Hafner-Sarnak-McCurley-Konstante

Die Hafner–Sarnak–McCurley Konstante ist eine mathematische Konstante, die angibt, mit welcher Wahrscheinlichkeit die Determinanten von zwei Matrizen zueinander teilerfremd sind.

Definition

Seien zwei quadratische, ganzzahlige -Matrizen. Dann ist die Wahrscheinlichkeit, dass die beiden Determinanten zueinander teilerfremd sind, durch die Funktion

beschrieben.[1] Dabei bezeichnet die n-Primzahl.

Graph der D(n) Funktion

Insbesondere ist für zwei -Matrizen die Wahrscheinlichkeit für Teilerfremdheit:

. (OEIS A059956)

Weitere Werte

Die genauen Funktionswerte für wurden analytisch nicht ermittelt. Näherungsweise ergeben sich die Werte:

nD(n)
20.453103
30.397276
40.373913
50.363321

Grenzwert

Für die Funktion wurde durch Vardi (1991) der Grenzwert

(A085849)

mit einer Approximationsgeschwindigkeit von bewiesen.[2]

Literatur

  • Finch, S. R. (2003), „§2.5 Hafner–Sarnak–McCurley Constant“, Mathematical Constants, Cambridge, England: Cambridge University Press, S. 110–112, ISBN 0-521-81805-2
  • Vardi, I. (1991), Computational Recreations in Mathematica, Redwood City, CA: Addison–Wesley, ISBN 0-201-52989-0
  • Hafner, J. L.; Sarnak, P. & McCurley, K. (1993), „Relatively Prime Values of Polynomials“, in Knopp, M. & Seingorn, M. (eds.), A Tribute to Emil Grosswald: Number Theory and Related Analysis, Providence, RI: Amer. Math. Soc., ISBN 0-8218-5155-1

Einzelnachweise

  1. Hafner, Sarnak, McCurley, op. cit.
  2. Eric W. Weisstein: Hafner-Sarnak-McCurley Constant. Abgerufen am 16. Juni 2019 (englisch).

Auf dieser Seite verwendete Medien

D(n) Funktion.png
Autor/Urheber: Giorubmic, Lizenz: CC BY-SA 4.0
D(n) Konstante