Dieser Artikel wurde in die Qualitätssicherung der Redaktion Physik eingetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.
Mathematische Beschreibung der eindimensionalen, isentropen Gasströmung
Gesetzmäßigkeiten und Annahmen
Wenn die Annahmen der Stromfadentheorie erfüllt sind, kann eine Strömung als eindimensional beschrieben werden. Aufgrund der relativ geringen Dichte von Gasen kann in der Regel die Wirkung der Gravitation vernachlässigt werden. Es wird für die mathematische Beschreibung des Weiteren angenommen, dass dem Gas keine Wärme zu- oder abgeführt wird und keine Reibungsverluste auftreten. Die Entropie ist damit konstant. Und es gilt die Isentropenbeziehung:
Der Energieerhaltungssatz kann wie folgt formuliert werden und sagt aus, dass die Summe aus kinetischer Energie und Enthalpie längs des Stromfadens konstant ist.
ist konstant
Es gilt die Kontinuitätsgleichung, welche ausdrückt, dass keine Masse verloren geht. Der Massenstrom längs des Stromfadens ist konstant.
Damit stehen vier Gleichungen zur Verfügung, um die vier Variablen (Geschwindigkeit u, Druck p, Temperatur T, Dichte ρ) eindeutig zu beschreiben. Mit einer mathematischen Umformung lassen sich die variablen Zustandsgrößen der Strömung als dimensionslose Beziehungen ausdrücken. Dabei wird Druck, Temperatur und Dichte auf die Ruhegrößen bezogen (Index t). Die Ruhegrößen beschreiben den Zustand, der sich einstellt, wenn die Strömung verlustfrei bis zum Stillstand verzögert würde. Bei einer Strömung, die aus einem großen Druckbehälter startet, sind Behälterdruck, -temperatur und -dichte die Ruhegrößen (Verlustfreiheit vorausgesetzt).
Die Geschwindigkeit kann nicht auf den Ruhezustand bezogen werden (Division durch Null), aber als MachzahlMa und LavalzahlM* dargestellt werden. Dazu wird die Schallgeschwindigkeitc herangezogen.
Dimensionslose Beziehungen
Die angegebenen dimensionslosen Größen sind Ähnlichkeitskennzahlen und können wie folgt ineinander umgerechnet werden.