde durch U.Fischer und Kollegen zeitgleich an einem System mit einem mathematischen Modell und einem Glucosesensor geforscht.[3] In Japan brachte zur gleichen Zeit M. Shishiri ein subkutan messendes Gerät heraus. Beide kamen aber nicht in die klinische Weiterentwicklung von miniaturisierten Geräten. Großgeräte mit nicht implantiertem Sensor und Glukose-Gegeninfusion wurden in dieser Zeit in eine kommerzielle Produktion gebracht (Biostator und Nikkiso STG-22 Blood Glucose Controller). Ab 1978 wurden durch Pickup in England und Tamborlane in USA die ersten subkutanen Insulinpumpen betrieben. Erst nachdem zuverlässige und implantierbare kontinuierliche Glukosesensoren in großen Stückzahlen produziert werden konnten kam ab 2004, vornehmlich in den USA, wieder zu zahlreichen Entwicklungsschwerpunkten (Tabelle).Seit dem Jahrhundertwechsel wurde die Forschung am künstlichen Pankreas durch massive Unterstützung von Institutionen wie JDRF, National Institutes of Health und EU gefördert. Insbesondere förderte die JDRF die Entwicklung eine Typ-1-Simulators, welcher – nach Anerkennung durch die FDA – Studien massiv beschleunigte und Untersuchungen am Menschen teilweise überflüssig machte[4]. Die volle Tragbarkeit der Steuerung konnte ab 2011 durch Übertragung der kompletten Software auf Android-Smartphones (System DIAS) erreicht werden.

Untergruppen, Typen

Es gibt unterschiedliche Ausführungen, welche sich unterscheiden durch

  • Wahl des Kompartiments für Lage des Sensors und des Insulinkatheters, subkutan, intravenös oder intraperitoneal
  • Grad der Automatisierung
  • Ausführung als Miniaturisierung, voll-implantiert, externes Großgerät
  • Ort der Anwendung: Intensivstation, stationär, ambulant
  • Zielbereich oder exakter Zielwert
  • Insulin allein oder bi-hormonal mit Glukagon bzw. Pramlintide
  • Art des Regel-Algorithmus, Herzfrequenz

Die wichtigsten werden nachfolgend im Detail besprochen

Schwellenwert-Unterbrechungssystem

Das Ziel eines Schwellenwert-Unterbrechungssystems für Insulin (engl. threshold suspend device system) ist die Reduktion der Schwere bzw. die Umkehrung eines gefährlichen Blutglucoseabfalls (Hypoglykämie) durch eine zeitlich begrenzte Unterbrechung der Insulinzufuhr mittels Pumpe, wenn der Glucosespiegel einen Schwellenwert erreicht oder sich diesem annähert.[5]

Eine Weiterentwicklung stellen Systeme dar, welche die Erreichung der Schwelle vorhersagen (Prädiktion, engl. predictive low-glucose suspend PLGS). In einer Studie aus USA mit prädiktiver Abschaltung lagen in den Nächten mit PLGS 78 % der Blutglucosewerte zwischen 70 und 200 mg/dl im Vergleich zu 71 % ohne eine solche prädiktive Abschaltung.[6]

Bereichsregelungssysteme

Ein Bereichsregelungssystem (engl. Control-to-range, CTR) reduziert die Wahrscheinlichkeit von Hyper- oder Hypoglykämien dadurch, dass es die Insulindosis verändert, wenn sich die Blutglukose einem hohen oder niedrigen Schwellenwert nähert. Menschen, die diese Art von System wählen, müssen weiterhin Insulin selbst injizieren eine Blutzuckerselbstkontrolle durchführen und die Insulindosis diesen Werten anpassen.

Sollwert-Regelsysteme

Sollwert-Regelsysteme (engl. Control-to-target, CTT) versuchen diesen Soll- oder Zielwert jederzeit zu erreichen. Das System arbeitet vollautomatisch und benötigt außer Kalibrationen keine Einbeziehung des Benutzers.

Bi-hormonales Regelsystem

Glucoseverlauf bei einem Menschen mit Typ-1-Diabetes, welcher durch ein Dual-Hormon-Regler und Pumpen subkutan mit Glucagon und Insulin versorgt wird. Die kontinuierliche Kurve entspricht dem Glucosewert im Gewebe, welcher durch ein CGM-System abgeleitet wird. Die hellblauen Pfeile entsprechen Mahlzeiten. Regelsignal Insulin= orangefarbenen Balken; Regelsignal Glucagon = Balken in türkis. Vor jeder Mahlzeit wird ein Priming-Bolus mit Insulin verabreicht, welchen der Nutzer durch Knopfdruck triggert (grüner Pfeil).

Ein bi-hormonales Regelsystem soll einen Glucose-Sollwert durch zwei Algorithmen erreichen, die jeweils eine Pumpe für ein senkendes Hormon (Insulin) und ein anhebendes Hormon (Glucagon) ansteuern. Durch diese Art der Regelung ahmt man die Glucose-Regulation eines gesunden Organismus besser nach. Glucagon wird beim Gesunden in den α-Zellen des Pankreas gebildet und ist als Medikament für die parenterale Anwendung bei schwerer Hypoglykämie bisher zugelassen. Nachteile: Die Langzeit-Sicherheit von Glucagon wurde noch nicht erprobt. Wegen der Fibrillen- und Aggregatbildung in wässriger Lösung und der Degradation ist eine stabile Formulierung schwierig. Vorteil: Glucagon besitzt eine schnellere Anflutungszeit als Insulinanalogon (ca. 20 Min bis zum Maximum.)

Hybridsystem mit Vorsteuerung

Ein Hybridsystem erlaubt dem Patienten eine zusätzliche Insulindosis vor der Mahlzeit zu verabreichen. Diese Zusatzdosis vermindert das Risiko von Hyperglykämien nach der Mahlzeit. Das in der Regelungstechnik übliche Verfahren der Vorsteuerung (engl. feed foreward) zur Ausregelung von messbaren Störgrößen wird hier partiell umgesetzt. Da die Störung nicht exakt erfasst, sondern nur vom Nutzer geschätzt werden kann (Kohlenhydrat- bzw. KE-Schätzung) wird i. d. R. eine partielle Vorsteuerung betrieben, bei welcher z. B. 50 % der berechneten Insulindosis als Bolus vorab injiziert werden. Man gibt somit das Prinzip der vollautomatischen Kontrolle zugunsten einer besseren Ausregelung von Mahlzeiten auf und fordert die Mithilfe des Nutzers ein.

Reglertypen

Modell-prädiktive Regler

Modell-prädiktive Regler[7] (engl. Model Predictive Control MPC) werden in der Technik bei Raffinerien, Müllverbrennung etc. eingesetzt, wenn gängige Regler (PID) nicht die notwendige Güte aufweisen und genügend Zeit bleibt, bei jedem Abtastschritt die Regelung zu optimieren. Sie können nach jeder Abtastung (engl. sampling) die Regelparameter basierend auf einer Prädiktion neu berechnen.

Proportional-Integral-Differential-Regler (PID)

Dieser Reglertyp besteht aus drei Komponenten: (a) der proportionale Anteil, bei der die Stellgröße (Infusionsrate) proportional zur Regeldifferenz (Glukose-Istwert – Glucose-Sollwert) wird. (b) Ein Integrier-Glied, welches für die stationäre Genauigkeit sorgt, jedoch das Antwortverhalten verlangsamt. (c) ein Differenzierglied, welches auf Änderungen reagiert, den Regler schnell macht, aber schnelle Störungen verstärkt und den Regler instabil machen kann. Ab 2010 haben solche Regler – in Anlehnung an die physiologisches Regelung eines gesunden Pankreas – eine Rückkopplung vom (vorhergesagten) Insulinspiegel erhalten (IOB), um Hypoglykämien durch eine Überinsulinierung vorzubeugen.

2017 kam mit dem Minimed 670G ein System allein in USA auf den Markt, bei welchen die Basalrate mittels eine PID-Algorithmus mit IOB-Rückkopplung geregelt wird. Dieses System erfasst keine Mahlzeiten, ist also als ein Hybrid System (s. o.) einzustufen.

Fuzzy-Regler

Fuzzy-Regelung besteht aus einem Regler, welcher eine Anzahl diskrete Eingangswerte (z. B. drei Glukosebereiche: hoch, normal, niedrig) durch Fuzzy-Regeln ('wenn'- 'dann' – Regeln) einen Ausgangswert (Insulin-Infusions-Rate) ergeben. Hier werden Näherungswerte für die Insulindosen aus empirischem Wissen generiert, welches nahe an Dosiempfehlungen von Diabetologen ist. Somit lehnt sich die Fuzzy-Regelung an die gängige Praxis der Bolus-Berechnung im Alltag an: Der Patient korrigiert zwischen 140 und 170 mg/dl mit einer Insulineinheit (iE) und zwischen 170 und 200 mg/dl mit 2 iE usw.

Risikoreduktion und Sicherheitsarchitektur

Eine Fehlmessung durch den Sensor und/oder eine unrichtige Steuerung durch den Regelalgorithmus kann prinzipiell zu einer lebensgefährlichen Hypoglykämie führen. Ein modularer Aufbau, bei welchem Sicherheitsmodule unabhängig vom Regelalgorithmus eine Insulinabschaltung bzw. Warnung ausgeben können, ist erforderlich. So wird z. B. eine technische Begrenzungen der Infusionsrate vorgesehen durch einen separaten Hypoglykämie-prädiktions-algorithmus (engl. low glucose dectection module) oder durch eine und Insulin-on-Board-Berechnung.

Besonderheiten und Schwierigkeiten

Eine Besonderheit bei der Rückkopplung sind lange Zeitverzögerungen im Prozess: eine physiologische und damit unbeeinflussbare Wirk-Verzögerung ist die Insulinwirkung in der Leber von etwa 100 min und im peripheren Gewebe (Muskel) von etwa 20 min. Hinzu kommen bei der gegenwärtig präferierten sc-sc-Anwendung an beiden Enden potentiell veränderbare Verzögerungen hinzu: die im Glucosesensor und der Gewebsdiffusion begründete lag time von etwa 5–15 min und die bei der Insulinabsorption entstehende Verzögerung. Ungeachtet der Erfolge bei Insulinpumpen und den kontinuierlichen Glucosesensoren muss ein künstliches Pankreas mit solchen Verzögerungen und Ungenauigkeiten bei der Messung und der Insulin-Verabreichung zurechtkommen. Dies tritt besonders dann auf, wenn Störungen, also schnelle Veränderungen wie eine Mahlzeit, einen Glucoseanstieg anstoßen, der dann sehr viel schneller verläuft, als die notwendige Zeit für Insulinabsorption und Wirkung. Das Problem dabei besteht nun darin, dass jeder Versuch , die Systemantwort zu beschleunigen, in einem instabilen System mündet, welches zu Oszillationen neigt. Also muss ein robuster Regler ein langsameres Ansprechverhalten aufweisen, welches dann aber postprandiale Glucose-spitzen nicht abmildern kann und spätere Hypoglykämien ermöglicht. Dieses „Kontroll-Dilemma“ hat dazu geführt, dass derzeitige Regler nur langsame Regelungen ausführen können, z. B. über Nacht im Quasi-Ruhezustand. Zusammen mit dem Sport sind Mahlzeiten diejenigen Störungen, denen man beim künstlichen Pankreas am meisten wünschte, sie könnten zuverlässig ausgeregelt werden[8]. Somit werden Anwendungen in naher Zukunft Hybrid-Systeme sein. Lösungen werden bei anderen Insulin-Applikationsformen (intraperitoneal, per Inhalation) derzeit intensiv gesucht.

Eine Individualisierung der Algorithmen wird zunehmend mehr verstanden. Lässt man Störungen (Mahlzeiten, Sport) bewusst über ein solches System laufen, können Anpassungen der Parameter effektiver ermittelt und unter günstigen Umständen in Echtzeit angepasst werden.

Ziele und Metriken für die Leistungsfähigkeit

  1. kompletter oder weitgehender Übergang aller Tätigkeiten des Diabetes-Managements vom Patienten auf das Gerät (Entlastung)
  2. Stabilisierung und Senkung der mittleren Glykämie mit langfristiger Senkung der Folgeschäden
  3. Vermeidung oder Reduktion von Akutkomplikationen wie Hypoglykämien und ketoazidotischen Komata,

So wird vorgeschlagen, die Qualität und Variabilität mittels Zeitdauer im Zielbereich (time in target, TIR) zu erfassen, was durch die kontinuierliche Glucosemessung (CGM) möglich ist. Hybridsysteme (s. o.) erreichen derzeit, dass in etwa 70 % der Messzeit die Glucosewerte im Bereich 70–180 mg/dl liegen. Zusätzlich ist es sinnvoll, die Zeit im hypoglykämischen Bereich zu erfassen. Ferner wird die Messung der Lebensqualität eine immer bedeutendere Rolle einnehmen. Es gibt validierte Instrumente diese zu messen z. B. Erfassungsbögen für Diabetes Quality of Life oder Fear of Hypoglycemia.

Letztlich ist immer ein Kompromiss herzustellen zwischen dem Grad der Automatisierung und der Reglergüte; genau so ein Kompromiss zwischen Erreichen der Euglykämie und Anzahl von unerwünschten Hypoglykämien. Der teilweise Übergang an den Nutzer birgt auch Gefahren, die in unvorhersagbarem menschlichen Verhalten begründet liegen und Sicherheitsbedenken aufkommen lassen.

Vergleichsmetriken werden durch nationale Register oder Qualitätsinitiativen („Nicht-Unterlegenheit“ durch beste bisherige Vergleichstherapie) hergestellt. In Deutschland ließ sich beispielsweise durch ein im Krankenhaus initiiertes kombiniertes Therapie- und Schulungsprogramm mit den Methoden des Qualitätsmanagements zeigen, dass Menschen mit Diabetes Typ-1 mittels intensivierter Insulintherapie (ICT) im Durchschnitt einen HbA1c von 7,3 % erreichen können sowie eine HbA1c-unabhängige Zahl von schweren Hypoglykämien von 0,14/Pat./Jahr.[9]

Forschungsschwerpunkte weltweit

AP SystemAlgorithmusEntwicklerDauer der
Regelung
Mahlzeiten
(Vorsteuerung)
Sport incl.außer HausPumpe Sensor
PID Regler (USA)PI/PD-IFBG.Steil[10]14 Std.nnnAnimas Pumpe, Abbott Free Style Navigator
MD-Logic (Isr/D/Slo)FuzzyE.Atlas[11]N/AN/AjjEnlite;Veo pump (Medtronic)
DIAS(USA/It/Fr)MPCKovatchev/Cobelli/
Renard/Zisser[12]
40 stdjnjTandem Pumpe, DexCom G4
Florence (En/USA)MPCR.Hovorka[13]8 Std.jnnDana R Diabecare; Abbott Free Style Nav
Bionic Dual Hormon
(USA)
Insulin und Glucagon
adapt. MPC
Damiano[14]120 Std.jjjTandem t:slim; Dexcom G4
AP@home (EU)MPCMehrere Autoren[15]N/AjN/AjOmnipod Pumpe; Dexcom seven+
12 Week 24/7 (USA/It)MPC Zonemehrere Autoren[16]12 WochenjnjRoche AccuCheck Combo Spirit, Dexcom G4
Tandem mit TypeZero Tech, (USA)Control-IQ TechnologiesiDCL Trial Research Group[17]6 Monatejnjt:slim X2 Insulin Pumpe (Tandem) mit Control-IQ, (TypeZero), Dexcom G6 Sensor

Anmerkungen: nicht vollständige Auswahl, eine vollständige Auswahl ist in der Articial Pancreas Clinical Trial Database zu finden[18]; MPC = Model predictive control, IFB = Insulin-feedback, J= erfüllt N = nicht erfüllt N/A = unbekannt;

Stand der Technik

Gegenwärtig sind sogenannte sc-sc Systeme in der Anwendung, bei welchem der Glucosesensor im subkutanen Gewebe (SC) liegt wie auch der Infusions-Katheter für Insulin. Auch wenn bei einer intravenösen Messung bzw. Infusion wesentliche Verzögerungen wegfallen würden, geht man gegenwärtig aus Sicherheitsüberlegungen den Weg über das subkutane Kompartment. Moderne Systeme können so ausgelegt werden, dass drahtlose Verbindungen (Bluetooth) und die komplette Software zur Ansteuerung auf einem Mobilfunkgerät (smart phone) installiert werden können. Prinzipiell ist auch einer Überwachung von Ferne (Telemonitoring) möglich.

Drei Systeme haben eine CE-Kennzeichnung erhalten (siehe Tabelle), eines davon ist in europäischen Ländern erhältlich und im deutschen Hilfsmittelverzeichnis der gesetzlichen Krankenversicherung gelistet. Weitere Systeme wurden identifiziert, welche kommerzielle Absichten haben.[19]

Typisches Schema eines kommerziellen Hybrid-Systems ohne implatierte Komponenten Übertragung der Sensordaten über Bluetooth zum Smartphone, wo der Regelalgorithmus die Aktionen für die Insulinpumpe generiert. In einem optionalen Cloud-Server kann in Echtzeit oder von Zeit zu Zeit (R2R) eine Update des Modells für den Algorithmus generiert werden.

In den Vereinigten Staaten hat die FDA die Interoperabilität von technischen Geräten und APPs beim Diabetes zugelassen, wenn sie die sogenannte iCGM Kennzeichnung tragen. Damit können kontinuierlich messende Glucosesensoren, Insulinpumpen, und APPs mit Regelalgorithmen verschiedener Hersteller miteinander konnektiert werden und so kommunizieren.[20]

Die Studien mit realen Patienten zielen darauf ab, die Anwendungen auf immer längere Perioden auszuweiten und den Nutzern mehr Selbstständigkeit zu erlauben. Zunächst wurde Diabetes-Camps mit Aufsicht, später Klinik-nahe Hotels ausgewählt. So wurden in einer Studie aus England[21] eine sichere häusliche Anwendungen bis zu drei Monaten und eine Steigerung der Werte im o. g. Zielbereich um 11 % beschrieben. In einer multizentrischen Studie (vorwiegend USA) wurde 2017 über 12 Wochen bei 29 Erwachsenen ein System ambulant getestet, welches eine Vorsteuerung der Mahlzeiten beinhaltete. Neu war hier wöchentliche Adaptation der Basalrate und des Insulin-zu-Kohlenhydrat-Verhältnisses (welche den sog. Mahlzeitenbolus bestimmt) auf entfernten Servern. Dadurch konnte der HbA1c von ursprünglich 7 % auf 6,7 % gesenkt werden.[16] In einer multizentrischen Studie von 2019 an 112 Patienten über 6 Monate wurde eine ähnliche Erhöhung der TIR erzielt.[17]In einer kontrollierten Studie aus Amerika erbrachten die von Kindern und ihren Eltern selbst berichteten Ergebnisse bezüglich Lebensqualität (strukturierter Fragebogen) beim Tragen eines künstlichen Pankreas (Tandem Control-IQ System) keine signifikanten Vorteile gegenüber einer konventionellen Therapie mittels einer Insulin-Pumpe.[22]

Nicht-kommerzielle Systeme

Seit 2013 existiert unter dem Motto „We are not waiting“ (Wir wollen nicht warten) OpenAPS, eine weltweite Do-it-yourself-Community, die die Verknüpfung kommerzieller Technologien zu einem künstlichen Pankreas mittels Algorithmen und Software im Sinne von Open Source betreibt.[23] Zu den Gründern zählen Dana Lewis und Scott Leibrand aus den USA.[24][25]

Wie bei kommerziellen Systemen handelt es sich bei OpenAPS bzw. bei dem etwas neueren AndroidAPS um Hybridsysteme, d. h. vor jeder Mahlzeit muss ein Insulinbolus abgegeben werden. Es werden eine kommerziell verfügbare Insulinpumpe und ein CGM-System eingesetzt, die über eine offene Schnittstelle verfügen. Als Medizinprodukte der Klasse IIa und IIb setzt das In-Verkehr-Bringen eine CE-Kennzeichnung voraus. Um juristischen Probleme zu entgehen, muss der Nutzer sein Produkt selber zusammenbauen. So lässt sich die zugehörige APP nicht aus einem APP-Store herunterladen, sondern die APP selbst erstellt werden, was Software-Kenntnisse voraussetzt. Der zugehörige Quellcode ist frei verfügbar.[26] Es werden dem Nutzer keine Serviceleistungen zur Verfügung gestellt. Ferner gibt es keine Haftung bei wirtschaftlichen oder gesundheitlichen Schäden infolge des Gebrauchs.[25][27]

Die Mitgliedschaft in einem sozialen Netzwerk wie Facebook ist erforderlich, um sich mit anderen „Loopern“ auszutauschen. Die Community erwartet, dass Nutzerdaten anonym gespendet werden. Nach einer Schätzung der Organisation OpenAPS gab es im Dezember 2021 fast 2500 Nutzer weltweit[28]. Aus einer Umfrage bei fast 900 Erwachsenen und Eltern von Kindern geht hervor, dass sich der HbA1c durch die Anwendung von openAPS im Mittel um fast 1 % gesenkt hat.[29]

Kommerzielle Systeme

Kommerzielle Systeme mit Zulassung in Europa und/oder USA
SystemBeschreibungVerfüg-

bar

Regu-

liert

PumpeSensorDatenAlgo-

rithmus

StudienBesonderheiten
CamAPS FX (UK)Android basierte APP für Hybrid

AP mit Bolusrechner für Mahlzeiten

UK

EU (teilweise)

CE,FDA

Kl IIb

DanaDexcom G6Daten-Upload

auf Server des Herstellers

MPC[30]
DBLG1

Diabeloop (F)

Handset mit gesicherte Bluetooth-verbindung, welche die Kontroll-

algorithmen enthält.

6 konfigurierbare Parameter

F

D

CE

Kl IIb

Kaleido

(Vicentra)

Dexcom G6Daten auf Server

'YourLoops'

durch Nutzer freigebbar

MPC[31]lernfähiger

Bolusrechner

Medtronic MiniMed

670G (USA)

Anpassung der Basalrate

Mahlzeitenbolus-Berechnung

nach Eingabe der KH-Menge

USA

EU

CE

Kl IIb

FDA

Minimed

670 G

Guardian

Sensor 3

Upload über CareLinkPID mit

IOB-Rückkopplung

[32]
Control-IQ

Tandem (USA)

'Auto-correction' Funktion

Bolusrechner vorhanden

USAFDAt:slim X2Dexcom G6Upload auf

t:connect portal

MPC

TypeZero

[33]Schlaf und Sport

Modus

Literatur

  • Frederick Chee, Tyrone Fernando: Closed-Loop Control of Blood Glucose. Reihe: Lecture Notes in Control and Information Sciences. Band 368. Springer, Berlin und New York 2007, ISBN 978-3-540-74030-8
  • C.Cobelli, E. Renard, B.Kovatchev: Artificial Pancreas: Past, Present, Future in DIABETES 60: 2672 (2011) doi:10.2337/db11-0654
  • Masami Hoshino, Yoshikura Haraguchi, Iwanori Mizushima, Motohiro Sakai: Recent Progress in Mechanical Artificial Pancreas. In: Journal of Artificial Organs. 12(3)/2009. Springer, S. 141–149, ISSN 1434-7229
  • Kavita Kumareswaran, Mark L Evans, Roman Hovorka: Artificial Pancreas: An Emerging Approach to Treat Type 1 Diabetes. In: Expert Review of Medical Devices. 6(4)/2009. Expert Reviews Ltd., S. 401–410, ISSN 1743-4440
  • Martina Lenzen-Schulte: Typ-1-Diabetes: Diabetestherapie Marke Eigenbau. In: Deutsches Ärzteblatt. Band 116, Nr. 29-30, 2019, S. A 1378-A 1381 (aerzteblatt.de).

Einzelnachweise

  1. Kadish AH. Automation control of blood sugar. I. A servomechanism for glucose monitoring and control. Am J Med Electron 1964;3:82–86
  2. Pfeiffer E.F., Thum C., Clemens A.H. The artificial Beta-Cell: A continuous control of blood sugar by external regulation of insulin infusion in Horm. Metabol. Res. 6 Seite 339–342 (1974).
  3. Fischer U. et al. Does physiological blood glucose control require an adaptive control strategy? IEEE Trans Biomed Eng. ;34:575-82. (1987).
  4. M. Vettoretti et al. Type-1 Diabetes Patient Decision Simulator for In Silico Testing Safety and Effectiveness of Insulin Treatments; IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 65 (2018) S. 1281 doi:10.1109/TBME.2017.2746340
  5. R. M. Bergenstal, D. C. Klonoff, S. K. Garg, B. W. Bode, M. Meredith, R. H. Slover, A. J. Ahmann, J. B. Welsh, S. W. Lee, F. R. Kaufman: Threshold-based insulin-pump interruption for reduction of hypoglycemia. In: The New England Journal of Medicine. Band 369, Nummer 3, Juli 2013, S. 224–232, doi:10.1056/NEJMoa1303576, PMID 23789889.
  6. Spaic, T et al. Predictive Hyperglycemia and Hypoglycemia Minimization: In-Home Evaluation of Safety, Feasibility, and Efficacy in Overnight Glucose Control in Type 1 Diabetes. Diabetes Care. 2017 40(3):359-366. doi:10.2337/dc16-1794.
  7. Richalet J, et al. Model predictive heuristic control: Applications to industrial processes. Automatica.;14:413-28. (1978).
  8. C. Cobelli et al. Advancing Our Understanding of the Glucose System via Modeling ;IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,. 61(5): 157 (2014 )
  9. A.Sämann et al. Diabetologia (2005) 48: 1965–1970
  10. Dauber, Steil Diabetes Care 36:222–227, 2013.
  11. Philip et al.: N engl.J.med 368;9: 824 (2013).
  12. Kovatchev et al. Diabetes Care 2014;37:1789.
  13. Hovorka et al. Diabetes Care 2014;37:1204–1211.
  14. J. Russell et al. N.Eng.J.Med (2014) doi:10.1056/NEJMoa1314474.
  15. Luif et al. Diabetes Care. 2013;36:3882.
  16. a b Dassau et al. 12-Week 24/7 Ambulatory Artificial Pancreas With Weekly Adaptation of Insulin Delivery Settings, Diabetes Care 2017;46; S. 1719.
  17. a b Brown et al. NEJM 2019 Oct doi:10.1056/NEJMoa1907863
  18. Ausführliche Übersicht über weltweite Forschungsschwerpunkte: Articial Pancreas Clinical Trial Database. The Doyle Group, abgerufen am 15. Juni 2019 (englisch).
  19. S. Trevitt et al. Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes: What Systems are in Development? Diab. Sci. Technol. November 2015.
  20. FDA authorizes first interoperable, automated insulin dosing controller designed to allow more choices for patients looking to customize their individual diabetes management device system. FDA, 13. Dezember 2019, abgerufen am 13. Februar 2022.
  21. Thabit H, Tauschmann M, Allen JM et al. (2015) Home use of an artificial beta cell in type 1 diabetes. N Engl J Med 373:2129–2140-
  22. E. C. Cobry et al.; Health-Related Quality of Life and Treatment Satisfaction in Parents and Children with Type 1 Diabetes Using Closed-Loop Control DiabetesTechnology & Therapeutics 2021 doi:10.1089/dia.2020.0532
  23. openaps.org
  24. Dana Lewis, Scott Leibrand, #OpenAPS Community: Real-World Use of Open Source Artificial Pancreas Systems. In: Journal of Diabetes Science and Technology. Band 10, Nr. 6, November 2016, ISSN 1932-2968, S. 1411–1411, doi:10.1177/1932296816665635, PMID 27510442.
  25. a b Stefanie Blockus: Die kompilierte Bauchspeicheldrüse. Typ-1-Diabetiker basteln künstliche Bauchspeicheldrüsen. In: c't. Nr. 9, 2019, S. 162.
  26. Willkommen zur AndroidAPS-Dokumentation. AndroidAPS. Abgerufen am 14. Juni 2021.
  27. Martina Lenzen-Schulte: Typ-1-Diabetes: Diabetestherapie Marke Eigenbau. In: Deutsches Ärzteblatt. Band 116, Nr. 29-30, 2019, S. A 1378-A 1381 (aerzteblatt.de).
  28. OpenAPS.org. OpenAPS Community, abgerufen am 2. Februar 2022.
  29. K.Braune et al. Why #WeAreNotWaiting—Motivations and Self-Reported Outcomes Among Users of Open-source Automated Insulin Delivery Systems: Multinational Survey; J Med Internet Res 2021;23(6):e25409 ;jmir.org/2021/6/e25409 doi:10.2196/25409
  30. Martin Tauschmann, et al.: Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12-week randomised trial. In: Lancet 2018; 392: 1321–29 doi:10.1016/S0140-6736(18)31947-0
  31. Pierre Yves Benhamou et al. Customization of home closed loop insulin delivery in adult patients with type 1 diabetes, Acta Diabetologica (2018) 55:549–556 doi:10.1007/s00592-018-1123-1
  32. S. K. Garg et al. Glucose Outcomes with the In-Home Use of a Hybrid Closed-Loop Insulin Delivery System in Adolescents and Adults with Type 1 Diabetes; DIABETES TECHNOLOGY & THERAPEUTICS 19 (2017) doi:10.1089/dia.2016.0421
  33. E. Isganaitis et.al ;Closed-Loop Insulin Therapy Improves Glycemic Control in Adolescents and Young Adults:Diabetes Technology and Therapeutics (2020) doi:10.1089/dia.2020.0572

Auf dieser Seite verwendete Medien

AP Künstliches Pankreas moderne Komponenten.png
Autor/Urheber: Sugarmaster, Lizenz: CC BY-SA 4.0
schematische Darstellung aller Komponenten eines künstlichen Pankreas. Regelalgorithmus im Mobilfunkkgerät. Die Übertragung der Sensordaten dorthin und die Aktionen an die Pumpe, die der Regelalgorithmus generiert, läuft via über Bluetooth. Optional können die Daten über Mobilfunk an einer Cloud-Server des Herstellers gesendet werden, wo in Echtzeit oder von Zeit zu Zeit (run-to-run: R2R) eine Modell-Update für den Algorithmus zum Download bereit gestellt wird.
Bihorm.jpg
Autor/Urheber: Sugarmaster, Lizenz: CC BY-SA 3.0
Regler für bihormonales künstliches Pankreas
TP Control.jpg
Autor/Urheber: Sugarmaster, Lizenz: CC BY-SA 3.0
Glucoseprofil eines Typ-1-Diabetikers ueber drei Tage, welches mittels bihormonalem kuenstlichem Pankreas entstanden