Germanium

Eigenschaften
Allgemein
Name, Symbol, OrdnungszahlGermanium, Ge, 32
ElementkategorieHalbmetalle
Gruppe, Periode, Block14, 4, p
Aussehengräulich weiß
CAS-Nummer

7440-56-4

EG-Nummer231-164-3
ECHA-InfoCard100.028.331
Massenanteil an der Erdhülle5,6 ppm (46. Rang)[1]
Atomar[2]
Atommasse72,630(8)[3] u
Atomradius (berechnet)125 (125) pm
Kovalenter Radius122 pm
Van-der-Waals-Radius211[4] pm
Elektronenkonfiguration[Ar] 3d10 4s2 4p2
1. Ionisierungsenergie7.899435(12) eV[5]762.18 kJ/mol[6]
2. Ionisierungsenergie15.934610(25) eV[5]1537.46 kJ/mol[6]
3. Ionisierungsenergie34.0576(12) eV[5]3286.1 kJ/mol[6]
4. Ionisierungsenergie45.7155(12) eV[5]4410.9 kJ/mol[6]
5. Ionisierungsenergie90.500(19) eV[5]8732 kJ/mol[6]
Physikalisch[2]
Aggregatzustandfest
KristallstrukturDiamantstruktur
Dichte5,323 g/cm3 (20 °C)[7]
Mohshärte6,0
Magnetismusdiamagnetisch (χm = −7,1 · 10−5)[8]
Schmelzpunkt1211,4 K (938,3 °C)
Siedepunkt3106 K[9] (2830 °C)
Molares Volumen13,63 · 10−6 m3·mol−1
Verdampfungsenthalpie330 kJ·mol−1[9]
Schmelzenthalpie31,8 kJ·mol−1
Schallgeschwindigkeit5400 m·s−1 bei 293,15 K
Spezifische Wärmekapazität308,3[1] J·kg−1·K−1
Austrittsarbeit5,0 eV[10]
Elektrische Leitfähigkeit(Eigenleitung) 2 S·m−1 bei 300 K
Wärmeleitfähigkeit60 W·m−1·K−1
Chemisch[2]
Oxidationszustände−4, +2, +4
Normalpotential0,247 V (Ge2+ + 2 e → Ge)
Elektronegativität2,01 (Pauling-Skala)
Isotope
IsotopNHt1/2ZAZE (MeV)ZP
68Ge{syn.}270,8 dε0,10668Ga
69Ge{syn.}39,05 hε2,22769Ga
70Ge20,5 %Stabil
71Ge{syn.}11,43 dε0,22971Ga
72Ge27,4 %Stabil
73Ge7,8 %Stabil
74Ge36,5 %Stabil
75Ge{syn.}82,78 minβ1,17775As
76Ge7,44 %(1,84 +0,14−0,10) · 1021 a[11]ββ76Se
77Ge{syn.}11,30 hβ2,70277As
Weitere Isotope siehe Liste der Isotope
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung[12]

Pulver

GefahrensymbolGefahrensymbolGefahrensymbol

Gefahr

H- und P-SätzeH: 228​‐​361​‐​373​‐​410
P: 202​‐​210​‐​240​‐​241​‐​272​‐​308+313[12]
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Germanium (von lateinisch GermaniaDeutschland‘, nach dem Land, in dem es zuerst gefunden wurde) ist ein chemisches Element mit dem Elementsymbol Ge und der Ordnungszahl 32. Im Periodensystem steht es in der 4. Periode und in der 4. Hauptgruppe (14. IUPAC-Gruppe, p-Block und Kohlenstoffgruppe). Es wurde erstmals 1886 im Mineral Argyrodit nachgewiesen.[13]

Germanium ist ein glänzend graues, hartes, sprödes Halbmetall (manchmal wird es noch zu den Metallen gezählt). Es ist auf der Erde weit verbreitet, kommt aber meistens nur in geringen Konzentrationen vor. Der größte Produzent von Germanium ist China. Germanium wird hauptsächlich als Halbleiter in der Elektronik verwendet, doch es gibt auch einige Anwendungen in der Medizin. Es ist keine biologische Funktion von Germanium bekannt.

Geschichte

Das Periodensystem Mendelejews mit der Lücke unterhalb des Siliciums

Als Dmitri Mendelejew 1869 seinen Entwurf des Periodensystems entwickelte, stellte er fest, dass es einige Lücken durch bislang unbekannte Elemente aufwies. Zwei sehr auffällige befanden sich in der 5. Reihe in den Gruppen III unterhalb des Aluminiums und IV unterhalb des Siliciums. Entsprechend seiner Systematik nannte es diese Elemente Eka-Aluminium und Eka-Silicium. Anhand der Eigenschaften der umliegenden Elemente prognostizierte er 1871 auch einige Eigenschaften der Elemente, so sollte Eka-Silicium eine Atommasse von etwa 72, ein spezifisches Gewicht von 5,5 und vierwertige Salze haben. Sogar einige Eigenschaften von Verbindungen sagte er voraus, so sollte etwa das Tetrachlorid eine bei unter 100 °C siedende Flüssigkeit sein.[14][15]

Clemens Winkler

1886 wurde in der Grube Himmelsfürst in Brand-Erbisdorf im Erzgebirge ein neues Mineral gefunden, von Albin Weisbach beschrieben und Argyrodit genannt.[16] Bei der chemischen Analyse wurden schnell die beiden Hauptbestandteile Silber und Schwefel nachgewiesen. Allerdings konnten bei einer genauen Analyse durch Clemens Winkler nur 75 % Silber und 18 % Schwefel gefunden werden, 7 % blieben unbekannt. Er war bald überzeugt, dass der Unterschied durch ein bislang unbekanntes Element verursacht sein musste, konnte es aber zunächst nicht isolieren. Winkler versuchte monatelang, das Mineral mit Natriumcarbonat und Schwefel zu schmelzen, die entstandenen löslichen Verbindungen in Wasser zu lösen und anschließend durch Ansäuern mit Salzsäure eine fraktionierte Kristallisation durchzuführen. Er fand jedoch im Niederschlag nur Schwefel sowie die aus begleitenden Mineralen stammenden Arsen und Antimon. Beim Eindampfen der Lösung blieb nur Natriumchlorid zurück. Schließlich fügte er zu dieser Lösung eine große Menge Salzsäure hinzu, wodurch auf einmal ein weißer Niederschlag ausfiel, den er als das Sulfid des gesuchten Elementes identifizierte. Anschließend calcinierte er das Sulfid zum Oxid und reduzierte es mit Wasserstoff zum Element in Form eines grauen Pulvers.[14][17]

Nachdem Winkler zunächst Neptunium nach dem Planeten Neptun als Namen erwogen hatte, verwarf er diesen wieder, da Hans Rudolph Hermann ein vermutetes, dem Niob ähnliches Element so benannt hatte[18][17], und nannte das neue Element nach Deutschland Germanium.[19] Die Entdeckung wurde von Paul Émile Lecoq de Boisbaudran spektroskopisch bestätigt.[20] Direkt nach Entdeckung des Germaniums und mit wenigen Informationen begannen verschiedene Forscher, über die Position des Elementes im noch nicht gänzlich akzeptierten Periodensystem zu spekulieren. So vermutete Winkler selbst zunächst, es würde sich um Eka-Antimon handeln, Mendelejew zog die Möglichkeit Eka-Cadmium in Betracht. Als schließlich Eigenschaften wie die Atommasse bestimmt waren, zeigte sich, dass diese sehr gut zu den von Mendelejew für Eka-Silicium vorhergesagten Eigenschaften passten. So wurden eine Atommasse von 72,32, ein spezifisches Gewicht von 5,47 und ein vierwertiges Germaniumchlorid mit einem Siedpunkt von 86 °C gefunden. Die Entdeckung des Germaniums war daher ein wichtiger Schritt zur allgemeinen Anerkennung des Periodensystems in der Chemie.[14][17]

Winklers präparativen Schwierigkeiten bei der Gewinnung von Germaniums lagen zum einen an der ungewöhnlichen Löslichkeit von Germanium(IV)-sulfid (gut in Wasser und verdünnten Säuren, schlecht in konzentrierten Säuren), zum anderen am leicht flüchtigen Germanium(IV)-chlorid, das beim Eindampfen aus der Lösung entwich.[14][17]

Erstmals verwendet wurde Germanium für Punktkontakte in Schottky-Dioden, die im Zweiten Weltkrieg in Radar-Empfängern eingesetzt wurden. Bald darauf wurde es essentiell in der Herstellung von Transistoren und Gammastrahlen-Detektoren.[14]

Vorkommen

Renierit

Germanium ist weit verbreitet, kommt aber nur in sehr geringen Konzentrationen vor. Der Clarke-Wert, also der Durchschnittsgehalt in der Erdkruste, beträgt etwa 1,5 g/t. In der Natur kommt es meist in Form von Sulfiden bzw. Thiogermanaten vor und wird oft als Begleiter in Kupfer- und Zinkerzen gefunden, unter anderem im Mansfelder Kupferschiefer.[21] Die wichtigsten Minerale sind Argyrodit (Ag8GeS6),[21] Canfieldit, Germanit (Cu6FeGe2S8)[21] und Renierit. Manche Kohlensorten, insbesondere die Wealdenkohlen, enthalten nennenswerte Mengen Germanium, die bei der Verbrennung der Kohle in die Flugasche übergehen. Die Flugaschen können bis zu 1 % Germanium enthalten.[22][23] Einige Pflanzen reichern Germanium an.[23]

Gewinnung und Herstellung

Laut United States Geological Survey lag die Jahresproduktion 2014 bei geschätzten 165 t, davon 120 t in China, 2020 betrug die Raffinerieproduktion von Germanium weltweit ca. 140 t, wobei die USA ihre Produktionsmengen als Geschäftsgeheimnis nicht veröffentlichen.[24] Der Preis für 1 kg Germanium betrug 2021 ca. 1315 USD,[24] 2023 1392 USD und 2024 2100 USD.[25] Laut EU betrug der Preis 2003 300 USD je kg und stieg bis 2009 auf 1000 USD.[26]

Zur Darstellung von Germanium sind insbesondere die Germaniumoxid (GeO2) enthaltenden Rauchgase der Zinkerzaufbereitung geeignet. Angereichert wird das Germanium aus dem Rauchgas durch das Lösen des Flugstaubs in Schwefelsäure. Nach Fällung des gelösten GeO2 und ZnO erfolgt die weitere Aufarbeitung durch Destillation der Metallchloride. Die Hydrolyse führt dann wieder zum Oxid, welches mit Wasserstoff zum Germanium reduziert wird. Die Darstellung von hochreinem Germanium kann z. B. durch das Zonenschmelzverfahren erfolgen.[21]

Die weltweiten Produktionsmengen verteilten sich wie folgt:

Land2019[27]2020[24]
(Raffinerieproduktion in Tonnen)
China Volksrepublik Volksrepublik China8695
Russland Russland55
Vereinigte Staaten Vereinigte Staatenunbek.unbek.
Andere Länder4040
Gesamt (gerundet)131140

Eigenschaften

Elementares Germanium

Germanium steht im Periodensystem in der Serie der Halbmetalle. Elementares Germanium ist sehr spröde und an der Luft bei Raumtemperatur sehr beständig. Erst bei starkem Glühen in einer Sauerstoff-Atmosphäre wird es zu Germanium(IV)-oxid (GeO2) oxidiert. GeO2 ist dimorph und wird bei 1033 °C von der Rutil-Modifikation (CN = 6) in die β-Quarz-Struktur (CN = 4) überführt. In Pulverform kann es leicht entzündet werden und brennt nach Entfernen der Zündquelle weiter. In kompakter Form ist es nicht brennbar.

Germanium kann zwei- oder vierwertig sein. Germanium(IV)-Verbindungen sind am beständigsten. Von Salzsäure, Kalilauge und verdünnter Schwefelsäure wird Germanium nicht angegriffen. In alkalischen Wasserstoffperoxid-Lösungen, konzentrierter heißer Schwefelsäure und konzentrierter Salpetersäure wird es dagegen unter Bildung von Germaniumdioxidhydrat aufgelöst. Gemäß seiner Stellung im Periodensystem steht es in seinen chemischen Eigenschaften zwischen Silicium und Zinn.

Germanium zeigt als einer von wenigen Stoffen eine Dichteanomalie. Seine Dichte in festem Zustand ist niedriger als in flüssigem. Germanium ist ein indirekter Halbleiter. Seine Bandlücke beträgt bei Zimmertemperatur ca. 0,67 eV.

Wafer aus Germanium sind erheblich zerbrechlicher als Wafer aus Silizium.

Verwendung

Elektronik

Als Halbleiter war Germanium in Einkristall-Form das führende Material in der Elektronik bis in die 1970er Jahre, vor allem zur Herstellung der ersten am Markt erhältlichen Dioden und Bipolartransistoren, bis es von Silicium in diesen Bereichen verdrängt wurde. Anwendungen finden sich in der Hochfrequenztechnik (z. B. als Siliciumgermanium-Verbindungshalbleiter) und Detektortechnologie (z. B. als Röntgendetektor). Für Solarzellen aus Galliumarsenid (GaAs) werden zum Teil Wafer aus Germanium als Trägermaterial verwendet. Die Gitterkonstante von Germanium ist der von Galliumarsenid sehr ähnlich, so dass GaAs epitaktisch auf Germanium-Einkristallen aufwachsen kann.

Gläser und Fasern

Germanium wird für Infrarotoptiken in Form von Fenstern und Linsen aus monokristallinem Germanium eingesetzt. Einsatzgebiete für Germaniumlinsen sind Nachtsichtgeräte und Wärmebildkameras. Die früher übliche Verwendung als Fokussierlinse für die Laser-Materialbearbeitung mittels Kohlendioxid-Lasern sowie deren Austrittsfenster ist jedoch durch Zinkselenid abgelöst worden. Mit seinem hohen Brechungsindex von etwa 4 wird einkristallines Germanium auch in der FTIR/ATR-Spektroskopie (ATR-Infrarotspektroskopie) eingesetzt.[28][29] Optische Gläser mit Infrarotdurchlässigkeit (Chalkogenidglas für Lichtwellenleiter) sind eine weitere Anwendung für Germanium als Bestandteil.

Eine weitere Verwendung ist die Herstellung von Lichtwellenleitern: mit Hilfe von Germaniumtetrachlorid wird bei der chemischen Gasphasenabscheidung eine Anreicherung von Germaniumdioxid im inneren Faserkern erzeugt, wodurch im Vergleich zum Fasermantel ein höherer Brechungsindex im Kern gewährleistet wird.[30]

Bei der Polyester-Herstellung kommt Germaniumdioxid als Katalysator bei der Fertigung von Polyesterfasern und -granulaten zum Einsatz, speziell für PET-Flaschen.[31]

Nuklearmedizin und Kerntechnik

68Ge wird beim Gallium-68-Generator als Mutternuklid zur Herstellung von Gallium-68 verwendet. Ebenso findet 68Ge als Quelle zur Detektorkalibration bei der Positronen-Emissions-Tomographie Anwendung.[32]

Als hochreiner Einkristall wird Germanium als Strahlendetektor eingesetzt.

Germanium in Nahrungsergänzungsmitteln

Die Substanz Bis(carboxyethyl)germaniumsesquioxid (Ge-132) ist als Nahrungsergänzungsmittel zur Anwendung bei einer Reihe von Erkrankungen einschließlich Krebs, chronischem Müdigkeitssyndrom, Immunschwäche,[33] AIDS, Bluthochdruck, Arthritis und Lebensmittelallergien angepriesen worden. Positive Wirkungen auf den Krankheitsverlauf wurden bisher wissenschaftlich nicht nachgewiesen.

Gemäß der europäischen Richtlinie 2002/46/EG zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über Nahrungsergänzungsmittel soll Germanium nicht in Nahrungsergänzungsmitteln verwendet werden. In vielen Ländern der EU, die ihre nationalen Rechtsvorschriften bereits angeglichen haben, so auch Deutschland und Österreich, ist daher der Zusatz von Germanium als Mineralstoffquelle in Nahrungsergänzungsmitteln nicht erlaubt.

Die zuständigen Behörden warnen ausdrücklich vor dem Verzehr von Ge-132, da schwere Gesundheitsschäden und Todesfälle nicht auszuschließen sind.[34][35]

Arzneiliche Verwendung von Germanium

Eine therapeutische Wirksamkeit der antineoplastischen Substanz Spirogermanium bei Krebserkrankungen wurde nicht nachgewiesen. Zugelassene Fertigarzneimittel mit dem Wirkstoff Spirogermanium gibt es nicht. In Deutschland gelten germaniumhaltige Arzneimittelanfertigungen (Rezepturen), abgesehen von homöopathischen Verdünnungen ab D4, als bedenklich. Ihre Herstellung und ihre Abgabe sind daher verboten.[36] Germanium metallicum gibt es in Form homöopathischer Mittel. Als Bestandteil homöopathischer Zubereitungen wird di-Kalium-Germanium-citrat-lactat beschrieben.[37]

Physiologie

Germanium und seine Verbindungen weisen eine relative geringe akute Toxizität auf. Spuren von Germanium sind in den folgenden Nahrungsmitteln enthalten: Bohnen, Tomatensaft, Austern, Thunfisch und Knoblauch. Es ist nach dem Stand der Wissenschaft kein essentielles Spurenelement. Es ist keine biologische Funktion für Germanium bekannt. Es sind keine Germanium-Mangelerkrankungen bekannt.[38]

Toxizität

Gesundheitsschäden durch Germanium traten bei Menschen mehrfach[39][40][41] nach längerer Einnahme von Germaniumverbindungen als Nahrungsergänzungsmittel auf. Dabei kommt es zu Funktionsstörungen der Niere bis hin zum (irreversiblen[39]) Nierenversagen,[40] das für den Patienten letal sein kann.[42] Periphere Neuropathie und andere neurologische Schäden als Folgeerkrankung sind ebenfalls berichtet.[43][41]

Aus Tierversuchen ist bekannt, dass Germanium eine geringe akute orale Toxizität hat. Bei Ratten liegt der LD50-Wert (die Dosis, bei der die Hälfte der Versuchstiere sterben) bei 3700 mg pro Kilogramm Körpergewicht.[44]

Nach derzeit vorliegenden Daten aus Tierversuchen ist Germanium nicht fruchtschädigend oder kanzerogen.[45]

Der Mechanismus der Toxizität von Germanium ist noch nicht vollständig geklärt. Spezifische pathologische Effekte an den Mitochondrien von verschiedenen Zellen wurden jedoch beobachtet.[46][47]

Wechselwirkungen

Es wird ebenfalls diskutiert, ob Germanium evtl. Wechselwirkungen mit Silicium im Knochen-Metabolismus zeigt. Es kann die Wirkung von Diuretika blockieren und die Aktivität einer Reihe von Enzymen herabsetzen bzw. blockieren, wie Dehydrogenasen. Im Tierversuch zeigen Mäuse eine erhöhte Hexabarbital-induzierte Schlafdauer, wenn sie zusätzlich mit Germaniumverbindungen behandelt wurden. Dies lässt darauf schließen, dass die Cytochrom-P450-Aktivität ebenfalls eingeschränkt wird. Es gibt tierexperimentelle Berichte über organische Germaniumverbindungen, welche das Entgiftungsenzym Glutathion-S-Transferase blockieren. Konkret wirkten dabei dreifache Kohlenstoff-Germanium-, Kohlenstoff-Zinn- oder Kohlenstoff-Blei-Bindungen vergleichsweise ähnlich als Inhibitoren der Glutathion-S-Aryltransferase-Aktivität in der Rattenleber.[48]

Bioverfügbarkeit und Metabolismus

Germanium wird bei oraler Aufnahme sehr leicht vom Körper aufgenommen. Es verteilt sich dabei über das gesamte Körpergewebe, vornehmlich in den Nieren und der Schilddrüse.[49][50] Organogermane akkumulieren dabei im Gegensatz zu anorganischen Germaniumverbindungen nicht im menschlichen Körper. Allerdings gibt es nur wenige Studien über den Germanium-Metabolismus.

Es wird im Wesentlichen über den Urin ausgeschieden.[49] Ausscheidung über Galle und Fäzes findet ebenso statt.

Verbindungen

Germanium bildet Ge(II)- u. beständigere Ge(IV)-Verbindungen, nur wenige besitzen technische Bedeutung.

Von den Germaniumhalogeniden sind ebenfalls Ge(II)- u. Ge(IV)-Vertreter bekannt. Germaniumtetrachlorid, (GeCl4), eine Flüssigkeit mit einem Siedepunkt von 83 °C, bildet sich bei Einwirkung von Chlorwasserstoff auf Germaniumoxide und ist ein wichtiges Zwischenprodukt bei der Germanium-Gewinnung. Hochreines GeCl4 wird bei der Herstellung von Lichtwellenleitern aus Quarzglas eingesetzt, um auf der Innenseite der Quarzfasern eine hochreine Germanium(IV)-oxid Schicht zu erzeugen. Zur Erzeugung von hochreinen Germaniumschichten kann auch die Disproportionierung von Germanium(II)-iodid unter Bildung von Germanium und Germanium(IV)-iodid eingesetzt werden:

Germanate sind Verbindungen des Germaniums, die sich von dessen Oxid ableiten. In fast allen Germanium-haltigen Mineralien liegt das Germanium als Germanat vor.

Germane werden die Wasserstoffverbindungen des Germaniums genannt, die eine homologe Reihe verschieden langer Kettenmoleküle bilden. Monogerman (Germaniumhydrid, GeH4) ist ein Gas und wird in der Halbleiterindustrie zur Epitaxie und zum Dotieren verwendet.

Literatur

Wiktionary: Germanium – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Commons: Germanium – Album mit Bildern, Videos und Audiodateien

Einzelnachweise

  1. a b Harry H. Binder: Lexikon der chemischen Elemente. S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3.
  2. Die Werte für die Eigenschaften (Infobox) sind, wenn nicht anders angegeben, aus www.webelements.com (Germanium) entnommen.
  3. IUPAC, Standard Atomic Weights Revised 2013.
  4. Manjeera Mantina, Adam C. Chamberlin, Rosendo Valero, Christopher J. Cramer, Donald G. Truhlar: Consistent van der Waals Radii for the Whole Main Group. In: J. Phys. Chem. A. 113, 2009, S. 5806–5812, doi:10.1021/jp8111556.
  5. a b c d e Eintrag zu germanium in Kramida, A., Ralchenko, Yu., Reader, J. und NIST ASD Team (2019): NIST Atomic Spectra Database (ver. 5.7.1). Hrsg.: National Institute of Standards and Technology, Gaithersburg, MD. doi:10.18434/T4W30F (physics.nist.gov/asd). Abgerufen am 11. Juni 2020.
  6. a b c d e Eintrag zu germanium bei WebElements, www.webelements.com, abgerufen am 11. Juni 2020.
  7. N. N. Greenwood, A. Earnshaw: Chemie der Elemente. 1. Auflage. VCH, Weinheim 1988, ISBN 3-527-26169-9, S. 482.
  8. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Properties of the Elements and Inorganic Compounds, S. 4-142 – 4-147. Die Werte dort sind auf g/mol bezogen und in cgs-Einheiten angegeben. Der hier angegebene Wert ist der daraus berechnete maßeinheitslose SI-Wert.
  9. a b Yiming Zhang, Julian R. G. Evans, Shoufeng Yang: Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks. In: Journal of Chemical & Engineering Data. 56, 2011, S. 328–337, doi:10.1021/je1011086.
  10. Ludwig Bergmann, Clemens Schaefer, Rainer Kassing: Lehrbuch der Experimentalphysik. Band 6: Festkörper. 2. Auflage. Walter de Gruyter, Berlin 2005, ISBN 3-11-017485-5, S. 361.
  11. J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110, doi:10.1088/0954-3899/40/3/035110
  12. a b Eintrag zu Germanium, Pulver in der GESTIS-Stoffdatenbank des IFA, abgerufen am 10. Januar 2025. (JavaScript erforderlich)
  13. Klaus Volke: Clemens Winkler– zum 100. Todestag. In: Chemie in unserer Zeit. Band 38, Nr. 5, Oktober 2004, S. 360, doi:10.1002/ciuz.200490078.
  14. a b c d e Mary Virginia Orna, Marco Fontani: Mini-Biography of Germanium (Eka-Silicon). In: Carmen J. Giunta, Vera V. Mainz, Gregory S. Girolami (Hrsg.): 150 Years of the Periodic Table. Springer, 2021, ISBN 978-3-030-67910-1, S. 242–248.
  15. Dmitri Mendelejew: Die periodische Gesetzmäßigkeit der chemischen Elemente. (übersetzt von Felix Wreden) In: Liebigs Annalen. 8. Supplementband, 1871, S. 133–239 (genauer S. 200–204, Online in der HathiTrust digital library).
  16. A. Weisbach: Argyrodit, ein neues Silbererz. In: Neues Jahrbuch für Mineralogie, Geologie und Palaontologie. Band 2, 1886, S. 67–71 (PDF 222,3 kB)
  17. a b c d O. Brunck: Clemens Winkler. In: Berichte der deutschen chemischen Gesellschaft. Band 39, Nr. 4, 1906, S. 4491–4548, doi:10.1002/cber.190603904164.
  18. R. Hermann: Fortgesetzte Untersuchungen über die Verbindungen der Metalle der Tantalgruppe, so wie über Neptunium, ein neues Metall. In: Journal für praktische Chemie. 1877, Band 15, S. 105–150 (online).
  19. Clemens Winkler: Germanium, Ge, ein neues, nichtmetallisches Element. In: Berichte der deutschen chemischen Gesellschaft. Band 19, Nr. 1, 1886, S. 210–211, doi:10.1002/cber.18860190156.
  20. Paul Émile Lecoq de Boisbaudran: Sur le poids atomique et sur le spectrum du germanium. In: Comptes Rendus. Band 102, 1886, S. 1291–1295, (Digitalisat auf Gallica).
  21. a b c d Wiberg, Egon; Wiberg, Nils: Lehrbuch der anorganischen Chemie. 102., stark umgearbeitete und verb. Auflage. De Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 1003.
  22. Chemikerausschuß der Gesellschaft Deutscher Metallhütten- und Bergleute e. V.: Germanium. In: Betriebsanalysen. Springer Berlin Heidelberg, Berlin, Heidelberg 1961, ISBN 978-3-642-85580-1, S. 313–319, doi:10.1007/978-3-642-85579-5_14 (springer.com [abgerufen am 9. April 2024]).
  23. a b Sigeki Hara, Nanao Hayashi, Sigeo Hirano, Xi-Ning Zhong, Shigejiro Yasuda, Hisashi Komae: Notes: Determination of Germanium in Some Plants and Animals. In: Zeitschrift für Naturforschung C. Band 45, Nr. 11–12, 1. Dezember 1990, S. 1250–1252, doi:10.1515/znc-1990-11-1227.
  24. a b c U.S. Geological Survey, Mineral Commodity Summaries 2022: Germanium
  25. U.S. Geological Survey, 2025, Mineral commodity summaries 2025, S. 80
  26. Germanium. In: setis.ec.europa.eu. Archiviert vom Original (nicht mehr online verfügbar) am 5. März 2016; abgerufen am 5. September 2015 (englisch).
  27. U.S. Geological Survey, Mineral Commodity Summaries 2021: GERMANIUM.
  28. Was ist Infrarot- und FT-IR-Spektroskopie? Wo ist der Unterschied? Firmenschrift „FT-IR Spektroskopie Grundlagen“ der Firma Bruker, abgerufen am 14. Juli 2021
  29. Peter Larkin: Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Elsevier, 2017, ISBN 978-0-12-804209-0, S. 44 (books.google.com).
  30. Jürgen Feßmann, Helmut Orth: Angewandte Chemie und Umwelttechnik für Ingenieure: Handbuch für Studium und betriebliche Praxis. ecomed-Storck, 2002, ISBN 3-609-68352-X, S. 54 (books.google.com).
  31. Joseph R. Davis, A. S. M. International: ASM Materials Engineering Dictionary. ASM International, 1992, ISBN 1-61503-173-1, S. 187 (books.google.com).
  32. Produktkatalog der Fa. Eckert & ZieglerS. 15. (Memento vom 3. Januar 2007 im Internet Archive)
  33. Bundesamt für Sicherheit im Gesundheitswesen, AGES PharmMed:„Nahrungsergänzungsmittel“ mit toxischer Wirkung. (Memento vom 20. Juli 2012 im Webarchiv archive.today)
  34. Bundesinstitut für Risikobewertung: BgVV warnt vor dem Verzehr von ‚Germanium-132-Kapseln‘ der österreichischen Firma Ökopharm. 8. September 2000.
  35. Österreichische Agentur für Gesundheit und Ernährungssicherheit (AGES) warnt:Produkt enthält gesundheitsschädliche Konzentration an Germanium (Memento vom 28. Juli 2013 im Internet Archive) 17. Oktober 2008.
  36. Arzneimittelkommission der deutschen Apotheker: Bedenkliche Rezepturarzneimittel (PDF; 187 kB).
  37. Germanium-Citrate-Lactat bei DailyMed, abgerufen am 16. September 2012.
  38. A. G. Schauss: Nephrotoxicity and neurotoxicity in humans from organogermanium compounds and germanium dioxide. In: Biological Trace Element Research. Band 29, Nr. 3, Juni 1991, S. 267–280, doi:10.1007/BF03032683, PMID 1726409.
  39. a b Tubulointerstitial nephropathy persisting 20 months after discontinuation of chronic intake of germanium lactate citrate. PMID 8488824.
  40. a b Germanium poisoning: clinical symptoms and renal damage caused by long-term intake of germanium. PMID 1650857.
  41. a b Nephrotoxicity and neurotoxicity in humans from organogermanium compounds and germanium dioxide. PMID 1726409.
  42. Hazard assessment of germanium supplements. doi:10.1006/rtph.1997.1098.
  43. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (Hrsg.): Germanium und Germaniumdioxid. Mai 2018, S. 7 ff. (baua.de [PDF; 447 kB; abgerufen am 4. August 2019]).
  44. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (Hrsg.): Germanium und Germaniumdioxid. Mai 2018, S. 7 (baua.de [PDF; 447 kB; abgerufen am 4. August 2019]).
  45. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (Hrsg.): Germanium und Germaniumdioxid. Mai 2018, S. 14 ff. (baua.de [PDF; 447 kB; abgerufen am 4. August 2019]).
  46. Germanium dioxide induces mitochondria-mediated apoptosis in Neuro-2A cells. doi:10.1016/j.neuro.2006.05.018.
  47. The pathogenesis of experimental model of mitochondrial myopathy induced by germanium dioxide. PMID 12899328.
  48. Roy A. Henry, Keith H. Byington: Inhibition of glutathione-S- aryltransferase from rat liver by organogermanium, lead and tin compounds. In: Biochemical Pharmacology. Band 25, Nr. 20, 1976, S. 2291–2295, doi:10.1016/0006-2952(76)90012-5.
  49. a b Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (Hrsg.): Germanium und Germaniumdioxid. Mai 2018, S. 4 ff. (baua.de [PDF; 447 kB; abgerufen am 18. Januar 2020]).
  50. BgVV warnt vor dem Verzehr von ‚Germanium-132-Kapseln‘ der österreichischen Firma Ökopharm. In: Bundesinstitut für Risikobewertung. 8. September 2000, abgerufen am 18. Januar 2020.

Auf dieser Seite verwendete Medien

GHS-pictogram-silhouete.svg
Globales Harmonisiertes System zur Einstufung und Kennzeichnung von Chemikalien (GHS) Piktogramm für gesundheitsgefährdende Stoffe.
Renierit.JPG
Autor/Urheber: Alchemist-hp (talk) (www.pse-mendelejew.de), Lizenz: CC BY-SA 2.0 de
Reniérit (Cu,Zn)11Fe4(Ge,As)2S16, Germanium Mineral. Fundort Mine de Kipushi, Provinz Shaba, Zaire
Winkler Clemens.jpg
Picture of German chemist Clemens Winkler (who died in 1904)
Germanium.jpg
Autor/Urheber: by Gibe (selfmade), Lizenz: CC BY-SA 3.0
elementares Germanium
Periodensystem Mendelejews.jpg
Graphik aus: Mendelejeff: Die periodische Gesetzmäßigkeit der Elemente. In: Annalen der Chemie und Pharmacie. VIII. Supplementband 1871, S. 133–229