Freiraumdämpfung

Freiraumdämpfung (FSPL, free-space path loss) in dB als Funktion der Entfernung für verschiedene Frequenzen

Die Freiraumdämpfung fasst zwei Terme der Leistungsübertragungsbilanz einer Funkverbindung zusammen: die Reduzierung der Leistungsdichte gemäß dem quadratischen Abstandsgesetz und die mit der Frequenz schrumpfende Wirkfläche einer Empfangsantenne ohne Antennengewinn.[1][2] Sie ist das einfachste Modell für Pfadverluste, berücksichtigt nicht etwaige Dämpfung durch das Ausbreitungsmedium.

Die Ergänzung der Freiraumdämpfung um den Antennengewinn und die Sendeleistung zur Bildung einer Leistungsübertragungsbilanz wird als Friis-Übertragungsgleichung bezeichnet.

Der Freiraumdämpfungsfaktor wird in der Funktechnik üblicherweise logarithmisch als Freiraumdämpfungsmaß in dB ausgedrückt.

Berechnung

Leistungsdichte auf einer Kugeloberfläche

Da der Antennengewinn von Sende- und Empfangsantenne in der Leistungsbilanz gesondert auftaucht und sich auf den (theoretischen) Isotropstrahler bezieht, wird hier dessen Richtcharakteristik angesetzt. Für den Sender bedeutet das, dass sich seine hochfrequente Leistung  gleichmäßig in alle Richtungen verteilt. Demzufolge bilden Flächen gleicher Leistungsdichte  Kugeln um den Strahler. Bei größer werdendem Kugelradius  verteilt sich die Leistung auf eine größere Fläche (Kugel) um den Strahler herum, die Leistungsdichte sinkt quadratisch:

(1)

Der am Empfangsort näherungsweise ebenen Welle entnimmt die Empfangsantenne die Leistung

(2)

Darin ist für die Wirkfläche die der isotropen Antenne einzusetzen. Sie hängt nur von der Wellenlänge ab:[3]

(3)

Setzt man (1) und (3) in (2) ein, so folgt:

Das Verhältnis

der beiden Leistungen wird als Freiraumdämpfung bezeichnet und auch als Funktion der Frequenz angegeben:[4]

mit der Lichtgeschwindigkeit .

Die Frequenzabhängigkeit der Freiraumdämpfung resultiert daraus, dass eine Leistung abgestrahlt, am Empfangsort aber eine Leistungsdichte betrachtet wird. Deswegen muss eine Flächeneinheit in die Gleichung eingehen, deren Dimension als Vielfaches der Wellenlänge angegeben werden kann (eine Folge aus Gleichung 3). Die Wellenlänge kann wiederum durch die Frequenz ausgedrückt werden, wodurch die Frequenzabhängigkeit entsteht. Die Freiraumdämpfung selbst ist dimensionslos, da die Flächeneinheit ins Verhältnis zur Kugeloberfläche gesetzt wird. Bei höherer Frequenz wird also die betrachtete Flächeneinheit  kleiner, und das Verhältnis zur Kugeloberfläche  verschlechtert sich.

Freiraumdämpfungsmaß

Das Freiraumdämpfungsmaß kann unmittelbar aus obiger Gleichung abgeleitet werden. Bei der Logarithmierung werden Exponenten zu Faktoren und Faktoren zu Summanden:

Beispiele

Mit dem Transceiver eines Kfz-Schlüssels mit (entsprechend der Wellenlänge ) und einer Leistung von etwa 4 mW (entsprechend 6 dBm) soll eine Entfernung von 5 m erreicht werden. Das Freiraumdämpfungsmaß beträgt ca. 54 dB. Antennengewinne sollen wegen der beiderseits angestrebten Rundstrahlcharakteristik nicht angesetzt werden. Damit beträgt der Empfangspegel −48 dBm entsprechend 13 nW.

Frequenz fAbstand rFreiraumdämpfung
Faktor FMaß in dB
0027 MHz300 m (RC-Modell)1,1·105051 dB
0100 MHz100 km (UKW-Rundfunk)1,8·1011112 dB
0013 GHz30 km (Richtfunk),13·1014144 dB
1575 MHz25.000 km (GPS L1),13·1018184 dB
0015 GHz38.000 km (Rundfunksatellit),16·1020208 dB
0002,1 GHz384.000 km (Mond–Erde, Apollo-Programm)1,1·1021211 dB
0008,4 GHz500.000.000 km (Erde–Raumsonde Rosetta)3,1·1028285 dB

Literatur

  • Jürgen Detlefsen, Uwe Siart: Grundlagen der Hochfrequenztechnik. 2. Auflage. Oldenbourg Verlag, München / Wien 2006, ISBN 3-486-57866-9
  • Hans Lobensommer: Handbuch der modernen Funktechnik. 1. Auflage. Franzis Verlag, Poing 1995, ISBN 3-7723-4262-0

Einzelnachweise

  1. Manfred Thumm, Werner Wiesbeck, Stefan Kern: Hochfrequenzmesstechnik. Verfahren und Messsysteme Springer DE, 1998, ISBN 3-519-16360-8, S. 245.
  2. Bernhard Walke: Mobilfunknetze und ihre Protokolle 1 Springer DE, 2001, ISBN 3-519-26430-7 eingeschränkte Vorschau in der Google-Buchsuche.
  3. Jerry C. Whitaker: The Electronics Handbook, Second Edition CRC Press, 2012, ISBN 0-8493-1889-0, S. 1517f eingeschränkte Vorschau in der Google-Buchsuche.
  4. Ulrich Freyer: Medientechnik. Basiswissen Nachrichtentechnik, Begriffe, Funktionen, Anwendungen 2013, ISBN 978-3-446-42915-4 eingeschränkte Vorschau in der Google-Buchsuche.

Auf dieser Seite verwendete Medien

FSPL for common 802.11 frequency bands.svg
Autor/Urheber: Sss41, Lizenz: CC BY-SA 3.0
A 2D Cartesian plot showing the FSPL against distance for fixed frequencies of 2.4 GHz, 5.1 GHz and 5.7GHz
Leistungsdichte.png
(c) Averse, CC BY-SA 3.0
Das Bild beschreibt die Leistungsdichte S einer elektromagnetischen Strahlung. Wird von einem isotropen Kugelstrahler hochfrequente Energie abgestrahlt, so verteilt sich diese gleichmäßig nach allen Richtungen. Demzufolge bilden Flächen gleicher Leistungsdichte Kugeln um den Strahler. Bei größer werdendem Kugelradius verteilt sich die Energie auf eine größere Fläche (A=4·π·R²) um den Strahler. Oder anders ausgedrückt: bezogen auf eine angenommene Fläche wird die Leistungsdichte an der Fläche mit steigendem Abstand geringer.