Die Fourier-Transformation (genauer die kontinuierliche Fourier-Transformation; Aussprache:[fuʁie]) ist eine mathematische Methode aus dem Bereich der Fourier-Analyse, mit der aperiodische Signale in ein kontinuierliches Spektrum zerlegt werden. Die Funktion, die dieses Spektrum beschreibt, nennt man auch Fourier-Transformierte oder Spektralfunktion. Es handelt sich dabei um eine Integraltransformation, die nach dem Mathematiker Jean Baptiste Joseph Fourier benannt ist. Fourier führte im Jahr 1822 die Fourier-Reihe ein, die jedoch nur für periodische Signale definiert ist und zu einem diskreten Frequenzspektrum führt.
Die Normierungskonstante ist in der Literatur nicht einheitlich. In der Theorie der Pseudodifferentialoperatoren und in der Signalverarbeitung ist es üblich, den Faktor in der Transformation wegzulassen, sodass stattdessen die Rücktransformation den Vorfaktor erhält. Die Transformation lautet dann:
Hier taucht ein Vorfaktor auf, so dass die Anwendung des Satzes von Plancherel nicht direkt möglich ist, weil die Fouriertransformation dann keine unitäre Abbildung mehr auf ist und so die Signalleistung ändert. Dies kann jedoch (wie bei allen Orthogonaltransformationen) einfach durch eine Substitution (Reskalierung der Abszisse) ausgeglichen werden und stellt damit kein grundlegendes Problem dar. Genau dies wird in der Literatur zu Signalverarbeitung und Systemtheorie vorgeschlagen, indem von der natürlichen Frequenz auf die Kreisfrequenz (die den Faktor beinhaltet) übergegangen wird:
Kompressionsverfahren für die digitale Kommunikation
Die Kompression von digitalen Daten auf Basis der Fourier-Transformation ist eine zentrale Technologie für Kommunikation, Datenaustausch und Streaming von Medien im (mobilen) Internet.[1]
Beispielsweise wird zur Kompression von Audio-Daten (etwa um eine MP3 Datei zu erzeugen) das Audio-Signal in den Frequenz-Raum transformiert. Die Transformation erfolgt über das Verfahren der (modifizierten) diskreten Kosinustransformation, welches der schnellen Fourier-Transformation ähnelt. Im Frequenzraum werden dann alle Frequenzen, die Menschen nicht hören können oder die nur wenig zum subjektiven Empfinden des Klangs beitragen, entfernt. Das Ergebnis wird im letzten Schritt aus dem Frequenz-Raum rücktransformiert – daraus erhält man, auf Grund des verringerten Frequenzumfangs, eine deutlich kleinere (komprimierte) Audio-Datei.[2]
In vergleichbaren Verfahren können Bilder (JPEG Kompression) oder Filme (MPEG-4) komprimiert werden.
Der reine Kammerton ist eine Sinuswelle mit der Frequenz 440 Hz, also 440 Schwingungen pro Sekunde. Eine ideale Stimmgabel gibt genau dieses Sinussignal ab. Der gleiche Ton gespielt mit einem anderen Musikinstrument (nicht-ideale Stimmgabel), ist eine Zusammensetzung/Überlagerung aus Wellen verschiedener Wellenlängen. Diese sind bezüglich ihrer Frequenz normalerweise ganzzahlige Vielfache der Frequenz des Grundtons. Die Zusammensetzung und jeweilige Amplitude dieser Wellen ist bestimmend für die Klangfarbe jedes Musikinstruments. Nur die Welle mit der größten Wellenlänge, der Grundton des Signals, hat dabei die Frequenz 440 Hz. Die anderen Wellen, die Obertöne, haben höhere Frequenzen.
An der Fourier-Transformierten des Tonsignals kann man direkt die verschiedenen Frequenzen/Wellenlängen der Wellenzusammensetzung ablesen. Diese Eigenschaft kann man beispielsweise für die automatische Erkennung von Tonhöhen und Musikinstrumenten in einem Tonsignal ausnutzen.
Beispiele
Wellenpaket im Zeit- und Frequenzbereich
Gegeben sei ein Signalimpuls als Summe zweier Cosinus-Funktionen mit Frequenzen und multipliziert mit einer Gauß-Glocke der Breite :
Die spezielle Breite wurde gewählt, weil damit der Exponentialterm ohne weiteren Vorfaktor die Fläche 1 s hat. Er hat somit auch die Amplitude 1, sodass der Funktionswert bei die Summe der Kosinus-Amplituden ist .
Das obere Teildiagramm zeigt den Funktionsgraphen . Darunter dargestellt ist das Amplitudenspektrum, also der Betrag der Fourier-Transformierten, die eine komplexwertige Funktion der Frequenz ist. Es besteht aus vier gaußförmigen Spektrallinien bei und . Die Linienbreite beträgt jeweils . Ein breiteres Wellenpaket würde zu schmaleren Spektrallinien führen. Das Produkt der Breiten im Zeit- und Frequenzbereich ist dimensionslos und beträgt für gaußförmige Hüllkurven stets , eine Art Unschärferelation. Das Produkt wäre 1 bei Verwendung der Kreisfrequenz.
Falls eine physikalische Größe ist, was bedeuten dann die Werte des Amplitudenspektrums? Für die Achsbeschriftung der Diagramme wurde vereinfacht angenommen, dass als Leistungsgröße direkt die Einheit Watt hat, als sog. Feldgröße also die Einheit √Watt. Damit beträgt die mittlere Leistung der beiden Kosinusfunktionen 0,5·42 bzw. 0,5·22 Watt, zusammen 10 Watt, zu multiplizieren mit der Fläche der quadrierten Hüllkurve. Die Hüllkurve selbst ist normiert, Fläche 1 s. Ihr Quadrat ist wieder eine Gauß-Glocke, hat gleiche Höhe (1), aber halbe Varianz, Fläche 1 s/√2. Damit beträgt die Energie des Wellenpakets etwa 7,07 Joule. Die numerische Integration, siehe den Python-Code auf der Bildbeschreibungsseite, liefert den gleichen Wert, auch für das Energiespektrum (Quadrat des Amplitudenspektrums). Die Werte des Amplitudenspektrums haben folglich die Einheit √Joule pro Hz. Da die Zahlenwerte der Breiten im Zeit- und Frequenzraum (nicht zufällig) gleich sind und die Zahl der Komponenten sich verdoppelt , halbieren sich die Zahlenwerte der Amplituden (Linienhöhen).
Beispielhafte Berechnung einer Fourier-Transformierten
Es soll das Frequenzspektrum einer gedämpften Schwingung mit ausreichend schwacher Dämpfung untersucht werden. Diese kann durch folgende Funktion beschrieben werden:
oder in komplexer Schreibweise:
Hier ist die Amplitude und die Kreisfrequenz der Schwingung, die Zeit, in der die Amplitude um den Faktor abfällt, und die Heaviside-Funktion. Das heißt, die Funktion ist nur für positive Zeiten nicht null.
Man erhält
Eigenschaften
Linearität
Die Fourier-Transformation ist ein linearer Operator. Das heißt, es gilt .
mit der (-dimensionalen) Gauß’schen Normalverteilung ist ein Fixpunkt der Fourier-Transformation. Das heißt, es gilt für alle die Gleichung
.
Insbesondere ist also eine Eigenfunktion der Fourier-Transformation zum Eigenwert. Mit Hilfe des Residuensatzes oder mit Hilfe partieller Integration und Lösen einer gewöhnlichen Differentialgleichung kann in diesem Fall das Fourier-Integral bestimmt werden.
Spiegelsymmetrie
Für gilt für alle die Gleichung
.
Äquivalent lässt sich dies auf dem Schwartzraum als Operatorgleichung
schreiben, wobei
den Paritätsoperator bezeichnet.
Rücktransformationsformel
Sei eine integrierbare Funktion derart, dass auch gilt. Dann gilt die Rücktransformation
Das Faltungstheorem für die Fourier-Transformation besagt, dass die Faltung zweier Funktionen durch die Fourier-Transformation in ihrem Bildraum in eine Multiplikation reeller Zahlen überführt wird. Für gilt also
Für eine Funktion ist die Fouriertransformation mittels eines Dichtheitsargumentes definiert durch
.
Die Konvergenz ist im Sinne von zu verstehen und ist die Kugel um den Ursprung mit Radius . Für Funktionen stimmt diese Definition mit der aus dem ersten Abschnitt überein. Da die Fouriertransformation bezüglich des -Skalarproduktes unitär ist (s. u.) und in dicht liegt, folgt, dass die Fouriertransformation ein isometrischer Automorphismus des ist. Dies ist die Aussage des Satzes von Plancherel.
Hausdorff-Young-Ungleichung
Seien und . Für ist und es gilt
.
Die Fourier-Transformation hat also eine Fortsetzung zu einem stetigen Operator , der durch
beschrieben wird. Der Grenzwert ist hier im Sinne von zu verstehen.
Differentiationsregel
Falls die Funktion schwach differenzierbar ist, gibt es eine Differentiationsregel analog zu denen für Schwartzfunktionen. Sei also eine k-mal schwach differenzierbare L2-Funktion und ein Multiindex mit . Dann gilt
.
Unitäre Abbildung
Die Fourier-Transformation ist bezüglich des komplexen -Skalarproduktes ein unitärer Operator, das heißt, es gilt
Sei eine temperierte Distribution, die Fourier-Transformierte ist für alle definiert durch
.
Stattet man den Raum mit der Schwach-*-Topologie aus, dann ist die Fourier-Transformation eine stetige, bijektive Abbildung auf . Ihre Umkehrabbildung lautet
.
Fourier-Transformation von Maßen
Die Fourier-Transformation wird allgemein für endliche Borel-Maße auf definiert:
In der Theorie der partiellen Differentialgleichungen spielt die Fourier-Transformation eine wichtige Rolle. Mit ihrer Hilfe kann man Lösungen bestimmter Differentialgleichungen finden. Die Differentiationsregel und das Faltungstheorem sind dabei von essentieller Bedeutung. Am Beispiel der Wärmeleitungsgleichung wird nun gezeigt, wie man mit der Fourier-Transformation eine partielle Differentialgleichung löst. Das Anfangswertproblem der Wärmegleichung lautet
Hierbei bezeichnet den Laplace-Operator, der nur auf die -Variablen wirkt. Anwenden der Fourier-Transformation auf beide Gleichungen bezüglich der -Variablen und Anwenden der Differentiationsregel ergibt
Otto Föllinger: Laplace-, Fourier- und z-Transformation. Bearbeitet von Mathias Kluwe. 8. überarbeitete Auflage. Hüthig, Heidelberg 2003, ISBN 3-7785-2911-0 (Studium).
Lars Hörmander: The Analysis of Linear Partial Differential Operators I. Second Edition. Springer-Verlag, ISBN 3-540-52345-6.
Burkhard Lenze: Einführung in die Fourier-Analysis. 3. durchgesehene Auflage. Logos Verlag, Berlin 2010, ISBN 3-931216-46-2.
M. J. Lighthill: Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press, Cambridge 2003, ISBN 0-521-09128-4 (Cambridge Monographs on Mechanics and Applied Mathematics).
P. I. Lizorkin: Fourier Transform. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
Athanasios Papoulis: The Fourier Integral and Its Applications. Reissued. McGraw-Hill, New York NY u. a. 1987, ISBN 0-07-048447-3 (McGraw-Hill Classic Textbook Reissue Series).
Herbert Sager: Fourier-Transformation. 1. Auflage. vdf Hochschulverlag AG an der ETH Zürich, Zürich 2012, ISBN 978-3-7281-3393-9.
Elias M. Stein, Rami Shakarchi: Princeton Lectures in Analysis. Band 1: Fourier Analysis. An Introduction. Princeton University Press, Princeton NJ 2003, ISBN 0-691-11384-X.
Dirk Werner: Funktionalanalysis. Springer-Verlag, 6. Auflage, ISBN 978-3-540-72533-6.
Jörg Lange, Tatjana Lange: Fourier-Transformation zur Signal- und Systembeschreibung. Kompakt, visuell, intuitiv verständlich. Springer Vieweg, 2019, ISBN 978-3-658-24849-9.
↑Beweis mittels Einsetzen der inversen Fouriertransformierten, z. B. wie in Tilman Butz: Fouriertransformation für Fußgänger. Ausgabe 7, Springer DE, 2011, ISBN 978-3-8348-8295-0, S. 53, Google Books.
↑Helmut Fischer, Helmut Kaul: Mathematik für Physiker. Band 2: Gewöhnliche und partielle Differentialgleichungen, mathematische Grundlagen der Quantenmechanik. 2. Auflage. B.G. Teubner, Wiesbaden 2004, ISBN 3-519-12080-1, § 12, Abschn. 4.2, S. 300–301.