Ionenkanal
Ionenkanäle sind porenbildende Transmembranproteine, die elektrisch geladenen Teilchen, Ionen, das Durchqueren von Biomembranen ermöglichen. Aufgrund dieser Funktion werden sie auch als Kanalproteine oder Tunnelproteine bezeichnet. Der Transport erfolgt dabei entlang des bestehenden elektrochemischen Gradienten (dem Konzentrations- und Potentialgefälle). Dadurch unterscheiden sie sich von aktiven Transportproteinen wie den Ionenpumpen, die ihrerseits unter Energieverbrauch den primär aktiven Transport über Ionenkanäle ermöglichen. Ionenkanäle finden sich sowohl in der außenliegenden Zellmembran als auch in den Membranen der Zellorganellen wie dem Tonoplast.
Ionenkanäle sind, im Zusammenspiel mit anderen Transportproteinen, von universeller Bedeutung für Transportprozesse über die Membransysteme der Zelle. Dazu gehören die Regulation der osmotischen Aktivität, des Säure-Basen-Haushalts, die Aufnahme und Ausscheidung von Stoffen sowie die Erregungsleitung in Nerven und Muskelzellen.
Durch die Patch-Clamp-Technik wurde es möglich, die wenige Picoampere großen Ionenströme über einzelne Kanalproteine zu messen und so ihre elektrischen, kinetischen und anderen Eigenschaften zu erfassen.
Biophysikalische Eigenschaften
Selektivität und Leitfähigkeit
Ionenkanäle können anhand ihrer ausgeprägten oder auch fehlenden Selektivität für bestimmte Ionen beschrieben werden. Je höher die Selektivität für eine Ionensorte, umso geringer ist die Leitfähigkeit der geöffneten Pore für andere Ionen. Man kennt hochspezifische Kanäle für
Ionenkanäle werden oft nach ihrer Selektivität benannt: Kalium-, Natrium-, Calcium- oder Chlorid-Kanal.
Daneben gibt es die sogenannten unspezifischen Kationenkanäle wie die TRP-Kanäle, engl. transient receptor potential channels, die eine ähnliche Leitfähigkeit für Kalium-, Natrium- und Calciumionen aufweisen.
Es existiert eine Reihe von Ionenkanälen für Protonen wie Thermogenin oder spannungsgesteuerte Protonenkanäle. Protonen werden aber auch aktiv, unter ATP-Verbrauch, von Protonenpumpen transportiert; letztere gehören nicht zu den Ionenkanälen. Ebenfalls nicht zu den Ionenkanälen im engeren Sinne werden die Connexone der gap junctions gezählt, die Moleküle bis ca. 1 kDa passieren lassen können.
Steuerung (Gating)
Die Leitfähigkeit der meisten Ionenkanäle wird vom vorhandenen Milieu oder gerichteten Signalen drastisch beeinflusst, man bezeichnet solche Kanäle als gesteuert (engl. gated).
Spannungsgesteuerte Ionenkanäle
Eine große Klasse von Ionenkanälen wird durch das Membranpotential gesteuert (spannungsabhängige Ionenkanäle). So sind z. B. typische spannungsaktivierte Natrium-Kanäle während des Ruhemembranpotenzials nicht leitfähig, sondern nur dann, wenn sie durch eine Depolarisation aktiviert werden.
Ionenkanal-Rezeptoren
Eine andere große Klasse von Ionenkanälen wird durch Liganden aktiviert, also durch Moleküle, die als Botenstoffe fungieren (liganden-gesteuerte Ionenkanäle). So wird z. B. der Acetylcholin-Rezeptor, der eine Rolle bei der Signaltransduktion vom Nerv auf den Muskel spielt, bei Anwesenheit des Neurotransmitters Acetylcholin leitfähig.
Andere Steuerungsmechanismen
- mechanosensitive Ionenkanäle können durch mechanische Reize (z. B. Druck, Vibrationen) aktiviert werden.
- lichtgesteuerte Ionenkanäle (light gated channels), z. B. die Channelrhodopsine, werden durch Licht spezifischer Wellenlänge aktiviert
- temperaturgesteuerte Ionenkanäle werden ab spezifischen Temperaturen aktiviert
Transportrate
Ionenkanäle haben im geöffneten Zustand die größte Durchlassrate von allen Transportproteinen, sie wird meist mit 106 bis 108 Ionen pro Sekunde angegeben. Damit bilden sie die schnellsten Membrantransportmittel, verglichen mit kotransportierenden Proteinen (Symporter und Antiporter) (102 bis 104 Moleküle pro Sekunde) oder ATP-getriebenen Pumpen (100 bis 102 Ionen pro Sekunde).[2]
Trivia
Roderick MacKinnon, der 2003 zusammen mit Peter Agre den Nobelpreis für Chemie für seine Strukturaufklärung von Ionenkanälen erhielt, beauftragte den deutsch-amerikanischen Künstler Julian Voss-Andreae, eine Plastik auf Basis seiner experimentellen Daten zu erschaffen.[3]
Siehe auch
- Membrantransport
- Natriumkanal, Kaliumkanal, Calciumkanal, Chloridkanal, HERG-Kanal
- nikotinische Acetylcholinrezeptor, ionotrope Glutamatrezeptor, ionotrope GABA-Rezeptor
- Blutzucker-Sensorsystem
Literatur
- Ulrich Koert: Synthetische Ionenkanäle. In: Chemie in unserer Zeit. 31, 1997, S. 20–26, doi:10.1002/ciuz.19970310105.
Weblinks
Einzelnachweise
- ↑ Lehrbuch der Botanik für Hochschulen; begr. von E. Strasburger. 35. Aufl. Spektrum, Akad. Verl., 2002.
- ↑ Nicht-Aktiver Transport (Seite dauerhaft nicht mehr abrufbar, festgestellt im April 2018. Suche in Webarchiven), Skript Medizinische Physiologie der Universität Wien, 2003 (PDF, 445kb).
- ↑ Philip Ball: Column: The crucible: Art inspired by science should be more than just a pretty picture. In: Chemistry World. 26. Februar 2008, abgerufen am 7. Januar 2024 (englisch).
Auf dieser Seite verwendete Medien
(c) Julianva in der Wikipedia auf Englisch, CC BY-SA 3.0
"Birth of an Idea", 2007
5' x 3' x 3' (1.50 m x 0.90 m x 0.90 m) Steel, glass, wood
Sculpture by Julian Voss-Andreae based on potassium channel KcsA. Photo by Dan Kvitka. Sculpture commissioned and owned by Roderick MacKinnon.
Please use only with link to www.JulianVossAndreae.comTop and front view to the 3D structure of the pentameric nicotinic acetylcholine receptor.
- Created by S. Jähnichen using PyMol
- Derived from the published structure (source: RCSB PDB Database
- PDB ID: 2BG9
- from Unwin, N. (2005). Refined Structure of the Nicotinic Acetylcholine Receptor at 4A Resolution. J. Mol. Biol. 346:967.