Fußpunktdreieck

Dreieck ABC (rot), Lote vom Punkt P auf die Seiten (grün), Fußpunktdreieck von P (blau)

Fußpunktdreieck ist ein Begriff aus der Dreiecksgeometrie. Sind ein Dreieck ABC und ein Punkt P gegeben, so ist das Fußpunktdreieck von P durch die Fußpunkte der drei Lote von P auf die (gegebenenfalls verlängerten) Dreiecksseiten gegeben. Liegt P auf dem Umkreis von ABC, so entartet das Fußpunktdreieck zu einer Strecke, die auf der simsonschen Geraden liegt.

Ist der gegebene Punkt P der Höhenschnittpunkt des Dreiecks, so spricht man vom Höhenfußpunktdreieck.

Die Seitenlängen eines Fußpunktdreiecks lassen sich aus den Seitenlängen des ursprünglichen Dreiecks, den Abständen von dessen Eckpunkten zum Punkt P und dem Radius r des Umkreises berechnen. Es gilt:

Diese Beziehungen gelten auch im Falle des entarteten Dreiecks, wenn P auf dem Umkreis liegt und die entsprechenden Streckenabschnitte auf der simsonschen Geraden.

Beweis

Dreieck mit Fußpunktdreieck
Aufgrund des Satz des Thales ist der Durchmesser des Umkreises von , daher gilt nach dem Sinussatz:

Wenn das Dreieck die Winkel hat, so gilt aufgrund des erweiterten Sinussatzes:

Wendet man den Sinussatz auf die Dreiecke , und an, so gilt zudem (siehe auch Zeichnung):

Beides zusammen liefert dann die obigen Gleichungen.

Literatur

  • J. Vályi: Über Fußpunktdreiecke. In: Monatshefte für Mathematik, Band 14, Nr. 1, Dezember 1903, Springer
  • H. S. M. Coxeter, S. L. Greitzer: Geometry Revisited. MAA, 1967, S. 22–26
  • M. S. Klamkin: On Pedal Triangles. In: The Mathematics Teacher, Band 91, Nr. 6, National Council of Teachers of Mathematics, 1998, S. 513–513 (JSTOR)
  • S. G. Emslie: 2868. The Area of the Pedal Triangle. In: The Mathematical Gazette, Band 43, Nr. 346, Mathematical Association, 1959, S. 276–77 (JSTOR)
  • Roger A. Johnson: Advanced Euclidean Geometry. Dover 2007, ISBN 978-0-486-46237-0, S. 11, 135–144 (Erstveröffentlichung 1929 bei der Houghton Mifflin Company (Boston) unter dem Titel Modern Geometry)

Weblinks

Auf dieser Seite verwendete Medien

Pedal triangle properties proof2.svg
Autor/Urheber: Kmhkmh, Lizenz: CC BY 4.0
pedal triangle illustration of prrof for side length formulas
Fußpunktdreieck.svg
Autor/Urheber: Kmhkmh, Lizenz: CC BY 4.0
pedal triangle