Hodge-Stern-Operator

Der Hodge-Stern-Operator oder kurz Hodge-Operator ist ein Objekt aus der Differentialgeometrie. Er wurde von dem britischen Mathematiker William Vallance Douglas Hodge eingeführt. Der Operator ist ein Isomorphismus, welcher auf der äußeren Algebra eines endlichdimensionalen Prähilbertraums operiert oder allgemeiner auf dem Raum der Differentialformen.

Motivation

Sei eine n-dimensionale, glatte Mannigfaltigkeit und sei die -te äußere Potenz des Kotangentialraums. Für alle mit haben die Vektorräume und dieselbe Dimension und sind deshalb isomorph. Hat nun zusätzlich noch die Struktur einer orientierten, semiriemannschen Mannigfaltigkeit, so kann man beweisen, dass sich diese Isomorphie natürlich konstruieren lässt. Das heißt, es existiert ein Isomorphismus zwischen den Räumen, der invariant unter die semiriemannsche Metrik und die Orientierung erhaltenden Diffeomorphismen ist. Die Verallgemeinerung dieses Isomorphismus auf das Tangentialbündel heißt Hodge-Stern-Operator.

Definition

Da der Raum aus der obigen Motivation ein endlichdimensionaler Vektorraum ist, wird hier mit der Definition des Hodge-Stern-Operators auf Vektorräumen begonnen.

Hodge-Stern-Operator auf Vektorräumen

Sei ein -dimensionaler orientierter Vektorraum mit Skalarprodukt und sein Dualraum. Für bezeichnet die -te äußere Potenz von , den Vektorraum der alternierenden Multilinearformen der Stufe über .

Der Hodge-Stern-Operator

wird durch die folgende Bedingung eindeutig festgelegt: Ist eine positiv orientierte Orthonormalbasis von und die dazu duale Basis von , so ist

Es genügt nicht, diese Bedingung für eine einzige Orthonormalbasis zu fordern. Man braucht sie aber auch nicht für jede positiv orientierte Orthonormalbasis zu fordern. Es genügt, alle geraden Permutationen einer einzelnen Basis zu betrachten: Ist eine positiv orientierte Orthonormalbasis von und die dazu duale Basis von , so wird der Hodge-Stern-Operator eindeutig bestimmt durch die Bedingung

für jede gerade Permutation von .

Für eine Orthogonalbasis, die keine Orthonormalbasis sein muss, gilt allgemeiner

und

.

Dabei ist , wenn positiv orientiert ist und , wenn negativ orientiert ist. Die Formel gilt insbesondere für leere Produkte, für eine Orthonormalbasis ist also

,
.

Globaler Hodge-Stern-Operator

Nach dieser Vorarbeit kann man den Hodge-Stern-Operator auf die äußere Algebra des Kotangentialbündels übertragen. Wie in der Motivation sei wieder eine orientierbare, glatte riemannsche Mannigfaltigkeit. Außerdem definiere als den Raum der Schnitte im Vektorbündel . Der Raum ist also der Raum der Differentialformen -ten Grades auf . Da ein Vektorbündel ist und somit in jedem Punkt ein Vektorraum ist, wird der Hodge-Stern-Operator punktweise definiert.

Der Hodge-Stern-Operator ist ein Isomorphismus

so dass für jeden Punkt

gilt. Die Differentialform , ausgewertet an der Stelle , ist wieder ein Element eines Vektorraums, und damit greift obige Definition für Vektorräume. In dieser Definition wurde impliziert, dass die Form wieder eine glatte Differentialform ist. Dies jedoch ist nicht klar und bedarf eines Beweises.

Beispiele

Betrachtet man den dreidimensionalen euklidischen Raum als riemannsche Mannigfaltigkeit mit der euklidischen Metrik und der üblichen Orientierung, so kann man unter diesen Voraussetzungen den Hodge-Stern-Operator anwenden. Sei die orientierte Standardbasis von und die entsprechende duale Basis. Die Elemente können dann als Differentialformen verstanden werden. Für den Hodge-Stern-Operator gilt dann

Unter diesen Voraussetzungen wird der Hodge-Stern-Operator implizit in der Vektoranalysis beim Kreuzprodukt und dem davon abgeleiteten Rotations-Operator verwendet. Dies wird im Artikel Äußere Algebra erläutert.

Eigenschaften des Hodge-Stern-Operators

Sei eine orientierte, glatte, riemannsche Mannigfaltigkeit, seien , , und sei eine Riemannsche Metrik. Dann hat der Hodge-Stern-Operator folgende Eigenschaften:

  1. (Linearität),
  2. (Bijektivität),
  3. (Isometrie).

Riemannsche Volumenform

Sei eine glatte, orientierte, riemannsche Mannigfaltigkeit. Fasst man dann als konstante Einsfunktion auf, so ist die riemannsche Volumenform definiert als . Diese Volumenform ist wichtiger Bestandteil der Integration mit Differentialformen. Das soll an einem einfachen Beispiel illustriert werden. Sei dafür eine kompakte Teilmenge. Für das Volumen von U gilt . Fasst man nun als eine Mannigfaltigkeit und als eine darin enthaltene kompakte Teilmenge auf, so ist das Volumen in diesem Fall definiert als

Die Integrationstheorie auf Mannigfaltigkeiten beinhaltet also auch die Integration auf reellen Teilmengen. Nach diesem Prinzip kann man auch Funktionen auf Mannigfaltigkeiten integrieren, indem man diese mit der Volumenform multipliziert.

Literatur

  • R. Abraham, J. E. Marsden, T. Ratiu: Manifolds, Tensor Analysis, and Applications. Springer-Verlag, Berlin 2003, ISBN 3-540-96790-7.
  • S. Morita: Geometry of Differential Forms. American Mathematical Society, ISBN 0-821-81045-6.