Einschlagkrater
Ein Einschlagkrater (auch: Einschlagskrater) oder Impaktkrater ist eine zumeist annähernd kreisförmige Senke auf der Oberfläche eines erdähnlichen Planeten oder eines ähnlich festen Himmelskörpers, die durch den Einschlag – den Impakt – eines anderen Körpers wie eines Asteroiden oder eines hinreichend großen Meteoroiden entsteht. Nach den gefundenen Resten solcher Impaktoren, den Meteoriten, spricht man auch von einem Meteoritenkrater.[1][2][3]
Für Einschlagskrater auf der Erde schlug der US-amerikanische Geophysiker Robert S. Dietz 1960 die Bezeichnung Astroblem („Sternwunde“) vor, die sich im Deutschen, teilweise auch im Französischen – beispielsweise Astroblème de Rochechouart-Chassenon – eingebürgert hat.
Allgemeines
Alle Himmelskörper des Sonnensystems mit fester Oberfläche besitzen solche Krater. Der Mond ist von Einschlagskratern übersät. Auf der Erde, deren Oberfläche laufend durch morphodynamische Prozesse wie Denudation, Erosion, Sedimentation und zudem geologische Aktivität geformt wird, lassen sich Einschlagskrater nicht so leicht erkennen wie auf davon nicht oder weniger betroffenen Himmelskörpern. Ein extremes Beispiel dafür ist Io, ein erdmondgroßer Satellit des Jupiter, dessen Oberfläche durch große Gezeitenkräfte und sehr aktiven Vulkanismus geprägt ist und dadurch fast keine Einschlagskrater besitzt.
Entstehung eines Kraters mit zentraler Ringstruktur (5 Bilder) |
---|
Entstehung
Kleinere Meteoroide, die sich auf einem Kollisionskurs mit der Erde befinden, verglühen oder zerplatzen in der Erdatmosphäre und fallen als kleine Bruchstücke zu Boden. Größere Objekte, ab einem Durchmesser von etwa 50 m, können die Erdatmosphäre durchdringen und den Boden mit Geschwindigkeiten von 12 bis 70 km in der Sekunde erreichen. Daher werden solche Einschläge als Hochgeschwindigkeitseinschläge bezeichnet. Da die kinetische Energie dabei durch starke Kompression des Materials beider Körper in Sekundenbruchteilen in thermische Energie umgewandelt wird, kommt es zu einer Explosion. Das umliegende Material wird weggesprengt und es entsteht, unabhängig vom Einschlagwinkel, gleich einem Explosionskrater eine kreisrunde Senke, an deren Rändern das ausgeworfene Material einen Wall bildet. Um den Krater herum findet sich ausgeworfenes Material, die sogenannten Ejekta. Diese Ejekta können Sekundärkrater um den primären Krater hervorrufen.
Einfache und komplexe Krater
Kleinere Krater haben im Allgemeinen eine einfache, schüsselartige Form und werden in dieser Form als einfache Krater bezeichnet.[4] Ab einer bestimmten Größe, die umgekehrt proportional zur Schwerkraft am jeweiligen Himmelskörper abnimmt und außerdem vom Zielgestein abhängt, entstehen komplexe Krater. Auf dem Mond liegt dieser Grenzdurchmesser bei 15 bis 20 km, auf der Erde bei 2 bis 4 km.
Mit zunehmendem Durchmesser des Kraters kommt es zunächst zur Ausbildung eines Zentralbergs. Bei noch größerem Durchmesser wird daraus eine zentrale Ringstruktur, im Weiteren kann eine Multiringstruktur entstehen. Diese kann dann im innersten Ring im Grenzfall auch einen Zentralberg enthalten. Ursache für diese Strukturen eines komplexen Kraters ist das Rückfedern des Kraterbodens nach dem Aufprall des Impaktors, womit zunächst ein Zentralberg in der Kratermitte aufgeworfen wird, und das anschließende Kollabieren des instabilen tiefen Primärkraters. Diese Vorgänge finden im Bereich der bereits von der Stoßwelle zertrümmerten Kraterumgebung innerhalb weniger Minuten nach dem Einschlag statt. Während des Ablaufs vergrößert sich der Kraterdurchmesser erheblich.
Manche Mondkrater zeigen auch terrassenartige Absenkungen, die wie bei einem Einbruchsbecken durch allmähliches Nachgeben der Gesteinskruste entstehen.
Kraterentstehungsphasen
Kontakt und Kompression
Beim Aufprall beginnt die Kontakt- und Kompressionsphase, bei der sich eine Stoßwelle mit Überschallgeschwindigkeit vom Auftreffpunkt in zwei Richtungen, nämlich in den Impaktor und in den Zielkörper, durch das Gestein ausbreitet, dabei das Material stark verdichtet und dadurch teilweise verflüssigt oder verdampft. An der Stoßwellenfront können kristalline Minerale durch die hohen Drücke in Phasen höherer Dichte umgewandelt werden. Zum Beispiel kann das gewöhnliche Mineral Quarz in die Hochdruckmodifikation Coesit oder Stishovit umgewandelt werden. Viele weitere stoßwelleninduzierte Veränderungen treten beim Durchlauf der Stoßwelle im Impaktor als auch im Zielkörper auf. Einige dieser Veränderungen können als Diagnosemittel verwendet werden, um nachzuweisen, ob eine bestimmte geologische Struktur durch einen Impakt entstanden ist oder nicht.
Exkavation
Anschließend folgt die sogenannte Exkavationsphase (Aushöhlungsphase), bei der das zertrümmerte, flüssige und gasförmige Material aus dem Krater geschleudert wird. Ein Großteil dieser Ejekta (Auswurfmasse) wird in Form eines kegelförmigen Auswurfvorhangs aus dem Krater befördert und bildet eine ringförmige Schicht um den Krater. Über dem Krater bildet sich eine zunächst sehr heiße Rauch- und Staubwolke, deren kondensierende Bestandteile später teilweise wieder in den Krater regnen können.
Modifikation und Kollaps
In den meisten Fällen ist der transiente Krater (Übergangskrater), der das Ende der Exkavationsphase markiert, nicht stabil. Es beginnt die Modifikationsphase, die den transienten Krater kollabieren lässt.
In einfachen Kratern wird die ursprüngliche Aushöhlung durch Brekzie, Ejekta und Gesteinsschmelze überlagert.
Ab einer bestimmten Kratergröße, die von der planetaren Gravitation abhängt, ist die Modifikation und der Kollaps des Übergangskraters weitaus stärker. Die dabei entstehende Kraterform wird komplexer Krater genannt. Der Kollaps des transienten Kraters wird durch die Gravitation getrieben und bewirkt sowohl den Anstieg des Zentrums des Kraters als auch das nach innen gerichtete Zusammenrutschen des Kraterrandes.
Die zentrale Anhebung entsteht nicht durch elastisches Rückfedern, sondern durch das Bestreben eines Materials mit wenig oder keiner Festigkeit in einen Gleichgewichtszustand der Gravitation zurückzukehren. Dies ist der gleiche Prozess, der auch das Wasser nach oben schießen lässt, nachdem ein Gegenstand ins Wasser gefallen ist.
In dieser Phase vergrößert sich der Krater erheblich. Daher wird der transiente und nicht der finale Krater als Maß für die Energie und Größe des Impaktereignisses verwendet.
Große und bekannte Einschlagskrater
Krater der Erde
Auf der Erde sind außer zahlreichen kleineren Einschlagskratern über hundert mit einem Durchmesser von mehr als 5 km entdeckt worden. Allerdings sind viele der aufgefundenen Impaktstrukturen nicht unmittelbar als Krater zu erkennen, da der Kraterrand durch Erosion längst abgetragen wurde (Beispiel Vredefort-Krater), oder die entstandene Vertiefung inzwischen von jüngeren Sedimenten überdeckt wurde (Beispiel Chicxulub-Krater). Auch die auf bis zu 70 km Durchmesser geschätzte Struktur des Yarrabubba-Kraters in Westaustralien ist an der Oberfläche weitgehend eingeebnet. Auf Basis von Uran-Blei-Datierungen gelang eine Bestimmung ihres Alters auf etwa 2,23 Milliarden Jahre (2229 ± 5 Ma).[5] Damit ist Yarrabubba die älteste anerkannte Impaktstruktur der Erde.[5]
- Der größte verifizierte Einschlagskrater der Erde ist der Vredefort-Krater nahe dem Witwatersrand-Gebirge bei Vredefort in Südafrika. Der Einschlag eines Himmelskörpers bildete dort verschiedenen Angaben zufolge vor 2 bis 3,4 Milliarden Jahren einen bis 320 km langen und 180 km breiten Krater, von dem allerdings nur noch ein bis zu 50 km großer Rest vorhanden ist.
- Ein weiterer großer Einschlagskrater ist das Sudbury-Becken in Ontario (Kanada), das etwa 200 bis 250 km Durchmesser hat und geschätzte 1,85 Milliarden Jahre alt ist.
- Der Chicxulub-Krater in Yucatán (Mexiko) hat einen Durchmesser von etwa 180 km. Der Einschlag eines Himmelskörpers vor etwa 66 Millionen Jahren im heutigen Golf von Mexiko verursachte unter anderem einen Megatsunami sowie weltweit auftretende Wald- und Flächenbrände. Durch die Auswurfmasse von mehreren tausend Kubikkilometern in Verbindung mit erheblichen Mengen an Staub, Ruß und Aerosolen, die sich in der Atmosphäre verteilten, kam es zu einem Temperatursturz, eventuell in Form eines globalen Dauerfrostklimas über einige Jahre, dem neben den Dinosauriern etwa 70 bis 75 Prozent aller Arten zum Opfer fielen.[6][7]
- Der Manicouagan-Krater in Québec (Kanada) entstand durch den Einschlag eines Himmelskörpers in der Obertrias vor etwa 214 Millionen Jahren. Von den ursprünglich rund 100 km Durchmesser sind durch Sedimentablagerungen und Erosion nur noch 72 km vorhanden.
- Ähnlich groß wie der Manicouagan-Krater ist der Popigai-Krater in Nordsibirien, der bei einem Alter von rund 35 Millionen Jahren ebenfalls einen Durchmesser von rund 100 km aufweist.
- Der Siljan-Krater in Schweden, der vor rund 360 Millionen Jahren entstand, ist mit mindestens 50 km Durchmesser der größte Einschlagskrater Europas.
- Der unter der Gröndländischen Eisdecke liegende Hiawatha-Krater hat einen Durchmesser von 31 Kilometern und wurde vor 58 Millionen Jahren gebildet.
- Zwei Einschlagskrater in Deutschland sind das Nördlinger Ries in Bayern, das etwa 24 km Durchmesser aufweist und vor ca. 14,6 Millionen Jahren entstand, und das 40 km entfernte Steinheimer Becken in Baden-Württemberg mit einem mittleren Durchmesser von 3,8 km.[8] Beide Krater besitzen einen Zentralberg. Man geht davon aus, dass die Krater durch das gleiche Ereignis (Ries-Ereignis) entstanden sind (vermutlich durch einen Doppelasteroiden). Hierbei formte der kleinere Asteroid das Steinheimer Becken, der größere (Durchmesser: 1,5 km) das Nördlinger Ries. Neuere Fachliteratur zieht allerdings die Möglichkeit in Betracht, dass das Steinheimer Becken ungefähr 500.000 Jahre nach dem Nördlinger Ries entstanden sein könnte.[9]
- Der sehr bekannte Barringer-Krater (auch einfach nur Meteor Crater genannt), der vor nur etwa 50.000 Jahren entstand, nur etwa 1,5 km Durchmesser aufweist und bis 170 m tief ist, befindet sich in der Wüste von Arizona (USA). Aufgrund der geringen Erosion befindet er sich in einem gut erhaltenen Zustand. Er ist ein typisches Beispiel für einen einfachen Krater ohne Zentralberg. Er war 1960 die erste wissenschaftlich untersuchte und als Einschlagskrater beschriebene Struktur.
- Der Silverpit-Krater wurde 2001 in der Nordsee entdeckt und weist – obschon nur 2,4 km durchmessend – eine den Krater umgebende Struktur aus konzentrischen Ringen auf, die sich in bis zu 10 km Entfernung erstrecken. Der Ursprung des hierdurch sehr unüblichen Kraters ist nicht hinreichend geklärt, jedoch wird ein Einschlag vor etwa 65 Millionen Jahren angenommen.
- 2006 wurde der Wilkeslandkrater unter der Antarktischen Eisdecke entdeckt. Der Krater hat einen Durchmesser von fast 480 km und ist vermutlich vor ca. 250 Millionen Jahren entstanden. Noch ist aber nicht verifiziert, dass es sich um einen Einschlagskrater handelt.
- Vor weniger als 5000 Jahren entstand im südwestlichen Ägypten beim Einschlag des nickelreichen Eisenmeteoriten „Gebel Kamil“ vom Typ Ataxit der sehr gut erhaltene Krater Kamil mit 45 m Durchmesser und ausgeprägter Strahlenstruktur.
Weitere Impaktstrukturen der Erde
- Bosumtwi in Ghana
- Chesapeake Bay in den USA
- Elgygytgyn in Nordostsibirien
- Roter Kamm in Namibia
- Tswaing in Südafrika
Krater anderer Himmelskörper
- Auf der erdzugewandten Seite des Mondes kennt man etwa 300.000 Krater mit über 1 km Durchmesser. Die größeren bis etwa 100 km bzw. 300 km werden Ringgebirge bzw. Wallebenen genannt. Noch größere werden schon den Mondbecken zugeordnet. Der größte Mondkrater Hertzsprung misst im Durchmesser 536 km[10] (siehe auch: Liste der Krater des Erdmondes).
- Das Südpol-Aitken-Becken ist mit 2240 km Durchmesser das größte Einschlagbecken auf dem Mond und nimmt einen beachtlichen Teil seines Durchmessers ein.
- Die nördliche Tiefebene auf dem Mars ist mit 10000 km × 8000 km die größte bekannte Impaktstruktur des Sonnensystems.
- Hellas Planitia ist mit 2100 km × 1600 km Durchmesser eines der größten Einschlagbecken auf dem Mars und ist über 8 km tief (siehe auch: Liste der Marskrater).
- Caloris Planitia ist mit 1550 km Durchmesser das größte Einschlagbecken auf dem Merkur (siehe auch: Liste der Merkurkrater).
- Valhalla ist die größte Impaktstruktur auf dem Jupitermond Kallisto. Sie hat 600 km Durchmesser und ist von konzentrisch verlaufenden Ringen bis in eine Entfernung von fast 3000 km umgeben.
- Abisme ist mit 767 km Durchmesser der größte Krater auf dem Saturnmond Iapetus
- Rheasilvia ist mit 505 km Durchmesser der größte Krater auf dem Asteroiden Vesta.
- Mamaldi ist mit 480 km Durchmesser der größte Krater auf dem Saturnmond Rhea.
- Odysseus ist mit 445 km Durchmesser der größte Krater auf dem Saturnmond Tethys.
- Menrva ist mit 392 km Durchmesser der größte Krater auf dem Saturnmond Titan.
- Evander ist mit 350 km Durchmesser der größte Krater auf dem Saturnmond Dione.
- Epigeus ist mit 343 km Durchmesser der größte Krater auf dem Jupitermond Ganymed.
- Gertrude ist mit 326 km Durchmesser der größte bekannte Krater auf dem Uranusmond Titania.
- Kerwan ist mit 280 km Durchmesser der größte Krater auf dem Zwergplaneten Ceres.
- Mead ist mit 270 km Durchmesser der größte Krater auf der Venus (siehe auch: Liste der Venuskrater).
- Wokolo ist mit 208 km Durchmesser der größte bekannte Krater auf dem Uranusmond Umbriel.
- Hamlet ist mit 206 km Durchmesser der größte bekannte Krater auf dem Uranusmond Oberon.
- Pharos ist mit 255 × 230 km Durchmesser der größte Krater auf dem Neptunmond Proteus.
- Herschel ist mit etwa 130 km Durchmesser der größte Krater auf dem Saturnmond Mimas. Er ist bis 10 km tief. Der Einschlag hätte den nur 400 km großen Mond fast zerstört.
- Jason ist mit 101 km Durchmesser der größte Krater auf dem Saturnmond Phoebe.
- Pan ist mit etwa 100 km Durchmesser der größte Krater auf dem Jupitermond Amalthea.
- Lob ist mit 45 km Durchmesser der größte bekannte Krater auf dem Uranusmond Puck.
- Zethus ist mit etwa 40 km Durchmesser der größte Krater auf dem Jupitermond Thebe.
- Himeros ist mit 10 km Durchmesser der größte Krater auf dem nur 11 × 34 km messenden Asteroiden Eros, der wahrscheinlich kein Monolith ist.
- Stickney ist mit 9 km Durchmesser der größte Krater auf dem Marsmond Phobos.
Siehe auch
- Datenbanken irdischer Impaktstrukturen
- Regentropfeneinschlagkrater
Literatur
- Isidore Adler: The analysis of extraterrestrial materials. Wiley New York 1986, ISBN 0-471-87880-4.
- Roald A. Tagle-Berdan: Platingruppenelemente in Meteoriten und Gesteinen irdischer Impaktkrater – Identifizierung der Einschlagskörper. Diss. Humboldt-Univ., Berlin 2004.
- André J. Dunford: Discovery and investigation of possible meteorite impact structures in North Africa – applications of remote sensing and numerical modeling. Dipl. Arb., Univ. Wien, Wien 2008.
- Paul Hodge: Meteorite craters and impact structures of the earth. Cambridge Univ. Press, Cambridge 1994, ISBN 0-521-36092-7.
- Julius Kavasch: Meteoritenkrater Ries – ein geologischer Führer. Auer, Donauwörth 2005, ISBN 3-403-00663-8.
- Christian Köberl, Wolf U. Reimold: Meteorite Impact Structures – An Introduction to Impact Crater Studies. Springer Berlin 2006, ISBN 3-540-23209-5.
- Christian Köberl, Francisca C. Martínez-Ruis: Impact markers in the stratigraphic record. Springer, Berlin 2003, ISBN 3-540-00630-3.
- Erwin Rutte: Land der neuen Steine – auf den Spuren einstiger Meteoriteneinschläge in Mittel- und Ostbayern. Univ.Verl., Regensburg 2003, ISBN 3-930480-77-8.
- O. Richard Norton, Lawrence A. Chitwood: Field guide to meteors and meteorites. Springer, London 2008, ISBN 978-1-84800-156-5.
- Kevin Evans: The sedimentary record of meteorite impacts. Geol. Soc. of America, Boulder 2008, ISBN 978-0-8137-2437-9.
- C. Wylie Poag, (et al.): The Chesapeake Bay crater – geology and geophysics of a Late Eocene submarine impact structure. Springer Berlin 2004, ISBN 3-540-40441-4.
- Manfred Gottwald, Thomas Kenkmann, Wolf Uwe Reimold: Terrestrial Impact Structures. The TanDEM-X Atlas. 1. Auflage. Verlag Dr. Friedrich Pfeil, München 2020, ISBN 978-3-89937-261-8 (englisch, 608 S.).
Weblinks
- Datenbank des Planetary and Space Science Centre at the University of New Brunswick, Canada The Earth Impact Database (englisch)
- Ein Streufeld aus Impaktkratern aus "Abenteuer Astronomie"
- Die größten Meteoritenkrater – mit Bildern und Kartendarstellung (Bayerischer Rundfunk)
- Onlineprogramm zur Berechnung der Auswirkungen von Einschlägen (englisch)
- Impact Craters The Lunar and Planetary Institute
- Mineralienatlas: Impakt – Geologie, Auswirkungen, bekannte Krater etc.
Einzelnachweise
- ↑ Bevan M. French: Traces of Catastrophe - A Handbook of shock-metamorphic effects in terrestrial meteorite impact structures Lunar and Planetary Inst., Houston 1998 pdf online, 19.7 MB lpi.usra.edu, abgerufen am 17. Februar 2011
- ↑ Christian Koeberl: Mineralogical and geochemical aspects of impact craters. Mineralogical Magazine; Oktober 2002; v. 66; no. 5; S. 745–768; doi:10.1180/0026461026650059 Abstract
- ↑ Christian Koeberl: Remote sensing studies of impact craters - how to be sure? C. R. Geoscience 336 (2004), S. 959–961, pdf online abgerufen am 17. Februar 2011
- ↑ Morphodynamics of Planetary Impact Craters. S. 157–201 in: Hiroaki Katsuragi: Physics of soft impact and cratering. Springer, Tokyo 2016, ISBN 978-4-431-55647-3.
- ↑ a b Erickson, T.M., Kirkland, C.L., Timms, N.E. et al. Precise radiometric age establishes Yarrabubba, Western Australia, as Earth’s oldest recognised meteorite impact structure. Nat Commun 11, 300 (2020) DOI:10.1038/s41467-019-13985-7
- ↑ Douglas S. Robertson, Malcolm C. McKenna, Owen B. Toon, Sylvia Hope, Jason A. Lillegraven: Survival in the first hours of the Cenozoic. In: Geological Society of America Bulletin. 116. Jahrgang, Nr. 5/6, 2004, S. 760–768, doi:10.1130/B25402.1 (englisch, tripod.com [PDF]).
- ↑ Julia Brugger, Georg Feulner, Stefan Petri: Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. In: Geophysical Research Letters. 44. Jahrgang, Nr. 1, Januar 2017, S. 419–427, doi:10.1002/2016GL072241 (englisch, wiley.com [PDF]).
- ↑ Johannes Baier: Zur Herkunft und Bedeutung der Ries-Auswurfprodukte für den Impakt-Mechanismus. In: Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins. 91, 2009, S. 9–29, doi:10.1127/jmogv/91/2009/9.
- ↑ Elmar Buchner, Volker J. Sach, Martin Schmieder: New discovery of two seismite horizons challenges the Ries–Steinheim double-impact theory. In: Nature Scientific Reports. 10. Jahrgang, Dezember 2020, doi:10.1038/s41598-020-79032-4 (englisch).
- ↑ Moon: Crater, craters. Im Gazetteer of Planetary Nomenclature der IAU (WGPSN)/USGS. Abgerufen am 13. Juni 2017
Auf dieser Seite verwendete Medien
Siljan impact crater. Several lakes trace the remnants of the eroded impact crater that was formed by a meteorite impact about 370 million years ago. With a diameter of 55 km it is the largest impact structure in Europe. Lake Siljan is the large lake in the south of the ring.
Autor/Urheber: User:Vesta, Lizenz: CC BY-SA 3.0
Nördlinger Ries, schematische Darstellung der Kraterbildung. Zweite Phase: Verdampfung des Meteoriten und der umgebenden Gesteine. Vereinfachte, schematische Darstellung nach den unten angegebenen Referenzen.
Iapetus as seen by the Cassini probe.
Original NASA caption: Cassini captures the first high-resolution glimpse of the bright trailing hemisphere of Saturn's moon Iapetus.
This false-color mosaic shows the entire hemisphere of Iapetus (1,468 kilometers, or 912 miles across) visible from Cassini on the outbound leg of its encounter with the two-toned moon in Sept. 2007. The central longitude of the trailing hemisphere is 24 degrees to the left of the mosaic's center.
Also shown here is the complicated transition region between the dark leading and bright trailing hemispheres. This region, visible along the right side of the image, was observed in many of the images acquired by Cassini near closest approach during the encounter.
Revealed here for the first time in detail are the geologic structures that mark the trailing hemisphere. The region appears heavily cratered, particularly in the north and south polar regions. Near the top of the mosaic, numerous impact features visible in NASA Voyager 2 spacecraft images (acquired in 1981) are visible, including the craters Ogier and Charlemagne.
The most prominent topographic feature in this view, in the bottom half of the mosaic, is a 450-kilometer (280-mile) wide impact basin, one of at least nine such large basins on Iapetus. In fact, the basin overlaps an older, similar-sized impact basin to its southeast.
In many places, the dark material--thought to be composed of nitrogen-bearing organic compounds called cyanides, hydrated minerals and other carbonaceous minerals--appears to coat equator-facing slopes and crater floors. The distribution of this material and variations in the color of the bright material across the trailing hemisphere will be crucial clues to understanding the origin of Iapetus' peculiar bright-dark dual personality.
The view was acquired with the Cassini spacecraft narrow-angle camera on Sept. 10, 2007, at a distance of about 73,000 kilometers (45,000 miles) from Iapetus.
The color seen in this view represents an expansion of the wavelengths of the electromagnetic spectrum visible to human eyes. The intense reddish-brown hue of the dark material is far less pronounced in true color images. The use of enhanced color makes the reddish character of the dark material more visible than it would be to the naked eye.
This mosaic consists of 60 images covering 15 footprints across the surface of Iapetus. The view is an orthographic projection centered on 10.8 degrees south latitude, 246.5 degrees west longitude and has a resolution of 426 meters (0.26 miles) per pixel. An orthographic view is most like the view seen by a distant observer looking through a telescope.
At each footprint, a full resolution clear filter image was combined with half-resolution images taken with infrared, green and ultraviolet spectral filters (centered at 752, 568 and 338 nanometers, respectively) to create this full-resolution false color mosaic.
High-speed digital sequence of a vertical impact by a copper sphere traveling at 4.5 km/sec into porous pumice (density of about 1g/cc). A side-view of a near-vertical impact at 500 frames per second (or 2 milliseconds between each frame) taken with a high-speed video. This is a 60-degree impact (from horizontal) into a highly porous target of fine particles. Now you can see the funnel-shaped ejecta curtain moving across the surface after the crater forms. The curtain resembles an inclined wall of particles that actually represent the collection of particles ejected at a well-defined position, time, and velocity. Eventually the crater emerges from behind the ejecta curtain as it moves outward and becomes transparent. This sequence illustrates the evolution of a crater that is stopped by the effects of gravity, rather than strength in the target. These ejecta are launched out of the target and only gravity limits how far they can travel beyond the rim on ballistic trajectories. If the target had strength, the curtain would seem to separate from the rim as the crater finishes.
Vredefort Dome, Free State, South Africa. Image #STS51I-33-56AA.
Autor/Urheber: LarryBloom, Lizenz: CC BY 3.0
Aerial Photograph of the Barringer Meteor Crater in Arizona, USA.
Autor/Urheber: User:Vesta, Lizenz: CC BY-SA 3.0
Nördlinger Ries, schematische Darstellung der Kraterbildung. Endgültiger Krater. Vereinfachte, schematische Darstellung nach den unten angegebenen Referenzen.
A Spectacular New Martian Impact Crater
http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA17932
A dramatic, fresh impact crater dominates this image taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter on Nov. 19, 2013. Researchers used HiRISE to examine this site because the orbiter’s Context Camera had revealed a change in appearance here between observations in July 2010 and May 2012, bracketing the formation of the crater between those observations.
The crater spans approximately 100 feet (30 meters) in diameter and is surrounded by a large, rayed blast zone. Because the terrain where the crater formed is dusty, the fresh crater appears blue in the enhanced color of the image, due to removal of the reddish dust in that area. Debris tossed outward during the formation of the crater is called ejecta. In examining ejecta’s distribution, scientists can learn more about the impact event. The explosion that excavated this crater threw ejecta as far as 9.3 miles (15 kilometers).
The crater is at 3.7 degrees north latitude, 53.4 degrees east longitude on Mars. Before-and-after imaging that brackets appearance dates of fresh craters on Mars has indicated that impacts producing craters at least 12.8 feet (3.9 meters) in diameter occur at a rate exceeding 200 per year globally. Few of the scars are as dramatic in appearance as this one.NASA image of simple and complex crater structure. The caption read, "As shown in the above diagram, the main difference between the simple crater and the complex crater, is that the complex crater exhibits central peak uplift in the center of the crater."
Autor/Urheber: Hp.Baumeler, Lizenz: CC BY-SA 4.0
Meteoritenkrater 39 km nördlich von Pretoria.
Autor/Urheber: User:Vesta, Lizenz: CC BY-SA 3.0
Nördlinger Ries, schematische Darstellung der Kraterbildung. Dritte Phase: Auswurf und Bildung des Primärkraters. Vereinfachte, schematische Darstellung nach den unten angegebenen Referenzen.
Photo of the Manicouagan crater in Quebec, Canada
Autor/Urheber: User:Vesta, Lizenz: CC BY-SA 3.0
Nördlinger Ries, schematische Darstellung der Kraterbildung. Vierte Phase: Kraterwachstum, nach innen gleitende Gesteinsblöcke. Vereinfachte, schematische Darstellung nach den unten angegebenen Referenzen.
Autor/Urheber: User:Vesta, Lizenz: CC BY-SA 3.0
Nördlinger Ries, schematische Darstellung der Kraterbildung. Erste Phase: Einschlag, Beginn des Auswurfs ("Jetting"). Vereinfachte, schematische Darstellung nach den unten angegebenen Referenzen.
Tycho crater on the Moon: mosaic of images, made by Lunar Reconnaissance Orbiter (Wide Angle Camera). Width of the image is 120 km.