Nebel (Astronomie)

Adlernebel (Hubble)

Als Nebel (ahd. nebul, verwandt mit lateinisch nebula und altgriechisch νεφέληnephélē sowie νέφοςnéphos ‚Wolke‘) oder Nebelflecke wurden in der Astronomie ursprünglich alle leuchtenden flächenhaften Objekte an der Himmelskugel bezeichnet. Dazu gehörten auch Sternnebel, also Galaxien (Spiralnebel) und Sternhaufen, da sie bei geringer Auflösung im Teleskop oder mit bloßem Auge als Nebelflecke erscheinen. Einige der Eigennamen solcher Objekte haben sich gehalten, so z. B. der Andromedanebel M 31 oder der Dreiecksnebel M 33.

Heute wird die Bezeichnung kosmischer Nebel jedoch fast ausschließlich für interstellare Wolken aus Staub und Gas verwendet, die je nach Art ihres Leuchtens in verschiedene Kategorien eingeteilt werden: Gasnebel, die Licht emittieren oder reflektieren, und Dunkelnebel, die Licht absorbieren. Für Galaxien hingegen, die früher als Spiralnebel bezeichnet wurden, ist die Verwendung nicht mehr üblich.

Das erste systematische Verzeichnis nebeliger Himmelsobjekte ist der von Charles Messier 1774 erstellte Messier-Katalog. Ein weiteres wichtiges Verzeichnis ist der New General Catalogue (NGC) von Johan Ludvig Emil Dreyer (1888). Beide enthalten neben Gas- und Staubnebeln auch Galaxien und Sternhaufen und werden heute noch eingesetzt.

Wichtigste Nebelarten

Ebenfalls als Nebel wird in der Astronomie der Sonnennebel bezeichnet, die Gaswolke, aus der sich vermutlich unser Sonnensystem gebildet hat. Demgegenüber werden die Sternhaufen heute nicht mehr als Nebel bezeichnet, auch wenn sie in kleinen Fernrohren als solche erscheinen. Veraltet ist der Begriff „Nebelflucht“, der die mit der Entfernung zunehmende Fluchtbewegung von Galaxien beschreibt (die früher als „Nebel“ bezeichnet wurden).

Orionnebel – Aufnahme von 1883 von Andrew Ainslie Common
Obiges Foto mit den visuell sichtbaren Konturen (180° gedreht)

Beobachtung

Visuell sind die Nebelobjekte nur eingeschränkt beobachtbar, weil die Flächenhelligkeit für unsere Augen oft zu gering ist. Hilfreich ist dabei die Methode des indirekten Sehens, bei der man das Objekt nicht direkt fixiert, sondern knapp daran vorbeisieht.

Die Astrofotografie kann hingegen auch sehr lichtschwache Nebel abbilden, weil die Fotoplatte bzw. der CCD-Sensor sehr lange belichtet werden kann.

Da in Büchern und Bildbänden heute meist nur die besten, von großen Teleskopen aufgenommenen Fotos zu sehen sind, sei an den beiden rechtsstehenden Bildern der Unterschied von fotografischer und visueller Beobachtung gezeigt. Das Foto von 1883 entstand auf einem mittelgroßen Instrument. Bei noch größerer Apertur und gegenüber einer Farbaufnahme wäre die Differenz noch wesentlich größer.

Zur Geschichte der Nebel-Fotografie

Die Entwicklung der Fotografie begann zwar schon 1838 durch Louis Daguerre, war aber zunächst auf helle Objekte beschränkt. Die erste Aufnahme eines hellen Sterns gelang 1850 am Harvard Observatory mit einer Belichtungszeit von 100 Sekunden – für mehr reichte die Chemie der fotografischen Emulsion und die Nachführung des Fernrohrs nicht.

In den folgenden Jahrzehnten wurde die junge Astrofotografie zwar für Doppelsterne, Planeten und die Spektrografie eingesetzt, doch die erste Aufnahme eines Gasnebels -- des bekannten Orionnebels M42 -- gelang erst 1880 dem US-Astronomen Henry Draper auf einer neuartigen Bromsilber-Emulsion; bei weniger hellen Objekten war deren Flächenhelligkeit noch zu gering. Vier Jahre später wurde auch der Andromeda„nebel“ erfolgreich abgelichtet, der sich jedoch später nicht als Nebel, sondern als Galaxie erwies.

Die wichtigsten Fortschritte in der Nebelfotografie gelangen Max Wolf auf der von ihm gegründeten Landessternwarte Heidelberg-Königstuhl und Edward Barnard auf dem Mount Wilson-Observatorium in Kalifornien. Wolf entdeckte zahlreiche helle und dunkle Nebel in der sommerlichen Milchstraße, deren genaue Struktur 1905 von Barnard anhand von 480 präzis nachgeführten Fotos erforscht wurde. Nach Barnard wurden auch an die 100 von ihm entdeckten Dunkelnebel benannt, wie etwa Barnard 68.

Ab den 1920er-Jahren verdankt sich der Fortschritt

In den 1930ern wurden die ersten Bildbände mit Schwarz-Weiß-Fotografien vieler Gasnebel und Galaxien gedruckt, im deutschen Sprachraum z. B. von Robert Henseling Der neu entdeckte Himmel (Berlin 1935–1939). Nach dem Zweiten Weltkrieg wurde die Farbfotografie auch in der Astronomie zum Standard -- allerdings nicht "direkt", sondern durch Überlagerung von meist drei Filteraufnahmen in verschiedenen Farben. Diese Technik wurde u. a. durch das Hubble-Weltraumteleskop perfektioniert. Zu den bekanntesten terrestrischen Astrofotografen zählt heute der anglo-australische Wissenschaftler David Malin, dessen so populäre Bildbände inzwischen Millionenauflagen erreichen und der Himmelskunde viele Amateure zuführten -- die ihrerseits verschiedene Techniken der Astrofotografie weiterentwickeln.

Seit den 1990er-Jahren hat nun die Entwicklung und Verfeinerung der CCD-Sensoren dazu geführt, dass die traditionellen Fotoplatten stark an Bedeutung verlieren und die meisten Fachfirmen ihre Herstellung eingestellt haben. Wesentlich wurde inzwischen auch die Entwicklung der fotografischen CMOS-Technik.

Siehe auch

Listen

Literatur

  • James B. Kaler: Kosmische Wolken. Materie-Kreisläufe in der Milchstraße. Spektrum Akademischer Verlag, 1998.
Commons: Nebel – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Nebel – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Auf dieser Seite verwendete Medien

Orionnebel 1883 +visuelleKonturen,Geof2014.jpeg
Autor/Urheber: Geof (Diskussion) 17:50, 19. Okt. 2014 (CEST), Lizenz: Copyrighted free use
Orionnebel_(Foto_A.Common_1883) mit den visuell sichtbaren Konturen (8-Zoll-Spiegelteleskop, Stadtrand), Geof 19.10.2014
Eaglefairy hst big.jpg
The Fairy of Eagle Nebula.

Appearing like a winged fairy-tale creature poised on a pedestal, this object is actually a billowing tower of cold gas and dust rising from a stellar nursery called the Eagle Nebula. The soaring tower is 9.5 light-years or about 90 trillion kilometres high, about twice the distance from our Sun to the next nearest star.

Stars in the Eagle Nebula are born in clouds of cold hydrogen gas that reside in chaotic neighbourhoods, where energy from young stars sculpts fantasy-like landscapes in the gas. The tower may be a giant incubator for those newborn stars. A torrent of ultraviolet light from a band of massive, hot, young stars [off the top of the image] is eroding the pillar.

The starlight also is responsible for illuminating the tower's rough surface. Ghostly streamers of gas can be seen boiling off this surface, creating the haze around the structure and highlighting its three-dimensional shape. The column is silhouetted against the background glow of more distant gas.

The edge of the dark hydrogen cloud at the top of the tower is resisting erosion, in a manner similar to that of brush among a field of prairie grass that is being swept up by fire. The fire quickly burns the grass but slows down when it encounters the dense brush. In this celestial case, thick clouds of hydrogen gas and dust have survived longer than their surroundings in the face of a blast of ultraviolet light from the hot, young stars.

Inside the gaseous tower, stars may be forming. Some of those stars may have been created by dense gas collapsing under gravity. Other stars may be forming due to pressure from gas that has been heated by the neighbouring hot stars.

The first wave of stars may have started forming before the massive star cluster began venting its scorching light. The star birth may have begun when denser regions of cold gas within the tower started collapsing under their own weight to make stars.

The bumps and fingers of material in the centre of the tower are examples of these stellar birthing areas. These regions may look small but they are roughly the size of our solar system. The fledgling stars continued to grow as they fed off the surrounding gas cloud. They abruptly stopped growing when light from the star cluster uncovered their gaseous cradles, separating them from their gas supply.

Ironically, the young cluster's intense starlight may be inducing star formation in some regions of the tower. Examples can be seen in the large, glowing clumps and finger-shaped protrusions at the top of the structure. The stars may be heating the gas at the top of the tower and creating a shock front, as seen by the bright rim of material tracing the edge of the nebula at top, left. As the heated gas expands, it acts like a battering ram, pushing against the darker cold gas. The intense pressure compresses the gas, making it easier for stars to form. This scenario may continue as the shock front moves slowly down the tower.

The dominant colours in the image were produced by gas energized by the star cluster's powerful ultraviolet light. The blue colour at the top is from glowing oxygen. The red colon in the lower region is from glowing hydrogen. The Eagle Nebula image was taken in November 2004 with the Advanced Camera for Surveys aboard the NASA/ESA Hubble Space Telescope.
Orion-Nebula A A Common.jpg
This is a scan of the 1883 photo of the Orion Nebula made by Andrew Ainslie Common (1841–1903) for which he won the Gold Medal of the Royal Astronomical Society in 1884.