Ellipsograph des Archimedes
Der Ellipsograph, Ellipsenzirkel des Archimedes[1] oder Stuckateurzirkel[2][3] ist ein Mechanismus, der die Form einer Ellipse erzeugt.
Er besteht im Wesentlichen aus drei unterschiedlichen Bauteilen:
- einer Grundplatte mit zwei rechtwinklig zueinander liegenden Führungsnuten (andere Konfigurationen sind technisch möglich, aber unüblich),
- einem Zeichenarm mit der Halterung für den Zeichenstift bei Punkt sowie zwei Gelenkaugen und ,
- zwei Kulissensteine mit Lagerbolzen, eingeschoben in den Führungsnuten der Grundplatte, verbinden die Grundplatte im Punkt und mit dem damit beweglichen Zeichenarm.
Der Abstand zwischen Zeichenstift und dem ersten Gelenkauge sei , der Abstand zwischen den Gelenken . Durch Variieren von und können bezüglich Größe und Form unterschiedliche Ellipsen gezeichnet werden. So ist die Länge der großen Halbachse und die Länge der kleinen Halbachse .[4]
Die Geschichte dieses Mechanismus ist nicht gesichert. Es wird angenommen, dass Proklos den Mechanismus kannte,[5] aber eventuell war der Mechanismus bereits zu archimedischen Zeiten bekannt.
Es existiert ein britisches Patent für diesen Mechanismus von 1894.[6]
Der Mechanismus ist auch bekannt als:
Mathematische Grundlagen
Wie in der nebenstehenden Skizze zu sehen ist, hat die Strecke die gleiche Länge wie die Halbachse und die Strecke die gleiche Länge wie die Halbachse der Ellipsenlinie .[5] Da die beiden rechtwinkligen Dreiecke und zueinander ähnlich sind, ist folgerichtig der Winkel der Z-Winkel von .
Für die allgemeine Bestimmung des Punktes im kartesischen Koordinatensystem gilt nach dem Satz des Pythagoras
- , daraus folgt
- ,
- , somit ist
- .
Die mit dem Mechanismus vom Ellipsographen und dem Zeichenstift im Punkt erzeugbare Linie ist eine sogenannte Ellipse in der 1. Hauptlage, denn wird für die große Halbachse die Länge sowie für die kleine Halbachse die Länge eingesetzt, entspricht die gefundene Gleichung der für die Ellipse in der 1. Hauptlage:
- .
Äquivalenz zu den Cardanischen Kreisen
Als Cardanische Kreise bezeichnet man eine geometrische Anordnung, bei der ein kleiner Kreis in einem doppelt so großen feststehenden Kreis abrollt. Die ausgeführte Bewegung ist dieselbe, die der Zeichenarm ausführt. Die Strecke liegt hierbei auf einem Durchmesser des kleinen Kreises. Somit kann mit einem Spirograph eine Ellipse[10] erzeugt werden, wenn das innere Zahnrad halb so viele Zähne hat wie das Hohlrad, in dem es abrollt. Diese Analogie veranschaulicht auch, dass sich der Momentanpol des Zeichenarms auf dem Außenkreis mit dem Radius bewegt.
Anwendungen
Der Mechanismus wurde als Physikspielzeug für Kinder verkauft.[11]
Ein US-Patent benutzt das Prinzip des Ellipsographen für einen Ellipsenschneider.[12]
Varianten
- Eine ähnliche Mechanik mit nur einem Gleiter und einer Kurbel
- Ellipsenzirkel mit drei Gleitern
Literatur
Chris Sangwin: The wonky trammel of Archimedes, This article provides brief notes on an ancient problem: the ellipsograph of Archimedes. (PDF) In: citeseerx.ist.psu.edu. School of mathematics, University of Birmingham …, 25. Juli 2008, archiviert vom (nicht mehr online verfügbar); abgerufen am 9. April 2017. .
Weblinks
Einzelnachweise
- ↑ Ellipsenzirkel. In: Meyers Großes Konversations-Lexikon. 6. Auflage. Band 5: Differenzgeschäfte–Erde. Bibliographisches Institut, Leipzig / Wien 1906, S. 720–721 (Digitalisat. zeno.org).
- ↑ Franz Reuleaux: Theoretische Kinematik: Grundzüge einer Theorie des Maschinenwesens. 1875, S. 318 (Volltext in der Google-Buchsuche).
- ↑ Franz Reuleaux, Alexander Kennedy: Kinematics of Machinery: Outlines of a Theory of Machines. 1876, S. 318, Fig. 248 (siehe Fußnote) (englisch, Volltext in der Google-Buchsuche).
- ↑ Ellipsenzirkel oder Ellipsograph. In: Luegers Lexikon der gesamten Technik. 2. Auflage. Band 3. Deutsche Verlags-Anstalt, Leipzig / Stuttgart 1906, S. 436–437 (Digitalisat. zeno.org – Fig. 2).
- ↑ a b Ellipsenzirkel oder Ellipsograph. In: Luegers Lexikon der gesamten Technik. 2. Auflage. Band 3. Deutsche Verlags-Anstalt, Leipzig / Stuttgart 1906, S. 436–437 (Digitalisat. zeno.org).
- ↑ Patent GB189402496: Ellipsograph. Angemeldet am 5. Mai 1894, Erfinder: Heinel Gustav, Barth Carl.Text, Zeichnung (S. 3)
- ↑ Archimedischer Ellipsograph. In: webenergie.ch. Do-it-yourSciences, Die Plattform für wissenschaftliche und pädagogische Werkarbeiten, 16. März 2010, abgerufen am 6. April 2017.
- ↑ Der Ellipsograph des Proklos. In: Die kinematischen geometrischen Mechanismen der Griechen der Antike. Kotsanas Museum of Ancient Greek Technology, abgerufen am 6. April 2017.
- ↑ Ellipsenzirkel oder Ellipsograph. In: Luegers Lexikon der gesamten Technik. 2. Auflage. Band 3. Deutsche Verlags-Anstalt, Leipzig / Stuttgart 1906, S. 436–437 (Digitalisat. zeno.org – Fig. 1).
- ↑ Cardanische Kreise. In: Luegers Lexikon der gesamten Technik. 2. Auflage. Band 2. Deutsche Verlags-Anstalt, Leipzig / Stuttgart 1905, S. 423–424 (Digitalisat. zeno.org – „Von De la Hire wurde nachgewiesen …“, Fig. 1).
- ↑ Entertainment Center: Kentucky Do-Nothing. In: flickr.com. Scott Kraft, 22. März 2009, abgerufen am 6. April 2017.
- ↑ Patent US4306598: Ellipse cutting machine, siehe Fig. 1 und Fig. 2. Angemeldet am 26. Juni 1980, veröffentlicht am 22. Dezember 1981, Erfinder: David G. Peot.
Auf dieser Seite verwendete Medien
Autor/Urheber: Zephyris, Lizenz: CC BY-SA 3.0
An animation of the Trammel of Archimedes. The shuttles are in yellow, trammels in grey and arm in red. Created in Blender.
Autor/Urheber: Jahobr, Lizenz: CC0
Two example ellipses are drawn in red and cyan.
Autor/Urheber: Petrus3743, Lizenz: CC BY-SA 4.0
Ellipsograph des Archimedes als Animation, Start nach 30 s Pause
Autor/Urheber: MichaelFrey, Lizenz: CC BY-SA 3.0
Trammel of Archimedes
Autor/Urheber: Jahobr, Lizenz: CC0
Equivalence between "Tusi couple" and "Trammel of Archimedes". Two example ellipses are drawn in red and cyan.
From SIA:
This wooden model is a prime example of an elliptic trammel, often referred to as the Trammel of Archimedes. An oval shape, the ellipse is one of the four conic sections, the others being the circle, the parabola, and the hyperbola. Ellipses are important curves used in the mathematical sciences. For example, the planets follow elliptical orbits around the sun. Ellipses are required in surveying, engineering, architectural, and machine drawings for two main reasons. First, any circle viewed at an angle will appear to be an ellipse. Second, ellipses were common architectural elements, often used in ceilings, staircases, and windows, and needed to be rendered accurately in drawings. Several types of drawing devices that produce ellipses, called ellipsographs or elliptographs, were developed and patented in the late 19th and early 20th centuries.
As one of the sliders travels toward the center along its track, the other slider travels outward along its track. By placing a pencil in the bracket at the end of the top beam, a complete ellipse can be drawn. The location of the sliders can be adjusted along the top beam by removing the carved pegs securing the sliders. This changes how far each of the sliders can travel along its track and thus changes the eccentricity of the ellipse. The eccentricity is a number between zero and one that describes how far from circular an ellipse is. A circle has eccentricity zero and an ellipse that is so long and thin that it becomes a line segment has eccentricity one.Trammels are the most common type of ellipsograph and were often made for use in teaching and as children’s toys. Videos of trammels in use and even designs for making your own can easily be found on the Internet. This trammel is fairly large---the beam measures 36 cm (14 ¼ in) long while the tracks measure 19 cm (7 ½ in) each. The opening for a writing device is fairly large and has a white residue, so this model may well have been used as a teaching device, possibly held against a blackboard to draw an ellipse using chalk. It has no markings and its maker is unknown, but it was most likely made in the late 19th century. It was a gift of Wesleyan University in Connecticut in 1984.