Jeans-Kriterium

Das Jeans-Kriterium der Sternentstehung (nach James Jeans), auch Jeanssches Kriterium, besagt, dass eine kosmische Gaswolke kollabiert und aus ihr letztlich ein Stern entstehen kann, wenn ihre Masse größer als die Jeans-Masse ist. Handelt es sich bei der Gaswolke um eine protoplanetare Scheibe, so kann das Jeans-Kriterium auch für die Entstehung von Gasplaneten herangezogen werden.

Unter irdischen Bedingungen breiten sich Gase aufgrund der kinetischen Energie der Moleküle und ihrer damit verbundenen Kollisionen in dem zur Verfügung stehenden Raum gleichmäßig aus. Im freien Weltall dagegen werden größere Ansammlungen von Gasen durch ihre Schwerkraft zusammengehalten und sind deswegen räumlich begrenzt. Nach Überschreiten der Jeans-Masse zieht sich die Wolke immer weiter zusammen, bis ein neuer Gleichgewichtszustand erreicht wird (Sternentstehung).

Berechnung bzw. Abschätzung der Jeans-Masse

Die Jeans-Masse als minimale Grenzmasse lässt sich abschätzen zu:

mit

  • einem numerischen Vorfaktor , der von der Abschätzung und ihrer Genauigkeit abhängt
  • weiteren Variablen, die im Folgenden erläutert werden.
Kräfte bzw. Drücke in einer kosmischen Gaswolke

Es wird eine kugelförmige Gaswolke der Masse , der homogenen Dichte , dem daraus zu berechnenden Radius  und der Temperatur  angenommen. Auf die Gaswolke wirken keine äußeren Kräfte, sie rotiert nicht, und das Gas verhält sich wie ein ideales Gas.

Die Wolke beginnt zu kollabieren, falls die zusammenziehenden Gravitationskräfte größer sind als die stabilisierende Kraft des Gasdruckes (Jeans-Kriterium). Dieser Zustand ist erreicht, wenn die Masse der Gaswolke bei einer bestimmten Dichte und Temperatur die zugehörige Jeans-Masse überschreitet. Sie kann sowohl über das Gleichgewicht der Drücke als auch über das der Energien ermittelt werden.

Über den Gleichgewichtsdruck

Bei Gleichgewicht der Drücke im Zentrum der Wolke gilt:

Aus der idealen Gasgleichung

und dem Gravitationsdruck im Inneren einer Kugel folgt

mit

  • dem Druck 
  • dem Volumen 
  • der Zahl  der Gasmoleküle
  • der Boltzmann-Konstanten 
  • der absoluten Temperatur 
  • der Masse  des einzelnen Gasmoleküls
  • der Gravitationskonstanten .

Daraus ergibt sich:[1]

.

Der numerische Vorfaktor ist hier .

Über das Energiegleichgewicht

Bei dem Ansatz über das Energiegleichgewicht steht die kinetische Energie nach Verwendung des Virialsatzes zur gravitativen Bindungsenergie der Gaswolke wie folgt:

bzw. mit :

Die Auflösung nach  führt zu folgender Jeans-Masse:

Also ein numerischer Vorfaktor .

Eine andere Ableitung von Jeans,[2] ausgehend vom Durchmesser und Dichte der Wolke sowie der Schallgeschwindigkeit eines idealen Gases, ergibt .

Einfluss von Dichte und Temperatur

Dichte-Temperaturdiagramm für verschiedene Jeans-Massen (M) für ein einatomiges Wasserstoffgas

Wie sich aus den Formeln ablesen lässt, ist die Jeans-Masse für kalte Gaswolken kleiner als für heiße, dafür aber bei niedrigen Gasdichten höher. Das nebenstehende Diagramm gibt diese Abhängigkeit verschiedener Jeans-Massen von der Dichte und der Temperatur wieder. Die Jeans-Masse ist als Vielfaches der Sonnenmasse angegeben, als Gas wurde einatomiges Wasserstoffgas als häufigstes Element im Universum gewählt (Masse pro Atom: µ ≈1.67e-27 kg). Die Berechnung erfolgte wie oben ausgeführt über das Druckgleichgewicht; die Berechnung über das Energiegleichgewicht würde zu einem leicht unterschiedlichen Ergebnis führen, allerdings sind beide Ansätze stark vereinfachte Näherungen.

Ablese-Beispiel: Eine Wolke aus einatomigem Wasserstoffgas von 10 Sonnenmassen und einer Dichte von 10−17kg ⋅m−3 kollabiert bei einer Temperatur von ≤ 10 K. Zur Veranschaulichung hätte eine solche Wolke etwa 6000 Atome pro cm³ und einen Durchmesser von 1,65 Lichtjahren (1.56e13 Kilometer).

Literatur und Quellen

  • Bradley W. Carroll, Dale A. Ostlie: An introduction to Modern Astrophysics. 1996, ISBN 0-321-21030-1, S. 449.
  • Hermann Kolanoski: Einführung in die Astroteilchenphysik. (PDF; 13,8 MB) Abgerufen am 21. Juli 2013.
  • Malcolm S. Longair: Galaxy Formation. Springer, Berlin, 1998, ISBN 3-540-63785-0. (Astronomy and Astrophysics Library).
  • Roman Sexl, Hannelore Sexl: Weiße Zwerge – Schwarze Löcher. Einführung in die relativistische Astrophysik. 2. erweiterte Auflage. Vieweg Verlag, Braunschweig 1999, ISBN 3-528-17214-2 (Vieweg-Studium – Grundkurs Physik).
  • Albrecht Unsöld, Bodo Baschek: Der neue Kosmos. 4. völlig neubearbeitete Auflage. Springer, Berlin 1988, ISBN 3-540-18171-7.

Einzelnachweise

  1. Siehe das Skript von Hermann Kolanoski: Einführung in die Astroteilchenphysik. HU Berlin, WS 2009/2010 in den Literaturangaben
  2. Siehe das Skript von Kolanoski in der Literatur

Auf dieser Seite verwendete Medien

Jeans hc2.png
Autor/Urheber: Holger Casselmann, Lizenz: CC BY-SA 3.0
Jeans masses (in solar masses) by density and temperature of an interstellar molecular cloud
Landscape Carina Nebula.jpg
The NASA/ESA Hubble Space Telescope captured this billowing cloud of cold interstellar gas and dust rising from a tempestuous stellar nursery located in the Carina Nebula, 7500 light-years away in the southern constellation of Carina. This pillar of dust and gas serves as an incubator for new stars and is teeming with new star-forming activity.

Hot, young stars erode and sculpt the clouds into this fantasy landscape by sending out thick stellar winds and scorching ultraviolet radiation. The low density regions of the nebula are shredded while the denser parts resist erosion and remain as thick pillars. In the dark, cold interiors of these columns new stars continue to form.

In the process of star formation, a disc around the proto-star slowly accretes onto the star's surface. Part of the material is ejected along jets perpendicular to the accretion disc. The jets have speeds of several hundreds of miles per second. As these jets plough into the surrounding nebula, they create small, glowing patches of nebulosity, called Herbig-Haro (HH) objects.

Long streamers of gas can be seen shooting in opposite directions off the pedestal on the upper right-hand side of the image. Another pair of jets is visible in a peak near the top-centre of the image. These jets (known as HH 901 and HH 902, respectively) are common signatures of the births of new stars.

This image celebrates the 20th anniversary of Hubble's launch and deployment into an orbit around Earth. Hubble's Wide Field Camera 3 observed the pillar on 1-2 February 2010. The colours in this composite image correspond to the glow of oxygen (blue), hydrogen and nitrogen (green) and sulphur (red).
Spherical molecular cloud d hc2-de.svg
Autor/Urheber: Д.Ильин: vectorization, Lizenz: CC0
Explanation of the Jeans instability. Molecular cloud collapses when gravitation overwhelms molecular forces.